
 
 

 

1 
 

Supplementary Material 

Heuristic Optimization of Thinning Individual Douglas-Fir 
Todd West, John Sessions and Bogdan M. Strimbu * 

S1. Heuristic Implementations 
S1.1. Preface: 1-opt Flip and 2-opt Exchange Moves 

All eight heuristics considered use 1-opt moves to perform optimization. A 1-opt 
move flips a single tree’s cut schedule between thinning and final harvest. If the tree is 
currently scheduled for thinning, the heuristic instead evaluates what would happen if it 
was cut at final harvest. Conversely, if a tree is scheduled for final harvest then a 1-opt 
move results in checking whether it would be preferable to thin it. Performing many 1-
opt moves allows a heuristic to vary the percentage of trees selected for thinning as well 
as the intensity of thinning within each diameter class. For a stand represented by N trees 
there are N possible 1-opt moves and each run of a heuristic is likely to evaluate each move 
several times. We also made limited use of 2-opt exchanges and exchange-like patterns of 
1-opt moves. A 2-opt exchange picks two trees and swaps their schedules. While an ex-
change does not vary the number of trees selected for thinning, it can make smaller net 
changes in the basal area intensity of a thin than a 1-opt flip and frequently reallocates tree 
selections between diameter classes. Exchanges therefore tend to create smaller objective 
function changes than flips, a property often associated with increased likelihood of ex-
changes being accepted as moves. A heuristic search employing both 1-opt and 2-opt 
moves is thus more diverse, and possibly more computationally efficient, than one using 
only 1-opt moves. 

S1.2. Sequential and Stochastic Hero 
As originally described, hero is a parameterless, steep ascent method which sequen-

tially evaluates each decision variable and assigns it to the best state available at the time 
of evaluation [26]. Iteration continues until no improvement can be found (Listing S1). 
Since the decision variables are evaluated sequentially, an implicit dependency on the or-
dering of tree data exists. Maintaining this fixed ordering likely increases correlations be-
tween decisions made in different iterations. While such autocorrelation is presumably 
beneficial if the data can be advantageously ordered, it appears difficult to determine such 
orderings. A mitigation against potentially poor data ordering is therefore to randomize 
the order of evaluation in each iteration. We refer to this variation as stochastic hero (List-
ing S2) to distinguish it from the default implementation of hero using sequential evalua-
tion. 

For a stand represented by N trees, in both variations of hero one iteration calls the 
growth and yield models N times to evaluate N 1-opt flips. If the models are O(N), as Or-
ganon is, then hero’s per iteration cost is O(N2). While hero does not guarantee a conver-
gence rate, we have observed it to require approximately log(N) iterations, resulting in 
behavior similar to an O(N2 log N) algorithm. Hero is therefore the least computationally 
expensive of the heuristics considered here. Hero is also attractive for its simplicity. It has 
no parameters to adjust and minimizes computation by automatically stopping once it 
has converged. 

Listing S1. Pseudocode for hero’s sequential implementation. 

iterations ← 25 // never reached: 12-14 observed in practice 
 
acceptedLEV ← randomize tree selection 
foreach (iteration in 1...iterations) { 



 

2 

  foreach (tree in plot data) { // consider all trees on the plot    candidateLEV ← 1-opt flip of 
tree 

    if (candidateLEV > acceptedLEV) { 
      acceptedLEV ← candidateLEV // accept move 
    } 
  } 
  if (no moves accepted in iteration) { 
    break; // stop if converged 
  } 
} 

Listing S2. Pseudocode’s for hero’s stochastic implementation. Changes from the sequential im-
plementation are in bold. 

iterations ← 25 // never reached: 9-12 observed in practice 
 
acceptedLEV ← randomize tree selection 
foreach (iteration in 1...iterations) { 
  randomize order of all trees in plot data 
  foreach (tree in randomized order) { 
    candidateLEV ← 1-opt flip of tree 
    if (candidateLEV > acceptedLEV) { 
      acceptedLEV ← candidateLEV // accept move 
    } 
  } 
  if (no moves accepted in iteration) { 
    break; // stop if converged 
  } 
} 

S1.3. Monte Carlo Heuristics: Simulated Annealing, Record-to-Record Travel, Threshold Accept-
ing, and Great Deluge 

Simulated annealing, record-to-record travel, threshold accepting, and great deluge 
are all Monte Carlo algorithms which randomly select trees to evaluate [27–29]. Where 
these four heuristics differ is in acceptance of moves which decrease LEV. Simulated an-
nealing uses probabilistic acceptance of such disimproving moves, great deluge accepts 
any move whose LEV is above a rising “water” level, threshold accepting accepts any 
move whose LEV exceeds a variable fraction of the previously accepted LEV, and record-
to-record travel accepts all moves with LEVs above a reactive threshold. High probabili-
ties, low water levels, small fractions, and low thresholds result in most or all moves being 
accepted. In keeping with the simulated annealing analogy, these are referred to as hot 
states. Since such permissive move acceptance reduces or eliminates convergence towards 
an improved solution, all four heuristics use cooling schedules to apply increasing selec-
tion pressure to moves. Numerous schedules have been proposed [40] §4.1 and cooling 
frequently reaches cold states where only improving moves are accepted. The move ac-
ceptance rate can also be monitored and, once improving moves become too difficult to 
find, cooling can be restarted from a newly hot state in an attempt to locate a different 
solution which improves upon the solutions already observed. As with cooling schedules, 
many such reheating schedules have been demonstrated [41] §3.3.1. 

Due to the cost of growth and yield calculations, hot states’ low move efficiency is 
undesirable in individual tree selection. We therefore begin Monte Carlo runs in a fully 
cold state and reheat once a maximum LEV had been reached. Because moves diverge 
from a maxima orders of magnitude more rapidly than they converge we limit LEV de-
creases in reheats to restrict the computational effort required to reconverge. 

To determine move acceptance in simulated annealing, we use a running average to 
adapt to the stand structure and LEV. While the averaging was inspired by Goh et al. [42], 
our use differs in most details (Listing S3). We implement extended great deluge with 
variable water level similar to McMullan [43] and, for threshold accepting, move ac-
ceptance remains as defined by Dueck and Scheuer [29] (Listings S5 and S6). While 



 

3 

threshold accepting is often used with a linear or geometric progression of thresholds and 
a fixed number of iterations per threshold, we use a small number of thresholds with a 
variable number of iterations per threshold for simplicity in configuring reheating. 
Threshold accepting has also been configured for adaptive cooling and reheating [44] but 
only fixed reheating was used here. 

We were unsuccessful in locating previous use of reheating with record-to-record 
travel, though heating necessarily increases the deviation allowed from the best solution. 
While Dueck [28] did not define a cooling schedule for record-to-record travel, we found 
reheats had vanishingly low probabilities of reaching improving solutions without cool-
ing. We therefore added a geometric cooling parameter similar to simulated annealing’s 
temperature reduction parameter α. The resulting variant of record-to-record travel is 
somewhat simpler than the other three Monte Carlo heuristics and appears to provide 
equivalent functionality (Listing S4). 

In addition to use of 1-opt flips we also evaluated reactively switching to 2-opt ex-
changes when a search appeared to be close to a LEV maximum. Since this use of ex-
changes produced negligible improvement, the results we present for Monte Carlo heu-
ristics use exclusively 1-opt flips. However, this study explored only a limited subset of 
the many possible combinations of 1-opt moves, 2-opt moves, and reheats. 

Listing S3. Simulated annealing with reheating. N is the number of trees used to represent the 
stand. Key distinctions from other Monte Carlo heuristics are in bold. 

α ← 0.7 // cooling parameter, rate depends on iterationsPerTemperature 
acceptanceProbability ← 0 // cold start 
iterations ← 19N 
iterationsPerTemperature ← 10 
movesHighestIncreasedOrReheat ← 0 
runningAverage ← -infinity 
runningAverageRetention ← 10 
reheatAfter ← integer(1.6N) 
reheatBy ← 0.33; // probability, depends on α 
 
acceptedLEV ← randomize tree selection 
highestLEV ← acceptedLEV 
foreach (iteration in 1...iterations) { 
  foreach (iteration in 1...iterationsPerTemperature) { 
    randomly select one tree from all trees on the plot 
    candidateLEV ← 1-opt flip of selected tree 
    LEVincrease ← candidateLEV – currentLEV 
    relativeIncrease ← LEVincrease / runningAverage 
    ++ movesSinceHighestIncreasedOrReheat 
 
    if (candidateLEV > acceptedLEV) or  
       (random probability in [0, 1] < exp(ln(acceptanceProbability) * relativeIncrease) { 
      acceptedLEV ← candidate LEV // accept move 
      if (acceptedLEV > highestLEV) { 
        highestLEV ← acceptedLEV 
        movesSinceHighestIncreasedOrReheat ← 0 
      } 
 
      if (runningAverage == -infinity) { 
        runningAverage ← LEVincrease // initialize moving average 
      } 
      else { 
        runningAverage ← LEVincrease / runningAverageRetention + (1 – 1 / runningAver-

ageRetention) * runningAverage 
      } 
    } 
 
    if (movesSinceAcceptOrReheat > reheatAfter) { 



 

4 

      acceptanceProbability ← min(acceptanceProbability + reheatBy, 1.0) 
      movesSinceHighestIncreasedOrReheat ← 0 
    } 
  } 
  acceptanceProbability ← α * acceptanceProbability 
} 

Listing S4. Record-to-record travel with reheating. Key distinctions from other Monte Carlo heu-
ristics are in bold. 

α ← 0.75 // reheat cooling parameter  
deviation ← 0 // cold start 
increaseAfter ← integer(1.6N) 
relativeIncrease ← 0.0075 // controls exploration range 
iterations ← 19N 
 
acceptedLEV ← randomize tree selection 
bestLEV ← acceptedLEV 
foreach (iteration in 1...iterations) { 
  randomly select one tree from all trees on the plot 
  candidateLEV ← 1-opt flip of selected tree 
  deviation ← α * deviation 
  if (candidateLEV > acceptedLEV - deviation) { 
    acceptedLEV ← candidateLEV // accept move 
 
    if (acceptedLEV > bestLEV) { 
      bestLEV ← acceptedLEV 
    } 
  } 
 
  if (iteration == increaseAfter) { // one time reheat 
    deviation ← relativeIncrease * |bestLEV| // absolute value 
  } 
} 

Listing S5. Threshold accepting with an initial convergence followed by one or more reheats. Key 
distinctions from other Monte Carlo heuristics are in bold. 

thresholds ← { 1.0, 0.999, 1.0 [, 0.999, 1.0, ...] } // of arbitrary length 
iterationsPerThreshold ← integer({ 11.5N, 25, 7.5N [, 25, 7.5N, ...] }) // matches thresholds, var-

ied from default: see table A4 
 
acceptedLEV ← randomize tree selection 
foreach (threshold in thresholds) { 
  foreach (iteration in 1...iterationsPerThreshold[threshold]) { 
    randomly select one tree from all trees on the plot 
    candidateLEV ← 1-opt flip of selected tree 
    if (candidateLEV > threshold * acceptedLEV) { 
      acceptedLEV ← candidateLEV 
    } 
  } 
} 

Listing S6. Great deluge with reheating. Key distinctions from other Monte Carlo heuristics are in 
bold. 

finalMultiplier ← 1.75 // can depend on LEV improvement over run 
initialMultiplier ← 1.25 // can depend on LEV improvement over run 
iterations ← 19N 
movesSinceAcceptOrReheat ← 0 
lowerWaterAfter ← integer(1.6N) 
lowerWaterBy ← 0.0033; // controls exploration range 
 



 

5 

acceptedLEV ← randomize tree selection 
bestLEV ← acceptedLEV 
waterLevel ← initialMultiplier * initialLEV 
rainRate ← (finalMultiplier * initialLEV – waterLevel) // iterations 
foreach (iteration in 1...iterations) { 
  randomly select one tree from all trees on the plot 
  candidateLEV ← 1-opt flip of selected tree 
 
  if (candidateLEV > acceptedLEV) or (candidateLEV > waterLevel) { 
    acceptedLEV ← candidateLEV // accept move 
    movesSinceAcceptOrReheat ← 0 
 
    if (acceptedLEV > bestLEV) { 
      bestLEV ← acceptedLEV 
    } 
  } 
  else { 
    ++movesSinceAcceptOrReheat 
  } 
 
  if (movesSinceAcceptOrReheat > lowerWaterAfter) { 
    waterLevel ← (1.0 – lowerWaterBy) * acceptedLEV 
    movesSinceAcceptOrReheat ← 0 
  } 
} 

S1.4. Steady State Genetic Algorithm with CD/RW Replacement 
A genetic algorithm is expected to require more computation than hero or Monte 

Carlo heuristics but also to be more robust in solution quality [37]. Numerous genetic al-
gorithms have been proposed [45], all of which breed new generations of solutions from 
a population. Selection pressure is applied through replacement of individuals in the pop-
ulation by offspring with higher LEV and possibly through other mechanisms [46,47]. We 
found the steady state (μ+λ) genetic algorithm using contribution of diversity and worst 
replacement (CD/RW SSGA) of Lozano et al. [30] produced more rapid convergence to 
lower variance than generational (μ,λ) algorithms or simply replacing the worst individ-
ual in the population. We also found uniform crossovers converged more quickly and 
with lower variance than 1- or 2-point crossovers. We therefore present results for a uni-
form crossover CD/RW SSGA. 

Genetic algorithms rely on recombination and mutation of genetic material to make 
offspring different from their parents. We treated the harvest selections for the N trees 
representing a stand as a single chromosome. If the position of trees within chromosomes 
is not randomized, an implicit dependency on the ordering of tree data occurs when using k-point crossovers that is analogous to the dependency found in hero sequential. How-
ever, the benefits of randomizing 1- and 2-point crossovers against data ordering ap-
peared to be small compared to the convergence advantage of a uniform crossover. 

Mutations were performed by applying 1-opt or 2-opt exchange moves to each of the 
two children resulting from a breeding with the two mutation types occurring at inde-
pendent probabilities. Experimentation found convergence was most rapid when muta-
tion probabilities were inversely proportional to the LEV distance from convergence. 
Since nonlinear regression found lower quartile, median, and upper quartile LEV dis-
tances were well approximated by an exponential decline (bias < 0.0012% and root mean 
square error < 0.70% of the LEV range from population initialization to convergence), we 
present results for mutation schedules with a 1 − 𝑒ି௞௫ form (Listing S7). 

Listing S7. Steady state genetic algorithm (SSGA) using uniform crossover and CD/RW (contribu-
tion of diversity and replace worst) replacement of individuals within its population [30] Fig. 3, 
along with variable 1- and 2-opt mutation probabilities. Generation and assessment of child is 
considered to be a move. 



 

6 

maximumGenerations ← integer(5.5N0.6) 
populationSize ← 30 // controls convergence and solution quality 
 
// thin intensity = { 0.5/P, 1.5/P, ... , (P - 0.5)/P} 
initialPopulation ← randomTreeSelection(intensity = { 0.5, 1.5, ..., populationSize – 0.5}/popu-

lationSize) 
currentLEVs ← lev(initialPopulation) // list of each individual’s LEV 
nextLEVs ← currentLEVs // next generation 
foreach (generation in 1...generations) { 
  foreach (breeding in 1...populationSize) { 
    parent1 ← currentLEVs[random individual] // uniform probability 
    parent2 ← currentLEVs[random individual] // allows selfing 
 
    // uniform crossover on an individual tree basis 
    foreach (tree in plot data) { 
      firstSelection ← parent1[tree] 
      secondSelection ← parent2[tree] 
      if (parent1[tree] != parent2[tree]) { 
        buffer ← firstSelection 
        if (random probability < 0.5) { 
          firstSelection ← secondSelection 
        } 
        if (random probability < 0.5) { 
          secondSelection ← buffer 
        } 
      } 
      child1[tree] ← firstSelection 
      child2[tree] ← secondSelection 
    } 
 
    1optProbability ← 1 - exp(-8 * generation/generations) 
    2optProbability ← 0.1 * 1optProbability 
    if (random probability < 1optProbability) { // child 1 
      1optMutation(child1, random tree) 
    } 
    if (random probability < 2optProbability) { 
      2optMutation(child1, 2 random trees) 
    } 
    child1LEV ← lev(child1) 
    if (min(nextLEVs) < child1LEV) { 
      nextLEVs[CD/RW replacement] ← child1LEV 
    } 
 
    if (random probability < 1optProbability) { // child 2 
      1optMutation(child2, random tree) 
    } 
    if (random probability < 2optProbability) { 
      2optMutation(child2, 2 random trees) 
    } 
    child2LEV ← lev(child2) 
    if (min(nextLEVs) < child2LEV) { 
      nextLEVs[CD/RW replacement] ← child2LEV 
    } 
  } 
 
  currentLEVs ← nextLEVs 
} 

  



 

7 

S1.5. Tabu Search 
The eighth and final heuristic we evaluated was tabu search [31]. Like hero, tabu 

sequentially evaluates trees and picks the best move. Unlike hero, each iteration within a 
tabu search checks the selections of all N trees and then accepts only the single move which 
yielding highest available LEV. Tabu is therefore an O(N3 / log N) algorithm and the most 
computationally expensive heuristic considered here: each growth and yield calculation 
is O(N), complete evaluation of each move’s 1-opt neighborhood performs N growth and 
yield calculations, and about N / log N moves are required to converge on scheduling N 
trees. High move costs are a well-known limitation of tabu search [31]. One mitigation is 
to split the problem into smaller subsets which can be solved more efficiently. However, 
we were unable to identify any partitioning based on random subsets, height classes, or 
similar or dissimilar diameter quantiles which meaningfully reduced computation while 
maintaining solution quality. Results are therefore presented for a full neighborhood form 
of tabu search randomized only by the initial tree selection (Listing S8). 

Also unlike hero, which is parameterless, tabu search accepts a single tenure param-
eter. While tenure encourages diversification by prohibiting moves from being undone, a 
fixed tenure of length L permits return to a given solution after L + 1 or more moves. A 
tabu search can therefore stagnate due to oscillation about a local maximum. Variable ten-
ure lengths and reactive escape mechanisms are sometimes used to suppress such oscilla-
tions [41] §4.2. Within our computational capacity, exploration suggested use of variable 
tenure and escapes slightly increased median LEVs during extended tabu searches but 
both mechanisms appeared detrimental at practical search durations due to 1–5% in-
creases in variance. We therefore present results for fixed tenures without escape. We also 
observed pseudooscillations where trees were replaced by similar trees. Since pseudoo-
scillation approximates a 2-opt exchange and may be more efficient than searching 2-opt 
neighborhoods directly we did not attempt to suppress pseudooscillation. 

Listing S8. Tabu search. 

iterations ← integer(4.25N / log(N)) 
maxTenure ← integer(0.1N) // move tenures are set to a random value in [2, maxTenure] 
tabuList ← { 0, 0, ... } 
 
acceptedLEV ← randomize tree selection 
bestLEV ← acceptedLEV 
foreach (iteration in 1...iterations) { 
  bestNonTabuIterationLEV ← -infinity 
  bestNonTabuSchedule ← null 
  bestNonTabuTree ← null 
  bestTabuIterationLEV ← -infinity 
  bestTabuSchedule ← null 
  bestTabuTree ← null 
  foreach (tree in plot data) { // full neighborhood evaluation 
    [candidateLEV, candidateSchedule] ← 1-opt flip of tree 
    isTabu ← tabuList[tree][candidateSchedule] > 0 
    if (candidateLEV > bestLEV) { 
      bestNonTabuIterationLEV ← candidateLEV // aspirational criteria 
      bestNonTabuSchedule ← candidateSchedule 
      bestNonTabuTree ← tree 
    } 
    else if (isTabu == false) and (candidateLEV > bestNonTabuIterationLEV) { 
      bestNonTabuIterationLEV ← candidateLEV 
      bestNonTabuSchedule ← candidateSchedule 
      bestNonTabuTree ← tree 
    } 
    else if (candidateLEV > bestTabuIterationLEV) { 
      bestTabuIterationLEV ← candidateLEV 
      bestTabuSchedule ← candidateSchedule 
      bestTabuTree ← tree 



 

8 

    } 
    
    foreach (schedule in { thin, final harvest }) { 
      tabuList[tree][schedule] ← max(tabuList[tree][schedule] - 1, 0) 
    } 
  } 
 
  if (bestNonTabuIterationLEV != -infinity) { 
    acceptedLEV ← bestNonTabuIterationLEV // accept non-tabu move 
    tabuList[bestNonTabuTree][bestNonTabuSchedule] ← random(2, maxTenure) 
  } 
  else if (bestTabuIterationLEV != -infinity) { 
    acceptedLEV ← bestTabuIterationLEV // forced to accept tabu move 
    tabuList[bestTabuTree][bestTabuSchedule] ← random(2, maxTenure) 
  } 
} 

S1.6. Conventional Prescription Optimization Using Complete Enumeration 
We provide this listing for clarity in details of tree selection. While complete enumer-

ation is conceptually simple, implementations can differ in how the combined intensity of 
thinning from above, proportionally, and below is bounded and in how those intensities 
become quantized when applied to individual trees. Implementations may also differ in 
how specific trees are selected for proportional thinning. 

Listing S9. Simplified implementation of complete enumeration as used for conventional prescrip-
tion optimization in this study. More complex stepping logic is helpful when the minimum and 
maximum intensities are not integer multiples of the step size and avoids the continue and break 
statements. 

minimumIntensity ← 30 // % basal area, inclusive 
maximumIntensity ← 90 // % basal area, inclusive 
step ← 1 // % 
 
bestLEV ← -infinity 
[bestBelow, bestProportional, bestAbove] ← -1 
foreach (below in 0...100 by step) { // 0%, 1%, 2%, ... 
  foreach (proportional in 0...100 by step) { // 0%, 1%, 2%, ... 
    foreach (above in 0...100 by step) { // 0%, 1%, 2%, ... 
      if (below + proportional + above < minimumIntensity) { 
        continue 
      } 
      else if (below + proportional + above > maximumIntensity) { 
        break 
      } 
 
      sortedTrees ← sort trees from smallest to largest DBH 
      candidateSchedule ← no trees selected 
      // select trees from above or below until basal area limit exceeded 
      // Rounds up (away from zero) to nearest whole tree removal. 
      candidateSchedule ← selectLargestDiameterTrees(above, sortedTrees) 
      candidateSchedule ← selectSmallestDiameterTrees(below, sortedTrees) 
      // uses a floating point accumulator to handle fractional steps 
      // For example, 40% proportional selects 2 out of 5 trees using a 
      // repeating 1, 0, 0, 1, 0 pattern. 
      candidateSchedule ← selectEveryNthTree(proportional, sortedTrees) 
 
      candidateLEV ← growthAndYield(candidateSchedule) 
      if (candidateLEV > bestLEV) { 
        bestLEV ← candidateLEV 
        bestBelow ← below 
        bestProportional ← proportional 



 

9 

        bestAbove ← above 
      } 
    } 
  } 
} 

S1.7. Parameterization and Initialization 
While heuristics respond to their implementation and parameterization, we did not 

find exact choices to be critical. In most cases, parameters differing 10–25% from those 
given in Listings S1–8 exhibited limited change in the LEV distribution or amount of com-
putation required. We also could have, for example, used reheating to allow hero stochas-
tic to move beyond the first local optima encountered. When evaluating parameter effects 
or the LEV results reported here, each heuristic run began with unique, random values of u (Eqs. 2 and 3). For the seven hill climbing heuristics—tabu search, both variants of hero, and the four Monte Carlo heuristics—each tree in u0 had a 50% probability of being selected for thinning. This random restart method forms u0 as an uninformative prior for thinning, resulting in populations of LEVs which are independent and identically distributed. The ge-netic algorithm’s population of solutions was initialized with 30 choices of u, u0…u29, each 
with a linear increase in a tree’s probability of removal (Listing S7). We found distributing u0…u29 across different levels of thinning intensity in multiple diameter classes, diameter 
quantiles, or height quantiles nearly always decreased the genetic algorithm’s conver-
gence rate. 

S2. Supplemental Results: Heuristic Convergence 
Figures 1–5 in the main text aggregate results from 552 combinations of plot, thinning 

age, rotation length, and heuristic. Since each combination is associated with a conver-
gence probability distribution, we present distributions for 24 of the combinations in fig-
ures S1–3 below. In our experience, monitoring these distributions is helpful when de-
signing or parameterizing heuristics and they provide valuable context when comparing 
results of different publications or heuristic behavior on different problems. 

 
Figure S1. LEV distributions as a function of move and heuristic on the 2.7 m plot for thinning at 40 years with a 70 year 
rotation and 1000 runs per heuristic. Horizontal dashed lines indicate the LEV of the optimized conventional prescription. 
Note that reheating widens the Monte Carlo heuristics’ distributions and that the genetic algorithm’s x-axis is extended 
and tabu search’s x-axis shortened. 



 

10 

 
Figure S2. LEV distributions as a function of move and heuristic on the 3.7 m plot for thinning at 40 years with a 65 year 
rotation and 1000 runs per heuristic. As in Figure S1, the x-axis is extended for the genetic algorithm and shortened for 
tabu search. 

 
Figure S3. LEV distributions as a function of move and heuristic for the Nelder plot for thinning at 40 years with a 65 year 
rotation. 1000 runs were used for all heuristics except tabu search, where 100 runs were used. Also, as in Figures S1 and 
S2, the genetic algorithm and tabu search’s x-axes are adjusted. 

As shown in Figure 3 of the main text, all eight heuristics produce narrower ΔLEV 
distributions on the Nelder plot than on the 2.7 and 3.7 m plots. This result suggests the 
range of ΔLEV may tend to narrow as N increases, consistent with the additional result 
Figure S4 provides from merging the 2.7 and 3.7 m plots. Trees on the Nelder plot are also 
smaller (Table 3) than those on 2.7 and 3.7 m plots and are more diverse in size (diameter 



 

11 

standard deviation σDBH = 8.0 cm versus σDBH = 5.5–5.7 cm, σheight = 3.9 m versus 2.3–3.0 m). 
Both of these factors may also act to narrow the Nelder plot’s ΔLEV distribution. 

 
Figure S4. a) LEVs and b) ΔLEVs obtained from optimizing the 2.7 and 3.7 m plots as a merged plot with 369 trees rather 
than optimizing each plot separately. The merged plot has an average spacing of 3.2 m, similar to the 3.2–3.4 m spacings 
commonly used for plantation Douglas-fir in our study area (planting at 890–990 TPH). As with the Nelder plot, 1000 runs 
were performed for each heuristic except for using 100 tabu runs. 2.9 million prescriptions were evaluated in conventional 
prescription optimization. 

S3. Software and Regression Imputation Used 
Heuristics were implemented in C# and the CIPS-R 2.2.4 version of Organon was 

ported from Fortran to C#. C# code was built using Visual Studio 2019 Community Edition 
16.8.3 x64 targets for .NET 5.0 and executed under Powershell Core 7.1.1 using Visual 
Studio Code 1.53.1. Source code is available under the GNU Public License from 
https://github.com/OSU-MARS. Data logged from C# was analyzed in R 4.0.3 using the 
cowplot (1.1.0), data.table (1.13.2), dplyr (1.0.2), forcats (0.5.0), fst (0.9.4), ggplot2 (3.3.2), 
magrittr (1.5), reshape2 (1.4.4), scales (1.1.1), stringr (1.4.0), and tidyr (1.1.2) packages. Re-
gression imputation also used readr (1.4.0) and readxl (1.3.1). 

Because heights were not measured for four trees on the Nelder plot, we used regres-
sion imputation to estimate their heights based on the 567 trees which were measured. 
The best supported, age-specific regression we identified for the plot, on both an adjusted 
R2 and Akaike Information Criterion basis, was 

 𝐻 = 1.436 + 7.4315 log(𝐷𝐵𝐻) − 0.11692(𝑠𝑝𝑎𝑐𝑖𝑛𝑔)ଶ (S1)

 
where H is the tree height in meters, DBH the tree’s measured diameter at breast 

height in centimeters, and the type Ia [48] arc spacing in meters is given in Table 9 of [19]. 
We assumed arcs 1 and 2 had the same spacing as each other, arcs 16 and 17 also had an 
identical spacing, and that type Ia spacings occurred in reverse order for trees in the type 
Ib portion of the plot. This regression has an adjusted R2 of 0.58 and both predictors are 
significant at p < 0.001. 


