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Abstract: Subtropical and tropical broadleaf forests play important roles in conserving biodiversity
and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community
composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is
scarce. In this study, high-throughput sequencing was used to profile soil microbial community
composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution
in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results
showed that soil microbial community compositions differed dramatically among all of four forests.
Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in
the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most
complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus
contents in JFL. In support of the importance of environmental selection, we found selection (78–96%)
dominated microbial community assembly, which was verified by partial Mantel tests showing
significant correlations between soil phosphorus and nitrogen content and microbial community
composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in
shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes
in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have
significant changes in both microbial community assembly and interaction.
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1. Background

Forests play important roles in biodiversity conservation, providing a variety of critical resources
and ecosystem services to humans, and generally serve as carbon sinks [1]. Subtropical and tropical
forests, which contain up to 55% of global carbon stocks, dominate southern China and have favorable
climatic conditions with regard to temperature, light and water [1]. Due to these advantageous climatic
conditions, the region has high biodiversity in plants and animals [2]. Soil microbial information in
subtropical and tropical forests of southern China, however, is relatively scarce, despite their important
ecological functions in driving biogeochemical elemental cycles [3].

Soil microbes in forests are significant contributors to global carbon and nitrogen cycles due
to their high metabolic activity and large populations of microorganisms [4]. Therefore, a deep
analysis of soil microbial communities and their roles in ecological processes would improve our
understanding of biodiversity as well as elemental biogeochemical cycles [5]. Soil microbial community
composition and diversity in sub- and tropical forests are subjected to influence from land-use
changes [6,7]. Microbial functional traits and groups—such as functional gene diversity, composition
and abundance, and aerobic ammonia-oxidizing communities—in the Amazon Rainforest were also
altered by land-use changes [8,9]. Therefore, it is a crucial to conduct a baseline study to document
soil microbial biogeography in sub- and tropical forests, which is a prerequisite for understanding
microbial responses to environmental changes and their ecological consequences.

Microbial biogeographic patterns are maintained using community assembly processes [10].
Vellend [11] has proposed four processes—selection, drift, dispersal, and mutation/diversification
in shaping microbial communities. The selection process, also referred to as deterministic process
or niche process, has a considerable influence in shaping microbial community distribution [12,13].
Selection determines the microbial community via abiotic factors such as various environmental
impacts, including soil pH, carbon, and nitrogen [14,15], and biotic factors such as commensalism,
mutualism, and parasitism [12]. In contrast, drift refers to stochastic changes of species abundance,
and it is the most important process in shaping of microbial community distribution when the
selection process is weak [16]. Species diversity among communities is influenced by dispersal, which
determines species movement and colonization of a new location [10]. Microorganisms can evolve
through diversification or mutation, particularly in inhospitable environments [12]. However, it
remains unclear how deterministic and stochastic processes collectively shape microbial community
distributions in broadleaf forests of southern China.

This study aimed to identify the soil microbial taxonomic composition through 16S rRNA
sequencing and functional gene structure through GeoChip array in a four broadleaf forest of
China. Given that soil nitrogen and phosphorus contents are important factors that affect vegetation
diversity/recovery in southern China [17], we hypothesize that soil microbial diversities in forests
with low nitrogen and phosphorus levels are low. As a consequence, the corresponding soil microbial
networks are more complex, with the microbes in these networks more connected than those in the
other networks, and microbes are closer to each other due to stronger pressure from soil nutrient
limitations. We performed microbial community assembly analysis to examine whether environmental
selection was important for microbial community assembly, and partial Mantel tests to identify the
major environmental factors associated with differences in microbial communities.
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2. Materials and Methods

2.1. Site Description and Soil Sample Collection

This study utilized four natural broadleaf forests in national natural reserves in China. The
four forest reserves are located in Huangsang (HS), Hunan Province (110◦04′ E and 26◦23′ N) with a
subtropical climate, Maoershan (MES), Guangxi Province (110◦28′ E and 25◦54′ N) with a subtropical
climate, Huaping (HP), Guangxi Province (109◦56′ E and 25◦33′ N) with a subtropical climate, and
Jianfengling (JFL), Hainan Province (108◦53′ E and 18◦43′ N) with a tropical climate. In 2012, Soil
samples of HS, MES, and HP were collected from ten replicate plots per forest, and JFL soil samples
were collected in three locations with 10 plots per location. Soil plots were 20 × 20 m with about 20 m
between two adjacent plots. At each plot, ten to fifteen surface soil cores (0–10 cm) with over 1 m
distance from each other were taken and mixed to form one sample after the removal of the litter layer.
Soil was sieved through 2-mm mesh and then stored at −80 ◦C for DNA extraction or at 4 ◦C for soil
chemistry characteristic analyses.

2.2. Plant and Environmental Variables Measurements

Recordings of species and richness of tree and shrub communities were taken in each plot. Arbor
was chosen if plant breast diameter was over 5 cm and height was over 1.3 m, and shrub was chosen if
breast diameter was less than 5 cm.

We collected annual average temperatures and annual mean precipitations through the WorldClim
global climate dataset and then analyzed the data with ArcGIS version 9.3 (ESRI, Redlands, USA). Soil
slurry pH measurements required a pH meter (Mettler Toledo Instruments, Shanghai, China). Soil
environmental variables were measured by traditional methods [18]. In brief, soil organic carbon (SOC)
was determined by potassium dichromate-outside heating method with ferrous sulfate titrating extra
potassium dichromate, total nitrogen (TN) by Kjeldahl digestion, and available nitrogen (AN) by the
Illinois Soil Nitrogen Test (ISNT) diffusion method. Total potassium (TK) and total phosphorus (TP)
were digested with microwave, and available phosphorus (AP) was extracted with sodium bicarbonate.
Then TK, TP and AP were determined by an inductively coupled plasma optical emission spectrometer
(ICP-OES, Optima 5300DV, PerkinElmer, Manhattan, USA).

2.3. Soil Microbial DNA Extraction, Purification and Quantitation

Soil microbial DNA was extracted using a freeze-grinding method from 5 g soil as previously
described [19]. Crude DNA was purified by agarose gel electrophoresis and quantified by a FLUOstar
Optima microplate reader (BMG Labtech, Jena, Germany) [20].

2.4. Illumina Sequencing and GeoChip Experiments and Raw Data Processing

We targeted the V4 region of microbial 16S rRNA genes using 515F (5’-
GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) primers [21]. The
PCR processes and conditions previously described by Zhao et al. [22] were followed. The purified
DNA library was sequenced on an Illumina MiSeq platform (Illumina, San Diego, USA) [23]. The
Galaxy pipeline (http://zhoulab5.rccc.ou.edu:8080/root/login?redirect=%2Froot) was used for data
processing as previously described [22]. Low-quality sequences were discarded, and remaining
sequences were trimmed to ~250 base pairs. The UCHIME method was used to remove chimeric
sequences [24]. Sequences were then classified into operational taxonomic units (OTUs) with 97%
similarity, and taxonomic information was assigned using the RDP 16S rRNA gene classifier [25].
A total of 23,854 sequences were rarefied per sample for downstream analyses.

GeoChip 5.0 (https://www.glomics.com/gch-tech.html), which contained more than
57,000 oligonucleotide probes from 393 genes at the time of use, was used to determine soil microbial
functional gene structure [26]. The purified soil microbial DNA was labelled with Cy 3 and hybridized
with GeoChip 5.0 in an Agilent hybridization oven (Agilent Technologies Inc., Santa Clara, USA) at

http://zhoulab5.rccc.ou.edu:8080/root/login?redirect=%2Froot
https://www.glomics.com/gch-tech.html
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67 ◦C for 24 hours [27]. Arrays were scanned with a NimbleGen MS200 Microarray Scanner (Roche
NimbleGen, Inc., Madison, WI, USA), further using an Agilent Feature Extraction program for image
extraction. The signal intensity was normalized by dividing the total signal intensity of a sample, and
then multiplying a constant and logarithmic transformation [28].

2.5. Statistical Analyses

Normalized data from Illumina sequencing and GeoChip technologies were used for statistical
analyses. Microbial α-diversity utilized the Shannon-Weaver index, followed by calculations of
differences in microbial community structure using the multiple response permutation procedure
(MRPP). Non-metric multidimensional scaling (NMDS) analyses were performed using the
Bray-Curtis dissimilarity to examine microbial distribution patterns [29]. Partial Mantel tests
assisted the examination of correlations between environmental variables and microbial community
compositions [30]. All aforementioned analyses were completed using the “vegan” package in
R software [31].

A method developed by Stegen et al. [32] was used to quantify the relative importance of selection,
drift and dispersal on microbial community assembly. The abundance-weighted β-mean-nearest taxon
distance (βMNTD) was used to quantify the phylogenetic distance between microbial communities. This
test also generated the observed βMNTD (βMNTDobs) and a null distribution βMNTD (βMNTDnull).
The β-nearest taxon index (βNTI) gives the magnitude of deviation between βMNTDobs and
βMNTDnull. A value of | βNTI | > 2 indicates that selection governs the community assembly
between pairwise microbial communities. The Bray-Curtis-based Raup-Crick (RCbray) index, which is
the magnitude of deviation between observed Bray-Curtis and expected Bray-Curtis, is introduced
when | βNTI | < 2. In the context of | βNTI | < 2, a value of RCbray > +0.95 indicates that observed
turnover is governed by dispersal limitation acting alongside Drift. RCbray < -0.95 indicates the
influence of homogenizing dispersal, and | RCbray | < 0.95 indicates the influence of drift acting alone.
Analyses were completed using the “picante” package in R.

Functional molecular ecological networks (MEN) were analyzed with a subset of GeoChip data
using the Molecular Ecological Network Analyses Pipeline (http://129.15.40.240/MENA/main.cgi) [33].
A random matrix theory (RMT)-based conceptual framework was used to make sure the network was
automatically defined and robust to noise.

3. Results

3.1. Diversity and Similarity of Soil Microbial Communities

High-throughput sequencing and microarray approaches were employed to assess soil microbial
taxonomic composition and functional gene structure, resulting in a total of 1,438,800 sequences and
31,937 microbial functional genes in all samples, respectively. Soil taxonomic diversities in JFL were
the lowest (5.81–5.99), and significantly (P < 0.05) different from those in any other forests (6.22–6.39)
(Table 1). Similarly, soil microbial functional gene diversities were the lowest in JFL (9.90–10.16).

Table 1. Soil microbial Shannon diversities at different sites.

Site Taxa Functional Gene

HS 6.35 ± 0.12a 10.21 ± 0.02a
MES 6.22 ± 0.12b 10.15 ± 0.11ab
HP 6.39 ± 0.08a 10.14 ± 0.03ab
JFL 5.92 ± 0.12c 10.04 ± 0.19b

Values are presented as mean ± standard deviation. Letters behind each value indicate significance of differences.
Treatments with any same letters were insignificantly different (P > 0.05) as determined by one-way ANOVA
followed by LSD tests in SAS version 8.1.

http://129.15.40.240/MENA/main.cgi
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MRPP analyses indicated that soil taxonomic compositions and functional structures were
significantly (P < 0.05) different among all of four forests (Table 2). Results of Non-metric
Multidimensional Scaling (NMDS) showed that soil bacterial communities were clustered by individual
forests (Figure S1).

Table 2. Analysis of soil microbial similarity (multiple response permutation procedure, MRPP) based
on the Bray-Curtis index between two study sites. Pairwise comparisons between soil taxonomic
compositions and microbial functional structures.

HS MES HP JFL

HS - 0.295 *** 0.266 *** 0.294 ***
MES 0.067 * - 0.253 ** 0.293 ***
HP 0.043 *** 0.064 ** - 0.280 ***
JFL 0.093 *** 0.104 * 0.091 ** -

The upper triangle shows the MRPP statistic between soil taxonomic compositions, and the lower triangle shows
the MRPP statistic between soil microbial functional structures. Asterisk indicates P values. * P < 0.05, ** P < 0.01,
*** P < 0.001.

3.2. Soil Microbial Taxonomic Distribution

The relative abundance of Proteobacteria, Acidobacteria, Verrucomicrobia, and Actinobacteria accounted
for 83.5–88.4% of the total abundance in the four forests (Figure S2). The relative abundance of
Acidobacteria was the most abundant in the HS (35.1%) and MES (39.4%) soils. Proteobacteria in JFL was
the most abundant (44.2%), which was significantly (P < 0.01) higher than those in the other forests
(33.4–38.7%). On the contrary, the relative abundance of Firmicutes in JFL (0.7%) was about half of that
in the other forests (1.1–1.9%).

A total of 372 genera were detected. The relative abundance of 49 genera were significantly
(P < 0.05) higher in JFL than those in the other forests, of which 62.5% were from Proteobacteria. For
example, Rhodomicrobium, Afipia and Nevskia from Proteobacteria were 1.5–4.3 times greater in JFL than
those in the other forests. In contrast, 66 genera were significantly lower in relative abundance in
JFL than those in the other forests. About 19% of the 66 genera were from the phyla Acidobacteria,
Chloroflexi, Gemmatimonadetes or Verrucomicrobia. For example, subgroups 6, 7, 10, 14, 25 in Acidobacteria
were 2.7–9.0 times smaller in JFL those in the other forests.

3.3. Functional Genes Relevant to Nitrogen and Carbon Cycling

The relative abundance of nitrogen cycling genes was lowest in JFL (24241) and significantly
(P < 0.05) different from those in the other forests (26132–27855). Nearly all genes—including the
nifH gene-encoding nitrogenase, the amoA gene-encoding ammonia monooxygenase, and the gdh
gene-encoding glutamate dehydrogenase—displayed lower intensities in JFL (Figure S3A). The only
exception was the functional gene encoding nitrite reductase derived from protist, which was of a
similar intensity across the four forests.

The total signal intensities of carbon cycling genes were also significantly (P = 0.001) lower in
JFL (80010) than those in the other forests (85944–91500). Most carbon cycling genes (~85%) in JFL
were more than 0.1 times lower in intensity than those in the other forests (Figure S3B). Such examples
include the amyA gene-encoding alpha amylase (0.10 times lower in JFL), the chitinase encoding gene
(0.11 times lower in JFL), the rubisco gene encoding carboxylase (0.10 times lower in JFL), and the
mcrA gene encoding methyl coenzyme M reductase (0.13 times lower in JFL). These results showed the
signal intensities of many functional genes involved in carbon and nitrogen cycling were significantly
lower in JFL than in the three forests, and different microbial metabolic activities might be happening.
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3.4. Molecular Ecological Networks Aanalysis of Functional Genes

Functional molecular ecological networks (MENs) construction used eight typical nitrogen or
carbon cycling genes. All of the networks showed topological features similar to those of complex
systems, including modular (higher modularity of empirical networks than corresponding random
networks, Table S1), and scale free (R2 of power law = 0.70–0.97, indicting degree distributions fitting
the power law model well, Table 3). Average Clustering Coefficients (avgCC) was the highest in JFL
(0.17–0.34), and especially prominent for the nirK, nosZ, xylanase genes. These results indicated that
network interactions for most functional genes became more complex in JFL soils than in the other
forest soils. On the contrary, the Average Path (GD) of JFL (3.30–8.79) was smaller than those of the
other forests, suggesting that functional genes were more closely related with each other in JFL soils.
Two MENs on behalf of the nifH gene were visualized using soil samples from HS and JFL, which
revealed a more complex and closer MEN of JFL (Figure 1).
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Figure 1. Networks constructed by the RMT-based approach of nifH genes in GeoChip data in HS (A)
and JFL (B) forests. Each node indicates a functional gene. Green lines indicate negative interactions
between two individual nodes, while red lines indicate positive interactions.

Table 3. Soil microbial functional gene network properties. R2 of Power-law (R2) indicates how well a
curve of network connectivity distribution is fitted with the power-law model. A higher R2 means a
scale-free network. Network size indicates the number of nodes in a network. Modularity indicates
how well a network can be separated into modules. Average connectivity (avgK) indicates the average
connection strength between pairwise nodes. Higher avgK means a more complex network. Average
Clustering coefficient (avgCC) is the average clustering coefficient of all nodes. Average path (GD) is
the average shortest path between pairwise nodes. Smaller GD indicates that the nodes in the network
are closer.

Network Properties nifH nirK nosZ

HS MES HP JFL HS MES HP JFL HS MES HP JFL

R2 0.80 0.90 0.95 0.87 0.88 0.78 0.95 0.70 0.86 0.91 0.91 0.90
Network Size (n) 330 244 344 214 207 191 208 137 273 224 280 192

Modularity 0.74 0.78 0.81 0.52 0.60 0.68 0.75 0.40 0.73 0.64 0.83 0.52
avgK 2.67 2.75 2.64 5.25 3.99 3.71 2.74 7.21 3.17 3.64 2.60 5.73

avgCC 0.16 0.20 0.18 0.29 0.21 0.25 0.17 0.34 0.18 0.19 0.22 0.34
GD 5.56 5.79 6.84 4.89 4.48 5.37 6.43 3.30 6.11 5.05 7.64 4.08

Connectedness 0.35 0.50 0.41 0.55 0.46 0.64 0.58 0.67 0.52 0.53 0.58 0.68
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Table 3. Cont.

Network Properties amyA cellulose xylanase

HS MES HP JFL HS MES HP JFL HS MES HP JFL

R2 0.96 0.97 0.92 0.92 0.91 0.89 0.89 0.91 0.90 0.97 0.93 0.90
Network Size (n) 967 532 939 495 338 290 367 268 357 260 366 228

Modularity 0.93 0.90 0.91 0.89 0.79 0.61 0.83 0.58 0.72 0.77 0.85 0.62
avgK 1.97 2.03 2.04 2.24 2.50 3.70 2.50 5.32 3.35 2.92 2.41 5.01

avgCC 0.14 0.14 0.13 0.17 0.18 0.26 0.18 0.27 0.22 0.20 0.15 0.30
GD 8.48 6.55 8.69 8.79 6.39 5.19 7.76 4.59 6.87 5.91 10.06 4.54

Connectedness 0.17 0.13 0.20 0.23 0.31 0.48 0.41 0.64 0.43 0.44 0.50 0.62

Network Properties chitinase phenol_oxidase

HS MES HP JFL HS MES HP JFL

R2 0.90 0.82 0.87 0.86 0.77 0.88 0.86 0.83
Network Size (n) 311 309 376 241 188 187 188 140

Modularity 0.82 0.63 0.87 0.81 0.73 0.46 0.79 0.62
avgK 2.45 4.42 2.37 4.12 3.15 5.56 2.59 3.97

avgCC 0.17 0.23 0.15 0.27 0.24 0.29 0.20 0.26
GD 5.40 5.18 7.87 4.98 5.28 4.07 5.62 4.21

Connectedness 0.23 0.57 0.46 0.57 0.48 0.61 0.45 0.68

Significance of differences between network properties of subtropical and tropical forests was determined by
unpaired t-test. * P < 0.05, ** P < 0.01, *** P < 0.001.

Correlations calculated between environmental variables (Table S2) and main MEN properties
were calculated (Table 4). Temperature was the only detected variable that had a significant (r = 0.62,
P < 0.05) influence on the modularity of MENs. Temperature also had a significant influence on avgK
(r = 0.63, P < 0.01) and avgCC (r = 0.58, P < 0.05). Soil moisture, TK, and TS also played considerable
roles on avgK (r > 0.55, P < 0.05) and avgCC (r > 0.56, P < 0.05).

Table 4. Partial mantel tests to determine relationships between environmental variables and soil
microbial communities or microbial ecological network properties.

Environmental
Variable

Microbial
Taxonomic

Composition

Network Properties

Modularity
Average
Degree
(avgK)

Average Clustering
Coefficient (avgCC)

Average Path
Distance (GD) Connectedness

Plant Richness 0.18*** 0.25 0.41 0.42 −0.04 0.13
Elevation 0.02 0.05 −0.11 −0.56 −0.04 −0.20

Soil Temperature −0.01 0.03 −0.15 −0.52 −0.07 −0.13
Annual Mean
Temperature 0.34*** 0.62* 0.63** 0.58* 0.09 0.29

Annual Mean
Precipitation 0.64*** −0.34 −0.20 0.33 −0.32 0.18

Soil pH 0.02 0.00 −0.09 −0.51 0.11 −0.19
Soil Moisture 0.37*** 0.36 0.56* 0.56* 0.14 0.09

Total Nitrogen −0.45 −0.07 −0.21 −0.36 0.31 −0.27
Total Potassium 0.43*** 0.35 0.55* 0.65* 0.1 0.20

Total Phosphorus 0.11** 0.30 0.41 0.5* 0.33 0.03
Soil Organic Carbon −0.36 −0.15 −0.32 −0.45 0.21 −0.25
Available Nitrogen −0.26 −0.01 −0.12 −0.25 0.3 −0.25

Available Phosphorus −0.12 0.14 0.15 0.09 0.29 −0.13

* P < 0.05, ** P < 0.01, *** P < 0.001. Letters in bold are statistically significant (P < 0.05).

3.5. Soil Microbial Community Assembly Processes and Quantitative Spatial Turnover

Drift, selection, dispersal limitation and homogenizing dispersal were determined using a
framework to quantify community assembly processes in governing spatial turnover of soil microbial
communities. We found that about 67% of turnover in community composition was due to selection,
0–70% of turnover was due to dispersal limitation acting alongside drift, 0–22% of turnover was due to
homogenizing dispersal, and 0-8% of turnover was due to drift acting alone (Figure 2).
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Figure 2. Quantitative spatial turnover of soil microbial community compositions (A) within each
forest, (B) between subtropical forests and (C) between subtropical and tropical forests. The percent of
turnover in community compositions is governed by selection (blue fill), dispersal limitation (orange
fill), drift (gray fill), and homogenizing dispersal (yellow fill).

Homogenizing dispersal had a substantial influence over community compositions within each
forest soil (~2–22%) (Figure 2A); but it had little influence over community assembly between the three
subtropical forests and JFL forest (0%) (Figure 2C). In contrast, dispersal limitation had a detectable
influence over community assembly between the three subtropical forests and JFL soils (11–70%)
(Figure 2C).

Partial Mantel tests were used to identify major environmental variables in shaping microbial
communities (Table 4). Soil pH was significantly and most (r > 0.62, P < 0.5) correlated with soil
microbial communities in HS. SOC and AN were significantly correlated (r > 0.31, P < 0.05) with soil
microbial communities in MES. TN and TP were significantly correlated (r > 0.40, P < 0.05) with soil
microbial communities in HP.

4. Discussion

Soil microbial taxonomic compositions and functional gene structures involved in carbon and
nitrogen cycling in four broadleaf forests in China were determined. Initial hypotheses that soil
microbial diversities would be lower in the forest with low nitrogen and phosphorus contents were
supported by taxonomic composition data as well as functional gene analysis (Table 1). Environmental
selection was found to dominate the shape of microbial community compositions, but dispersal
limitation had a substantial influence over community composition variations of JFL and the other
three forests (Figure 2). Soil microbial functional gene networks of JFL were distinctly more complex
and functional genes were more closely related with each other than those of the other three forests
(Table 3).

Tropical forest soils lose tremendous quantities of nitrogen to water in dissolved organic forms [34].
N2O and NO are lost to the atmosphere, while as NO−3 is lost to stream water [35]. TN and AN in the
JFL soils therefore were found to be nearly one third of those in the subtropical forest soils (HP, MES
and HS) (Table S2), implying that JFL soils might be nitrogen limited. At the same time, environmental
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stresses, such as nutrient limitation, pollution, etc. can reduce microbial diversity [36]. Therefore,
the relative abundance of nitrogen cycling genes in this study was lowest in JFL, which implies that
nitrogen mineralization, nitrification and denitrification potential were lowest.

Phosphorus is limited in lowland tropical forest soils [37]. The JFL forest is a typical lowland
tropical forest, which is low in phosphorus content (21.8% of subtropical soil TP and 41.2% of subtropical
soil AP, Table S2). Therefore, the JFL forest faces both nitrogen and phosphorus limitation. TP was
determined to be a significant driver of soil microbial communities, and it also significantly affected
avgCC of nifH gene networks (Table 4). Lower SOC was detected in JFL (70.5% of SOC in the other three
forests). It is well documented that soil conditions such as soil pH, nitrogen, phosphorus, potassium
and soil organic matter are the foremost determinants of soil microbial diversities [38,39]. Although
tropical forests have the most diverse animal and plant populations on Earth [40], relatively lower
bacterial and fungal diversities were found in the rainforests of North East Ecuador compared with
those in more temperate regions [3,41]. Similarly, observations showed the lowest soil microbial
diversities in the JFL forest (Table 1), owing to the low nutrition availability in JFL (Table S2).

Selection induces differential in survival and reproductive success across individuals and species,
and then constrains and differentiates microbial community composition among locations [10,32].
Selection is caused by biotic pressures like competition, predation, and mutualism among species [10],
and abiotic pressures like environmental physical and chemical properties [39]. Selection often has
detectable influence over microbial community assembly [32,42–44]. For example, Stegen et al. [32]
found that selection governed about 60% of microbial community assembly, which was imposed
by an unmeasured environmental variable in deeper sediments in an aquifer of Washington State.
Quantitative results from this study further support the idea that selection is dominant in driving
microbial community assembly, as selection comprises up to 30–96% of processes.

Dispersal leads to homogenization among communities; however, dispersal limitation constrains
the movement and colonization of organisms to new locations [32]. High levels of dispersal limitation
lead to spatial turnover in microbial communities, which plays a significant role in community assembly,
as is shown by a growing body of literature [32,45]. This study found that dispersal limitation was
distinctly larger in governing spatial turnover of soil microbial communities between the JFL forest
and the other three forests (11–70%), than those among the other three forests (0–20%) (Figure 2). The
spatial turnover can be largely attributed to the different distances between the JFL forest and the
others. This result challenges the classic dictum that "everything is everywhere but the environment
selects" by constraining microbial dispersal to long-distance locations.

MENs make it possible to compare architectural patterns of microbial communities and to explore
latent mechanisms of the stability and resilience of communities [46]. In this study, we found that the
functional MENs of the JFL forest were more complex, and functional genes were more closely related
with each other than those of the other three soils (Table 3, Figure 1). It has been well documented
that closely connected communities are less resilient and thus more susceptible to disturbance [47,48],
so soil microbial communities in JFL soils would have a higher response rate to perturbations.

In conclusion, comprehensive surveys of microbial taxonomic compositions and carbon/nitrogen
cycling genes in sub- and tropical broadleaf forest soils found the lowest microbial diversities and
the most complex functional potential interactions in the JFL forest soils. The distinct microbial
compositions can be attributed to the constraint of nitrogen and phosphorus contents. These results
suggest that nitrogen and phosphorus have a significant influence on not only microbial community
diversities and compositions, but also functional gene interactions. This study provides a crucial
baseline of soil microbial biogeography in sub- and tropical forests, which is a prerequisite for
understanding their ecological consequences.

Availability of data and materials: The high-throughput sequencing data datasets generated and/or analyzed
during the current study are available in the GenBank databases by the accession number SRP062748 (http:
//trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP062748). Microarray data can be found at NCBI’s Gene Expression
Omnibus by the accession number GSE69171 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69171).

http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP062748
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genes and (B) part of carbon cycling genes in GeoChip data.

Author Contributions: M.Z. analyzed data and wrote paper. J.C. (Jing Cong), H.L., and D.L. collected soil samples.
J.C. (Jing Cong) and Y.S. contributed to DNA extraction and plant and environmental variables measurements.
D.N. implemented the R code. J.C. (Jingmin Cheng) and Q.Q. contributed to final revision of the manuscript.
K.N.W. polished the language. Y.D. contributed to development and design of methodology. J.Z. contributed to
formulation of overarching research goals and aims. Y.Z. designed the experiment and supervised all work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Nature Science Foundation of China (No. 31670614,
No.31370145), the Public Welfare Project of the National Scientific Research Institution (CAFRIFEEP201101), the
Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB15010302), and National
Biological Specimens and Resources Sharing Platform in Nature Reserve (2005DKA21404).

Acknowledgments: We acknowledge all authors’ contributions to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SOM soil organic matter;
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TK total potassium,
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RMT random matrix theory;
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