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Abstract: Stable isotopes of tree rings are frequently used as proxies in climate change studies.
However, species-specific relationships between climate and tree-ring stable isotopes have not
yet been studied in riparian forests in the savannas of West Africa. Four cross-dated discs, each of
Afzelia africana Sm. (evergreen) and Anogeissus leiocarpus (DC.) Guill. & Perr. (deciduous) in the humid
(HSZ) and dry (DSZ) savanna zones of the Volta basin in Ghana were selected from a larger tree-ring
dataset to assess the relationships between the tree-ring carbon isotope composition (δ13C values) and
climatic parameters. The atmospherically corrected δ13C values of both studied species showed that
A. africana was enriched in 13C compared to A. leiocarpus. Strong correlations were found between
δ13C values of A. africana and A. leiocarpus with temperature, but weak correlations with precipitation.
Spatial correlation analysis revealed significant relationships between δ13C values of both tree species
and Sea Surface Temperatures in the Gulf of Guinea in the southern Atlantic Ocean. The results
suggest that the carbon isotope composition of riparian trees in the Volta river basin has a potential to
reconstruct climate variability and to assess tree ecological responses to climate change.
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1. Introduction

Riparian forests in arid and semi-arid regions are strips of woody vegetation growing along
waterways [1,2]. Because they form linkages between terrestrial and aquatic ecosystems, riparian
forests play an important role as ecological corridors and provide a variety of ecosystem services.
They serve as important habitats, moderate stream temperatures for aquatic life and act as “ecological
shelter” against desertification in the adjacent drylands [1,3]. Riparian forests trap seeds and filter
sediment and nutrients transported from adjacent land areas into waterbodies [3]. This enables riparian
areas to support higher plant productivity and biomass growth compared to non-riparian areas in the
surrounding drier landscape [2,4]. Due to these and additional ecosystem functions, many riparian
forests are protected by the Ramsar Convention and other legal acts by national regulations [3,4].
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Riparian forests are controlled by hydrological processes [3] and as water is the most limiting resource
to biological activity in drylands, the timing, and magnitude of ecosystem production, evapotranspiration
and nutrient cycling are closely linked to precipitation [1,2,5]. Changes in hydroclimate will affect the size,
frequency and seasonal timing of precipitation and moisture inputs into rivers. It is therefore anticipated
that climate change will have a huge impact on vegetation distribution, growth and ecosystem functions
of riparian forests in drylands [5,6]. However, despite their ecological relevance and climate change
threats on riparian forests, this unique ecosystem is under-studied in the savannas of West Africa [1].

Just as trees in temperate regions, tropical tree species can also be interpreted as historical records
of climatic signals because numerous species show common patterns in ring width variations that can
be cross-dated [7–12]. Many studies have already successfully applied tree ring stable isotope analyses
in tropical regions, most of them working on an annual resolution [6,13–15], and some studies reported
stronger climatic signals in stable isotope chronologies compared to tree ring-width variations [6].
A strong negative correlation between annual precipitation and tree-ring δ13C values was found for
several broadleaved tree species under various tropical climate regimes [6,13,14,16]. Gebrekirstos et
al. [16,17] found significant negative correlations of annual δ13C values with humidity and positive
correlations with temperature in the West African Sahel woodland. Because of such correlations, carbon
isotope composition in tree rings is used for reconstruction of past climatic variations extending back
into the pre-instrumental era and is therefore of special relevance in areas where instrumental climate
records are short. Carbon isotope composition is also useful for evaluating the relative importance
of natural variability and anthropogenic impacts on the global climate [18], and for predicting trees
ecological responses to future climate conditions [19–23] by characterizing species water use efficiency
and strategy [13,17].

The carbon isotope composition in tree rings results from CO2 fractionation during photosynthesis
at leaf level [24,25]. Carbon isotope fractionation is mainly due to (i) diffusion effect, when external CO2

is transported through the boundary layer and the stomata into the internal gas space to carboxylation
sites into the chloroplast, and (ii) at carboxylation sites because of the enzyme ribulose-1,5-bisphosphate
carboxylase which discriminates against 13CO2 due to the lower intrinsic reactivity of 13C [26,27].

Leaf habit of trees influences carbon isotope fractionation. Evergreen trees partly show higher
δ13C values compared to deciduous species because they maintain their leaves during drier conditions,
and stomata closure under dry conditions reduces the discrimination of 13CO2 [6,28,29]. In the
present study, we examined the tree rings of two riparian tree species, Afzelia africana (Fabaceae,
evergreen) and Anogeissus leiocarpus (Combretaceae, deciduous) growing in the savannas of the Volta
River basin of Ghana to document climatic variations. The species were selected because of their
contrasting ecological attributes as well as their contribution to the livelihood and food resources of
forest-dependent communities. Both species are widely distributed along riparian forests, have clearly
detectable growth ring boundaries and are under threat from over-exploitation [11,30]. The Volta
river basin is divided into three main agro-ecological zones which are aligned along a gradient of
increasing moisture conditions from north to south: the Sudano-Sahelian, the Sudanian, and the
Guinean savannas [31–33].

To assess the response of tree vegetation in the Volta river basin to climate and environmental
changes, we studied two riparian forests in two ecological zones, one in the Guinean zone and one in
the Sudanian zone. Those riparian forest ecosystems are embedded in the humid savanna zone (HSZ)
and dry savanna zone (DSZ), respectively. The specific objectives of this study are (1) to determine
if annual δ13C values of tree rings of A. africana and A. leiocarpus are related to functional differences
in leaf phenology (evergreen or deciduous); (2) to investigate the coherence of 13C tree-ring signals
between different sites (HSZ and DSZ); and (3) to assess whether similar climatic signals are recorded
within the tree-ring 13C chronologies of the two species.
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2. Materials and Methods

2.1. Study Area

The study area was located in the Volta basin of Ghana. The studied sites were situated in protected
riparian forest reserves along the Afram and Tankwidi Rivers which flow through the humid savanna
zone, HSZ (Guinean) and dry savanna zone, DSZ (Sudanian), respectively (Figure 1). Water levels of
the two rivers are significantly reduced during the dry season which lasts from November–April in
the Tankwidi catchment and from November–February in the Afram catchment. The two rivers are
both 8–12 m wide. The dominant soil type in the floodplains is Luvisol [34], which is characterized by
a sub-surface accumulation of clay and organic matter, and is composed of high activity clays with
high base saturation. The soil physical structure is characterized by high porosity, good drainage and
aeration [34]. The dominant woody species in the Afram riparian forests belong to the family Fabaceae
and Combretaceae, whereas in the Tankwidi riparian forests, dominant families are Fabaceae and
Rubiaceae [35,36].
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Figure 1. Location of the two study sites in two river catchments situated in different climatic zones of
the Volta basin in Ghana, West Africa.

The seasonal movement of the inter-tropical convergence zone (ITCZ) and the related occurrence
of the northeast trade winds determine the temporal and spatial distribution patterns of precipitation
in the Volta Basin. Besides, atmospheric disturbances in the tropical Atlantic Ocean (TAO) determine
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the occurrence of wetter and drier years in the study region. Sea surface temperatures (SSTs), both
in the tropical Atlantic and the equatorial Pacific Oceans modulate frequency and strength of TAO
disturbances [37]. The climate data covering the period 1961–2012 were obtained from the Navrongo
(3 km to study site, Figure 2a) and Ejura (1 km to study site, Figure 2b) Meteorological Stations
for the HSZ and DSZ, respectively. These were the climatic stations closer to the catchment areas
as meteorological stations are sparse in Ghana. Mean annual maximum temperature in the HSZ
reach 32 ◦C. Mean annual precipitation amounts 1100 mm. The, rainy season lasts from March to
October, while precipitation rates occur in July and August. In the DSZ, mean annual maximum
temperature reach 36 ◦C. Mean annual precipitation amounts 800 mm, and the rainy season lasts only
seven months, from April to October. Correlation between precipitation and temperature data of both
weather stations, Ejura (r = −0.41, p = 0.33) and Navrongo (r = −0.13, p = 0.56), showed weak negative
correlations. Whereas a weak positive correlation was observed between mean annual precipitation
data from Ejura (r = 0.31, p = 0.03) and Navrongo (r = 0.33, p = 0.04) weather stations with annual sea
surface temperatures (SSTs) from 1961 to 2012. Similarly, mean annual maximum temperature showed
highly significant correlations with SSTs for Ejura (r = 0.59, p = 0.00) and Navrongo weather stations
(r = 0.51, p = 0.00) [11].
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2.2. Tree-Ring Stable Isotope Analyses

We selected a total number of 16 discs (Table 1) from a larger tree-ring data set of 31 stem discs
of A. africana and A. leiocarpus from both the DSZ and HSZ [11]. The discs were collected between
January and February 2014, and the four oldest and well cross dated individual trees were selected for
stable isotope analyses which were conducted at the tree-ring laboratory of the Friedrich-Alexander
University of Erlangen-Nuremberg, Germany. Ring widths of all samples were measured on 2–4 radii
and properly cross-dated before annual rings were separated with a scalpel for stable isotope analyses.
Due to the diffuse porous wood anatomy of the studied species, the whole annual growth ring was
used, resulting in an annual resolution of the final 13C chronologies. The last year (2013) of each series
was excluded from analysis as ring width formation was not yet complete at the time of sampling [11].

Earlier studies have used bulk wood for the isotope analysis of tree rings. However, different
wood components may differ in their isotopic composition [28,38]. This variation in the chemical
composition of the wood may influence δ-values. Cellulose extraction has disadvantages, such as the
labour intensiveness and costly laboratory procedure, which sometimes limit the number of samples
that can be processed in a research project [38]. It is worth mentioning that recent studies comparing
the isotopic composition of different wood components (cellulose, lignin and bulk wood) have found a
high correlation between cellulose and bulkwood δ13C values as well as between cellulose and lignin
δ13C values [16,39–41]. In some cases, bulkwood δ13C values was found to be equally suitable and
sometimes even showed higher correlations with climate parameters than cellulose δ13C values [42–44].
To test the effect of cellulose extraction on stable isotope variability, we separated the annually resolved
wood samples for isotope measurements into samples of bulk wood and α-cellulose. Between 12 to
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16 annual rings from the outer parts of each cross-dated disc of A. africana and A. leiocarpus in each
savanna type (HSZ and DSZ) were used for this experiment. This allows testing if the offsets of δ13C
values remained constant over time thus helping to decide the effectivity of 13C archives of whole
wood for paleoclimatic reconstruction.

Table 1. Characteristics of carbon isotope composition of Afzelia africana and Anogeissus leiocarpus in
the dry (DSZ) and humid (HSZ) savanna zones of Ghana.

Dry Savanna Zone Humid Savanna Zone

A. africana A. leiocarpus A. africana A. leiocarpus

Whole wood (δ13C)

Number of rings measured 101 41 91 76
Mean (‰) −25.54 −26.29 −25.32 −26.54

Std. Dev. (‰) 0.31 0.34 0.22 0.41
Maximum (‰) −25.01 −25.60 −24.95 −25.75
Minimum (‰) −26.09 −26.71 −25.72 −27.19

Correlation (ring width and δ13C) −0.06 0.14 −0.15 −0.09
p-value of correlation 0.52 0.39 0.18 0.44

Cellulose (δ13C)

Mean (‰) −23.59 −24.36 −24.69 −25.04
Std. Dev. (‰) 0.28 0.77 0.21 0.28

Number of rings measured 17 12 14 14
Offset (Whole wood-Cellulose, ‰) 1.95 1.93 0.63 1.50

For stable isotope measurements, powdered wood samples were produced along two radii of
each disc using a micro drill with a diameter of 0.5 mm. The powdered samples were pooled into
tin capsules and homogenized with a metal stick to represent the whole ring following the method
described by Gebrekirstos et al. [6]. Subsamples from each year were weighed into tin capsules
(0.4–0.5 mg). The cellulose extraction process was carried out according to the methods described
in Wieloch et al. [45]. Accordingly, resin, fatty acids, etheric oils, and hemicellulose were extracted
with a solution of 5% NaOH for 2 h at 60 ◦C. This operation was repeated twice. Then, lignin was
extracted with 7% NaClO2 solution for 40 h at 60 ◦C. Hemicelluloses were then extracted with 17%
NaOH for 2 h at room temperature. A washing procedure was interposed between the different
steps. Finally, samples were washed once with 1% HCl and three times with boiled de-ionized water
(until pH 7 ± 1) and transferred from the filter funnels into Eppendorf tubes with 1 mL de-ionized
water. Following Laumer et al. [46], ultrasonic homogenization was carried out for 15 s with a UP200s
(Hielscher Ultrasonics GmbH, Berlin, Germany). After freeze-drying for 72 h in an ALPHA 1-4/2-4 LSC
lyophilisation unit, the dried cellulose was then weighed to determine the yield and finally measured
by isotope ratio mass spectrometer (Delta V Advantage, Thermo Electron, Bremen, Germany) coupled
to a HekaTech Elemental Analyzer with a precision and accuracy of up to ±0.1% relative. The results
are given in δ-notation, which is the relative deviation from the PDB (Pee Dee Belemnite) standards:

δ13C = [(13C/12C) sample/(13C/12C) PDB) − 1] × 1000‰

2.3. Statistical Analysis

Tree-ring isotope data may contain trends unrelated to climate but related to the decline in
atmospheric δ13C values caused by burning of 13C-depleted fossil fuel. This trend was removed
by following the procedure of McCarroll and Loader [28]. Analysis of variances was done to
determine whether δ13C values differed across the different species; and the significant differences
were tested through Tukey’s pair-wise comparison. Pearson correlations were conducted between the
13C chronology of each species (A. africana and A. leiocarpus) of the HSZ and DSZ and total monthly and
annual averages of precipitation and monthly maximum temperature. The average monthly minimum
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temperature did not show correlations with δ13C values and are therefore not presented. The influence
of regional SSTs on the 13C chronologies was evaluated by spatial correlation analysis using the KNMI
Climate Explorer (http://climexp.knmi.nl/). Highly significant correlations of regional SSTs and the
13C chronology of each species were presented in the results.

3. Results

3.1. Relationship between 13C Chronologies of Whole Wood and Cellulose

Comparative analyses (Figure 3) of A. africana and A. leiocarpus from the HSZ and DSZ showed
that the δ13C values of whole wood were lower than δ13C values of α-cellulose. δ13C values of whole
wood and cellulose showed significant positive correlations for both species. The highest correlation
was recorded for A. africana in the HSZ (r = 0.88, p = 0.00) followed by A. africana in the DSZ (r = 0.84,
p = 0.00). A. leiocarpus of the HSZ (r = 0.59, p = 0.03) followed up third with A. leiocarpus in the DSZ
(r = 0.40, p = 0.20) having the weakest correlations (Figure 3a,b). The mean offset of the δ13C values of
whole wood and cellulose for A. africana in the HSZ was small (0.63‰), A. africana in the DSZ was
1.95‰, whereas A. leiocarpus in the DSZ and HSZ were 1.93‰ and 1.50‰ respectively.
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Figure 3. Pattern of annual 13C chronologies in whole wood and cellulose of Afzelia africana (a) and
Anogeissus leiocarpus (b) in the dry (DSZ) and humid (HSZ) savanna zones of Ghana.

There was a significant difference in cellulose δ13C values among the species (F(3, 53) = 34.3,
p = 0.00). Species-specific δ13C values (Table 1) showed that in the DSZ, the A. africana (evergreen)
individuals are significantly (p < 0.05) enriched in 13C compared with A. leiocarpus (deciduous). This
was, however, not the case for the HSZ despite A. africana having a higher δ13C values than A. leiocarpus.
Comparison between the two savanna types also showed that the cellulose δ13C values of A. africana
and A. leiocarpus of the DSZ are enriched in 13C (p < 0.05) compared to the same species in the HSZ.
Correlation coefficients between the δ13C values of A. africana and A. leiocarpus collected from the
HSZ (r = 0.45, p = 0.001) were significant, whereas they were weak in the DSZ (r = 0.10, p = 0.68).
Significant correlations were also found between δ13C values of A. africana from the HSZ and the DSZ
(r = 0.41, p = 0.001). In contrast, we found no significant correlation for A. leiocarpus between the HSZ

http://climexp.knmi.nl/
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and DSZ (r = 0.13, p = 0.40). There was a weak correlation between species-specific ring widths and
13C chronologies for both HSZ and DSZ (Table 1).

3.2. Relationships between Tree-Ring δ13C Values and Climatic Parameters

Despite site-specific differences, temperature and precipitation generally showed significant
positive and negative correlations with δ13C values of the studied trees (Figure 4). In the DSZ,
A. africana showed positive correlations with temperature from January to July and September whereas
A. africana in the HSZ showed positive correlations with temperatures throughout the year (Figure 4a).
A. africana in the DSZ showed strong negative correlations with precipitation in July and October
(Figure 4a). However, A. africana in the HSZ had a significant negative correlation with precipitation in
January and March despite the low precipitation during those months (less than 30 mm of rains).Forests 2019, 10, x FOR PEER REVIEW 8 of 13 
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A. leiocarpus in the DSZ showed positive correlations with temperature from January to March and
November. In October, the species showed negative relationships with temperature. A. leiocarpus in the
HSZ however, showed a positive correlation with temperature throughout the year (Figure 4b).
A. leiocarpus in the DSZ had a significant negative relationship with precipitation in September.
In contrast, A. leiocarpus in HSZ had a significant negative correlation with precipitation in January
and March.
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Tree-ring δ13C values of A. africana and A. leiocarpus from the HSZ showed a positive correlation
with gridded sea surface temperatures (SST) in the El Niño region of the equatorial Pacific Ocean and
the Gulf of Guinea for the average values of the period, March to February (Figure 5). In the DSZ, both
A. africana and A. leiocarpus showed a negative correlation with SSTs in the Gulf of Guinea and weak
correlations with SSTs the Pacific region.
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4. Discussion

4.1. Variation of δ13C Values of Bulk Wood and Cellulose in Tree Rings

Various wood components show different isotopic signals, and removal of wood constituents such
as lignin and resins enhance the inter-annual variability of δ13C values in cellulose [43,47]. The means
of the δ13C values of whole wood and cellulose of A. africana and A. leiocarpus in this study suggest
(Table 1; Figure 3) that cellulose is enriched in 13C compared to whole wood, as already found in
other studies [42,43,47–49]. Furthermore, the offset (~1–2‰) between whole wood and cellulose δ13C
values of both species (Table 1) are in the range reported from the literature [40,42]. Because both study
species (except A. leiocarpus in DSZ) showed constant differences in δ13C values of the whole wood and
cellulose pattern, they are well suited as climate proxies [40]. Accordingly, whole wood was adopted
for further exploration of the relationship of δ13C values of the species with climatic variables, thus
simplifying the preparation procedure by skipping time-consuming cellulose extraction.

4.2. Patterns and Variations in Tree Rings δ13C Values in Different Tree Species

The higher enrichment of 13C in cellulose and whole wood of the evergreen A. africana in both
the HSZ and DSZ zones indicates that the species may be more stressed at higher temperatures than
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A. leiocarpus (Table 1; Figure 3). During long periods of high temperature, the deciduous A. leiocarpus
avoids heat stress by shedding its leaves [29,50,51]. Because A. africana is evergreen, it can extend
the length of the photosynthetic season. This presents challenges to the plants as they must tighten
stomata closure to reduce water loss [6,51,52]. After the closure of the stomata, 13CO2 which remains
in the leaf air spaces and is less preferred by the RUBISCO enzyme is relatively less discriminated in
the process of photosynthesis, thus increasing the proportion of 13C in the leaf [53]. A. africana and
A. leiocarpus in the DSZ (Table 1) had higher enrichment in 13C compared to the same species in the
HSZ probably because of enhanced water stress and stomatal limitations to photosynthesis. Stomata
regulation is the strategy adopted by trees in drylands for minimizing evaporative water loss which
could influence the enrichment of 13C in dry savanna trees [21,51,54,55].

The low correlation between δ13C values of A. leiocarpus and A. africana in the DSZ could have
partly resulted from the differences in rooting depth or leaf architecture that cause the species to
respond differently to climatic conditions. Evergreen species (A. africana) have the ability to reach the
deeper layers of soil to access ground water to overcome dry seasons limitations than deciduous trees
(A. leiocarpus) [51]. This was, however, not the case for the A. leiocarpus and A. africana in the HSZ,
probably because of reduced spatial variability in nutrients and soil moisture of this riparian area [2].

4.3. Relationship Between Tree-Ring δ13C and Climatic Parameters

The months during which the highest correlations occurred between tree-ring δ13C values and
climatic variables varied between the studied species. In most of the cases, temperature had a positive
correlation with δ13C values of A. africana (Figure 4a) and A. leiocarpus (Figure 4b). In dry years, leaf
stomata may close and hence 13C may be less discriminated. This increases the enrichment of 13C in
the tree rings and results in a reduction of tree growth [6,14].

The δ13C values of the trees species showed weak sensitivity to precipitation, probably because of
the influence of underground water or discharges from the upstream that controls the stream flow
(Figure 4a,b). The correlation between precipitation and δ13C values of A. africana in the HSZ and
A. leiocarpus in the DSZ showed a better relationship to the rainy season (July–October), when trees are
photosynthetically active and growth rates are high. The lack of general similarities in the response of
the different species may be due to their differences in leaf phenology of the trees [14].

High SSTs in the Gulf of Guinea (Figure 5) are associated with high precipitation over large parts
of West Africa, enhancing vegetation productivity [37,56,57]. In the DSZ, δ13C values of A. leiocarpus
and A. africana showed a negative correlation with the SSTs at the Gulf of Guinea probably because of
the contribution to precipitation in the region and the impact in recharging the rivers to support the
growth of trees in such dry landscape. A. leiocarpus and A. africana in the HSZ (which is much wetter
than DSZ) showed a positive correlation with SSTs in the Gulf of Guinea, perhaps because excess
precipitation can cause flooding in this kind of humid riparian forests. The long duration of flooding
limits nutrient availability and gas exchange of plants which hinders the growth of trees [11,58].
Information on historic flooding episodes for the HSZ were not available for verification.

5. Conclusions

The present study is the first to assess the potential of tree-ring carbon isotope variations of
riparian forest tree species for paleo-ecological research in Ghana. The δ13C values of the riparian
trees in the humid and dry savanna zones revealed differences in their responses to climatic and
environmental fluctuations as the trees could be employing different strategies to overcome seasonal
water limitations. A. leiocarpus strategy of leaf shedding and conserving water enables it to avoid
temperature and water limitation stress better than A. africana. Increasing dry periods and decreasing
precipitation in the dry savanna zone induce water stress among A. africana and A. leiocarpus growing
in the riparian forests. Our study has also shown that 13C signals of riparian trees in the humid and
dry savanna zones of Ghana can be linked to climatic fluctuations. The analyses of the trees’ carbon
isotopes at an annual resolution should, however, be expanded in sample size and length for a robust
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climatic reconstruction. For management purposes, carbon isotopes can be used for screening species
for the restoration of degraded riparian landscapes in the savannas.
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