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Abstract: Ferns are poorly explored species from a pharmaceutical perspective compared to other
terrestrial plants. In this work, the antioxidant and tyrosinase inhibitory activities of hydrophilic
and lipophilic extracts, together with total polyphenol content, were evaluated in order to explore
the potential cosmetic applications of four Spanish ferns collected in the Prades Mountains
(Polypodium vulgare L., Asplenium adiantum-nigrum L., Asplenium trichomanes L., and Ceterach officinarum
Willd). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical, oxygen radical absorbance capacity (ORAC) and xanthine/xanthine oxidase (X/XO) assays.
The potential to avoid skin hyperpigmentation was tested by inhibiting the tyrosinase enzyme, as this
causes melanin synthesis in the epidermis. All ferns were confirmed as antioxidant and anti-tyrosinase
agents, but interestingly hydrophilic extracts (obtained with methanol) were more potent and
effective compared to lipophilic extracts (obtained with hexane). Polypodium vulgare, Asplenium
adiantum-nigrum, and Ceterach officinarum methanolic extracts performed the best as antioxidants.
Polypodium vulgare methanolic extract also showed the highest activity as a tyrosinase inhibitor.
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1. Introduction

The incidence of cutaneous disorders and melanoma has increased worldwide [1]; in fact,
non-melanoma skin cancer has become the principal skin cancer among fair-skinned people [2].
Sun radiation is known to accelerate photodamage of the skin, and ultraviolet radiation is one of the
main factors that causes skin hyperpigmentation and skin aging [3].

Melanin, which is obtained by irreversible tyrosine catalyzed reactions, is an important epidermal
agent that blocks ultraviolet radiation [4]. It has been noted that melanocyte cultures from black
skin-types increase melanogenesis and melanosis more than in fair skin-types [5]. Consequently,
lighter and thinner skin is 6–33 times more susceptible to developing minimal perceptible erythema
than darker and thicker skin [6,7]. Ectopic dermal melanocytes, a result of successive erythemas, are
shown to be directly dependent on increased melanin in the epidermis (hypermelanosis), which can
trigger sun spots [8].

Primary photoprotection, also called non-systemic photoprotection, has traditionally been
considered the main strategy against the harmful effects of sun radiation [9]. This method is based
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on having healthy habits towards sun exposure and the use of physical photoprotective agents;
however, some disadvantages have been described [10]. Antioxidant oral supplements from secondary
metabolites of plants are an adjunctive to primary photoprotection [11]. This most recent strategy on
photoprotection is known as secondary photoprotection, or systemic photoprotection [12,13], in which
standardized aqueous extract from the fronds of Polypodium leucotomos L., which is marketed under the
trade name Fernblock® (Cantabria Labs, Santander, Spain), has been one of the most popular systemic
and topical photoprotective oral agents in cosmetic science [14,15]. The effectiveness and safety of the
use of this fern is a consequence of its multiple pathways of action described by Palomino et al. [16].

Ferns (Polypodiopsida), formerly considered pteridophytes, have been reported as one of the least
understood classes of tracheophyte plants from a phylogenetic perspective [17,18]. Recent reviews
of the Polypodium genus have been published since the commercialization of Fernblock®, as shown
in Berman et al. [19]. Other authors have recently published updated reviews on the phytochemistry
and ethnopharmacology of ferns, highlighting the presence of polyphenols (particularly flavonoids),
terpenoids, steroids, and alkaloids [20,21]. Most of these bioactive compounds are described as natural
enzyme inhibitors in biomedical research drug discovery due to anticancer, antidiabetic, and antiaging
properties [22–24]. The selected ferns in this study (Polypodium vulgare L., Asplenium adiantum-nigrum L.,
Asplenium trichomanes L., and Ceterach officinarum Willd) are some of the most common leptosporangiate
ferns reported on the Prades Mountains (Spain, 41◦18′43” N 1◦05′09” E) [25].

Considering Fernblock® as a reference in skin photoprotection [26,27], the potential anti-aging and
skin-whitening properties of four Spanish ferns collected in the Prades Mountains have been studied.
In vitro antioxidant activities against different free radicals (2,2-diphenyl-1-picrylhydrazyl—DPPH,
oxygen radical absorbance capacity—ORAC, and xanthine/xanthine oxidase—X/XO methods) and
in vitro inhibition of the tyrosinase enzyme were evaluated.

2. Material and Methods

2.1. Chemicals and Reagents

All reagents used were of analytical grade. Methanol, hexane, tyrosinase, and
L-dihydroxyphenylalanine (L-DOPA) were acquired through Vidrafoc® (Barcelona, Spain).
Dimethyl sulfoxide (DMSO) was obtained from Fisher Scientific® (Madrid, Spain). The
provider of 5-hydroxy-2-(hydroxymethyl) pyran-4-one (kojic acid) was Alfa Aesar®

(Karlsruhe, Germany). The reagents used to determine the antioxidant activity such as
2,2-diphenyl-1-picrylhydrazyl (DPPH radical), 2,6-dihydroxypurine (xanthine), xanthine oxidase,
and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (trolox) were supplied by
Sigma-Aldrich® (Madrid, Spain). Sodium carbonate anhydrous (Na2CO3) and nitrotetrazolium blue
chloride (NBT) were purchased from Laboaragon® (Cartuja Baja, Spain) and Sumalsa® (Zaragoza,
Spain), respectively. All aqueous solutions were prepared with ultra-pure water.

2.2. Plant Material

It was checked that the subject species had been described in The Plant List [28] and by Banco de
Datos de Biodiversidad de Cataluña [29].

The whole fresh fronds of selected fern species were identified and collected from the Prades
Mountains, in the province of Tarragona (Spain), in November 2016 by Adrià Farràs and Josep Ma

Farràs using botanical keys [30]. The samples were dried in the shade at room temperature.
A dried voucher specimen has been deposited at the Herbarium of Universidad San Jorge,

Zaragoza, Spain (Polypodium vulgare: voucher no. 003-2016; Asplenium adiantum-nigrum: voucher no.
004-2016; Asplenium trichomanes: voucher no. 005-2016; Ceterach officinarum voucher no. 006-2016).
These examples were authenticated by Dr. J.A. Vicente Orellana from Universidad CEU San Pablo
(Madrid, Spain).
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2.3. Extracts Preparation

Hydrophilic (= polar) and lipophilic (= non polar) extracts were prepared using methanol or
hexane, respectively. Dried fronds of the four species were powdered mechanically until obtaining
40 mg of each. The powdered fronds of each species were split equally into two erlenmeyers of
500 mL. Each 20 mg of fern powder was macerated with 250 mL of solvent (hexane or methanol) at
room laboratory temperature for 24 h. The extract was filtered using Whatman N◦4 filter paper, and
the solvent was evaporated using rotatory evaporator with a thermostatic bath at 30 ◦C. This process
was completed two more times until exhaustion of plant material; extracts were stored at −20 ◦C until
further experiments. Yields were calculated in percentages from the dry weight of fronds used and the
quantity of dry mass obtained by extraction.

2.4. Phytochemical Screening by Thin Layer Chromatography (TLC) and Total Phenolic Content (TPC)

Silica gel TLC plates coated with fluorescent indicator F254 were used in order to detect phenolic
compounds (flavonoids and phenolic acids) in the samples. 10 µL of hexane and methanolic extracts of
the samples at concentrations of 10 mg/mL were run on the plates with EtOAc/MeOH/H2O (65:15:5,
v:v:v) as mobile phase. After eluting the samples, plates were dried, sprayed with the Natural Products
polyethylene glycol (PEG) reagent, observed at 365 nm and retention factors (Rf) calculated [31].

TPC was quantified by the Folin Method as previously described using gallic acid for the standard
calibration curve [32].

2.5. Determination of Antioxidant Activities

Antioxidant capacity was assessed by three complementary methods that were DPPH, ORAC,
and superoxide radicals generated by X/XO.

2.5.1. DPPH Radical Scavenging Activity

The neutralization of DPPH radicals as antioxidant method was reported the first time by
Blois et al. [33]. In this case, the assay was carried out according to the modifications described by
Casedas et al. [34]. In 96-well microplates, each well contained 150 µL of extract and 150 µL of DPPH
(0.04 mg/mL methanol solution). Antioxidant activity was determined measuring absorbance (Abs) at
515 nm after 30 min of dark incubation. Blank and control wells were also considered. The highest
concentration of extracts tested was 1 mg/mL. Trolox, a water soluble derivate of vitamin E, was used
as positive standard. Background interferences from solvents and samples were deducted from the
activities prior to calculating radical scavenging capacity (RSC) as follows: RSC (%) = [(Abscontrol −
Abssample)/Abscontrol] × 100.

2.5.2. ORAC Assay

ORAC assay was carried out to measure the capacity of extracts to scavenge peroxyl radicals.
Samples and trolox were dissolved in PBS and methanol (50:50, v:v). Samples were incubated
with fluorescein (0.07 µM) in 96-well plates for 10 min at 37 ◦C. Afterwards, AAPH (0.012 M) was
supplemented and fluorescence was measured for 98 min at 485 nm of excitation and 520 nm of
emission, in a FLUOstar Optima fluorimeter (BMG Labtech, Ortenberg, Germany) [35]. Results were
expressed as µmol trolox equivalents (TE)/mg sample.

2.5.3. Superoxide Radicals Generated by Xanthine/Xanthine Oxidase (X/XO)

Xanthine oxidase and xanthine as substrate are responsible for the production of superoxide
radicals [36]. The effects of fern extracts on superoxide radicals generated by X/XO were evaluated by
measuring the formation of the NBT (nitrotetrazolium blue chloride)-radical superoxide complex [37]
using a described procedure [34]. The reaction mixture was prepared every day as a consequence of
reduced stability. This mixture was composed of 90 µM xanthine, 16 mM Na2CO3, and 22.8 µM NBT
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in phosphate buffer (pH 7.0). 240 µL of the reaction mixture in each well with 30 µL of extract solution
and XO was incubated in the dark for 2 min at 37 ◦C and absorbance read at 560 nm. Blank and
control wells were also considered, and background interferences from solvents and samples were
also deducted from the activities previous to calculating the RSC (%). The reference substance (trolox)
was the same used in DPPH and ORAC assays.

2.6. Inhibition of Tyrosinase Activity

The inhibition of tyrosinase was performed following a previous method [38]. Samples were
mixed with 40 µL L-DOPA and 80 µL potassium phosphate buffer (pH 6.8). Finally, 40 µL of tyrosinase
(200 U/mL) was added in the wells. L-DOPA and tyrosinase were solved in buffer. The inhibition of
tyrosinase was determined at 475 nm. Methanolic extracts were dissolved in methanol, and hexane
extracts were dissolved in DMSO. Kojic acid was the reference inhibitor substance. Background
interferences from solvents and samples were previously deducted from the activities to calculate the
percentage of enzymatic inhibition (compared to control activity). Control wells had the same mix
except the sample/inhibitor, which was replaced by the solvents of these.

2.7. Statistical Analysis

All samples were analyzed in triplicates (n = 3), at least, on different days. Statistical significance
was analyzed by using GraphPad Prism version 6, San Diego, CA, USA. Data are presented as mean +/-
standard error. The half maximal inhibitory concentration (IC50) values were obtained by non-linear
regression. Activities have been compared using a one-way analysis of variance (ANOVA). Statistical
differences were considered as follows: p ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***). Correlations were
performed between TPC and ORAC values, and TPC and tyrosinase IC50 values; Pearson values were
also obtained using GraphPad Prism version 6.

3. Results

3.1. Plant Material and Yields

Table 1 shows the scientific names and Spanish common names of the collected samples as well as
yields of extraction in each case. The hydrophilic extracts obtained with methanol have higher yields
(ranging from 16.27% to 29.55%) than lipophilic extracts obtained with hexane (ranging from 1.49% to
2.34%).

3.2. Polyphenol Content by Thin Layer Chromatography (TLC) and Folin Method

TLC plates sprayed with Natural Products-PEG reagent revealed the presence of flavonoids in
methanolic samples obtained from Asplenium trichomanes (ATM, Rf = 0.97, 0.92, 0.86) and Ceterach
officinarum (COM, Rf = 0.66, 0.5). Spots corresponding to phenolic acids were also detected with
similar retention factor (Rf) values in the methanolic samples from Polypodium vulgare (PVM, Rf = 0.81),
Asplenium adiantum-nigrum (AAM, Rf = 0.81), Ceterach officinarum (COM, Rf = 0.81), and hexane extract
of Ceterach officinarum (COH, Rf = 0.81). An image of the TLC plate sprayed with Natural Products-PEG
reagent can be downloaded from Supplementary Materials (Figure S1). Total Phenolic Content (TPC)
was quantified using the Folin–Ciocalteu reagent; as observed in Table 1, methanolic extracts contained
higher amounts of polyphenols, with PVM and COM showing the highest values. As predicted,
methanol seems to be a better solvent to extract polyphenols.
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Table 1. Fern samples, botanical names, yields of extraction, and total polyphenol content (TPC).

Species Spanish Common Name
Methanol Extract Hexane Extract

Code Yield (%) a TPC (µGAE/mg) Code Yield (%) a TPC (µGAE/mg)

Polypodium vulgare L.
(Polypodiaceae) “Polipodio” PVM 23.53 172.8 ± 3.8 PVH 1.49 74.7 ± 5.8

Asplenium adiantum-nigrum L.
(Aspleniaceae) “Culantrillo negro” AAM 16.27 113.5 ± 5.8 AAH 1.57 96.0 ± 3.8

Asplenium trichomanes L.
(Aspleniaceae) “Culantrillo rojo” ATM 29.55 100.4 ± 0.7 ATH 2.01 70.3 ± 6.2

Ceterach officinarum Willd
(Aspleniaceae) “Doradilla” COM 28.04 193.2 ± 3.8 COH 2.34 70.3 ± 7.6

a The yield is a relation between the weight of the dried extract and the weight of dried plant material expressed as percentage (%). GAE: gallic acid equivalents; PVM: P. vulgare methanol
extract; AAM: A. adiantum-nigum methanol extract; ATM: A. trichomanes methanol extract; COM: C. officinarum methanol extract; PVH: P. vulgare hexane extract; AAH: A. adiantum-nigum
hexane extract; ATH: A. trichomanes hexane extract; and COH: C. officinarum hexane extract.
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3.3. Antioxidant Activity

3.3.1. DPPH Radical Scavenging Activity

As seen in Figure 1, methanolic extracts had a more powerful capacity for DPPH reduction than
hexane extract for each fern. Methanolic extracts had a very similar profile of antiradical activity
reaching 100% of radical inhibition at concentrations between 0.01 and 0.1 mg/mL. PVM and COM
had the lowest IC50 values and can therefore be considered as the best antioxidants. Extracts obtained
with hexane were also antioxidants, but the concentrations needed to scavenge 100% of DPPH radicals
were superior compared to samples extracted with methanol as solvent.

Forests 2018, 9, x FOR PEER REVIEW  6 of 15 

 

3.3. Antioxidant Activity 

3.3.1. DPPH Radical Scavenging Activity 

As seen in Figure 1, methanolic extracts had a more powerful capacity for DPPH reduction than 
hexane extract for each fern. Methanolic extracts had a very similar profile of antiradical activity 
reaching 100% of radical inhibition at concentrations between 0.01 and 0.1 mg/mL. PVM and COM 
had the lowest IC50 values and can therefore be considered as the best antioxidants. Extracts obtained 
with hexane were also antioxidants, but the concentrations needed to scavenge 100% of DPPH 
radicals were superior compared to samples extracted with methanol as solvent. 

B

0.0001 0.001 0.01 0.1 1
0

20

40

60

80

100
PVH
AAH
ATH
COH
Trolox

Concentration (mg/mL)
 

Figure 1. Antioxidant activity against DPPH radicals of methanol extracts (A) and hexane extracts (B) 
using trolox as a reference.  

3.3.2. ORAC Assay 

The ORAC assay is an internationally recognized method to measure antioxidant capacity. In 
Table 2, the ORAC values were also higher for methanolic extracts, particularly for PVM and COM, 
which is in accordance with data obtained in the DPPH assay. In Figure 2A, there is a positive 
correlation between ORAC values and TPC, which seems to indicate that the antioxidant activity may 
be mediated by polyphenols. 

Figure 1. Antioxidant activity against DPPH radicals of methanol extracts (A) and hexane extracts (B)
using trolox as a reference.

3.3.2. ORAC Assay

The ORAC assay is an internationally recognized method to measure antioxidant capacity.
In Table 2, the ORAC values were also higher for methanolic extracts, particularly for PVM and
COM, which is in accordance with data obtained in the DPPH assay. In Figure 2A, there is a positive
correlation between ORAC values and TPC, which seems to indicate that the antioxidant activity may
be mediated by polyphenols.
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Table 2. ORAC values of methanolic and hexane extracts of fern species.

Ferns
ORAC (µmol Trolox Equivalents/mg Sample)

Methanolic Extract Hexane Extract

Polypodium vulgare (PV) 2.34 ± 0.04 0.38 ± 0.02
Asplenium adiantum-nigrum (AA) 2.25 ± 0.03 0.34 ± 0.11

Asplenium trichomanes (AT) 2.25 ± 0.14 0.44 ± 0.01
Ceterach officinarum (CO) 2.93 ± 0.23 * 0.84 ± 0.06 #

* p < 0.05 versus PV, AA, and AT methanol extracts. # p < 0.05 versus PV, AA, and AT hexane extracts. Data analyzed
using a one-way ANOVA and Tukey post-hoc test.
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Figure 2. Correlation studies between polyphenol content and antioxidant activity (A) and between
polyphenol content and tyrosinase inhibition (B). Pearson r values confirm that there is a correlation
between polyphenol content and antioxidant activity measured by the ORAC method, whereas no
correlation exists between polyphenol content and the inhibition of the tyrosinase enzyme.

3.3.3. Superoxide Radicals Generated by Xanthine/Xanthine Oxidase (X/XO)

In order to determine if the extracts were able to scavenge physiological radicals like superoxide
anion (O2

−) generated by X/XO, the extracts were tested using this methodology at various
concentrations [15]. There were significant differences between methanolic and hexane extracts
(Figure 3), but surprisingly, the activity of certain methanolic extracts was superior to the reference
compound trolox (Figure 3A). Table 3 reveals that PVM, AAM, and COM showed lower IC50 values
than trolox, which confirms their potential as antiradical agents.
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Table 3. Summary of IC50 values of methanolic and hexane extracts in the DPPH, xanthine/xanthine
oxidase, and tyrosinase assays.

Species
IC50 (mg/mL) a

DPPH Radical O2
− Radical Tyrosinase Inhibition

Methanol
Extract

Hexane
Extract

Methanol
Extract

Hexane
Extract

Methanol
Extract

Hexane
Extract

Polypodium vulgare (PV) 0.007 0.233 0.011 0.201 0.107 0.233

Asplenium adiantum-nigrum (AA) 0.008 0.044 0.011 0.128 0.216 ND

Asplenium trichomanes (AT) 0.036 0.129 0.047 0.090 1.175 ND

Ceterach officinarum (CO) 0.007 0.072 0.012 0.073 0.392 ND

Kojic acid - - 0.063

Trolox 0.002 0.026 -
a Each value is expressed as the mean of at least three independent measurements. ND: Not determined at assayed
concentration (consequence of low activity). IC50 value is defined as the effective concentration of extract at
which 50% DPPH radicals, 50% of superoxide radicals generated by xanthine/xanthine oxidase, or 50% of the
tyrosinase enzyme are inactivated. IC50 value was obtained by interpolation from non-linear regression analysis
using GraphPad Prism version 6.
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3.4. Tyrosinase Inhibition

Figure 4 shows that methanolic extracts were also better than hexane extracts as anti-tyrosinase
agents. All methanolic samples presented IC50 values between 0.107 mg/mL and 1.175 mg/mL,
whereas in the case of hexane samples, only PVH was able to reach the IC50 value (Table 3). According
to the lowest IC50 values, PVM was the best sample as tyrosinase inhibitor, followed by AAM. In this
case, tyrosinase inhibition was not correlated with total phenolic content (Figure 2B).
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4. Discussion

Ferns have been used in traditional medicine in Central and South America. In fact, two of
the selected species (P. vulgare and A. adiantum-nigrum) are known to possess anti-inflammatory and
expectorant properties and are used in traditional medicine for colds [39]. In 2008, the European
Medicines Agency (EMA) also approved the monograph of Polypodium vulgare rhizome for the
treatment of cough and colds [40].

The antioxidant properties of ferns are not new; in fact, extracts of some ferns, such as Pityrogramma
calomelanos and Polypodium leucotomos, were recently reported as antioxidants due to the presence of
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polyphenols and flavonoids [21,41]. Different types of flavonoids have been described on selected
Aspleniaceae ferns [42] and in ferns of the Dryopteris genus [43]. It has also been described that the
antioxidant mechanisms of flavonoids can be based on hydrogen atom transfer (HAT), single electron
transfer (SET), and transition metals chelation (TMC) [44]; however, the antioxidant mechanisms for
phenolic acids are predominantly HAT rather than SET [45]. The differing nature of the antioxidant
methods tested in this article allows us to determine and characterize the antiradical activity [46,47].

All methanolic samples gave strong positive results in the three tested antioxidant methods.
This fact suggests the presence of phenolic acids and flavonoids with hydroxyls groups in the B-ring
in the samples [48]. However, the corresponding hexane extracts displayed higher IC50 values and
weaker antioxidant properties in the DPPH, ORAC, and X/XO assays. The lower antioxidant activity
of hexane extracts could be due to the lower polarity of the solvent system, indicating that the majority
of phenol and flavonoid compounds are present in the methanolic extracts as determined by Folin
and TLC analysis. Additionally, all methanolic extracts showed higher extraction yields compared to
the corresponding hexane extract, indicating that the majority of phytoconstituents are hydrophilic
molecules. ORAC is a method for antioxidant activity widely used in food sciences, but it is not the
first time that certain ferns have also been evaluated using this methodology. The main advantage
of this methodology is that the use of fluorescence in the ORAC assay avoids interference with the
colored samples [49].

In the superoxide method, superoxide radicals are reduced by receiving one electron (SET
mechanism). Flavonoids are known to possess antiradical activity by SET mechanisms; for this
reason, the reported activity in this method may be due to flavonoids [50]. The successful results with
IC50 values better than trolox demonstrate an exploitable antioxidant activity in line with previous
results for Polypodium leucotomos [51].

The isolation of some phytoecdysteroids in certain ferns has been the focus for certain medicinal
applications [52]. For example, phytoecdysteroids have already been isolated in Polypodium vulgare [53].
The antioxidative properties by singlet oxygen quenching (SET) and the promotion of differentiation
of human keratinocytes of these components may be the reason for obtaining certain bioactivities in
hexane extracts [54,55]. Contrary to expectation, all hexane extracts exerted antioxidant properties
in the different tested methods. The content of terpenoids in ferns could be responsible for these
results in relation to the antioxidant activity of the hydrofobic (hexane) extracts [43,56]. Additionally,
carotenoids, which are tetraterpenoids, have been reported in a number of fern species [57].

According to tyrosinase inhibition, Selaginella tamariscina and Stenoloma chusanum are the only ferns
that have been described as anti-tyrosinase agents, with flavonoids involved in this activity [42,58,59].
In our study, methanolic extracts also displayed the lowest IC50 values, displaying better anti-tyrosinase
activity than hexane extracts. This might ascribe the activity to phenolic compounds; nevertheless, the
Pearson values dismiss the positive correlation between IC50 values in the tyrosinase assay and TPC.
Due to the fact that flavonoids have been described in certain species of the Polypodiaceae family [60,61],
we might assume that anti-tyrosinase activity of methanolic and hexane extracts could be due to
flavonoids; however, this is not completely in agreement with our results, and other authors have
found that the inhibition of tyrosinase could be also due to cycloartanes derivatives isolated in
PV [62–64].

5. Conclusions

Regarding the results obtained, particularly for the methanolic extracts, antioxidant and
potential depigmenting activity has been reinforced for the species Polypodium vulgare, Asplenium
adiantum-nigrum, Asplenium trichomanes, and Ceterach officinarum. Hydrophilic extracts of these species
could be of interest to develop pharmaceutical or cosmetic products, but further studies are needed to
better understand the properties and safety aspects of these species.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/2/179/s1,
Figure S1: TLC analysis of methanol and hexane extracts of the four fern samples.
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Abbreviations

AA Asplenium adiantum-nigum
AAPH 2,2’-azobis(2-amidinopropane) dihydrochloride
AT Asplenium trichomanes
CO Ceterach officinarum
DMSO dimethyl sulfoxide
DPPH 2,2-diphenyl-1-picrylhydrazyl
GAE gallic acid equivalents
NBT nitrotetrazolium blue chloride
ORAC oxygen radical absorbance capacity
PV Polypodium vulgare
TE trolox equivalents
TLC thin layer chromatography
TPC total phenolic content
X/XO xanthine/xanthine oxidase
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