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Abstract: This paper presents the development and evaluation of two linear algorithms for forecasting
reception power for different channels at an assigned spectrum band of global systems for mobile
communications (GSM), in order to analyze the spatial opportunity for reuse of frequencies by
secondary users (SUs) in a cognitive radio (CR) network. The algorithms employed correspond
to seasonal autoregressive integrated moving average (SARIMA) and generalized autoregressive
conditional heteroskedasticity (GARCH), which allow for a forecast of channel occupancy status.
Results are evaluated using the following criteria: availability and occupancy time for channels,
different types of mean absolute error, and observation time. The contributions of this work include
a more integral forecast as the algorithm not only forecasts reception power but also the occupancy
and availability time of a channel to determine its precision percentage during the use by primary
users (PUs) and SUs within a CR system. Algorithm analyses demonstrate a better performance for
SARIMA over GARCH algorithm in most of the evaluated variables.

Keywords: cognitive radio; time series; linear algorithms

1. Introduction

Radioelectric spectrum occupancy is widely studied due to its importance for the construction
of new spectrum assigning policies in emerging technologies, as well as in monitoring activities
both in licensed and unlicensed bands. Real measurements for spectrum use within a determined
band allow the corresponding authorities to guarantee that licenses meet local and regional spectrum
regulations [1]. On the other hand, precise parameter estimates like time quantity and geographical
region where the different spectrum band is actually used bring useful information to determine
spectral opportunities for variant technologies within a domain. In this paper, such technologies
correspond to a global systems for mobile communications (GSM) technology variant in the time
domain [2].

The spectrum sensing in cognitive radio (CR) provides the necessary information about the status
of the wireless channels, modeling and prediction of communications activity. This could contribute to
spectral efficiency improvement efforts [3–5]. The prediction information of the channel status can
be used by secondary users (SUs) to decide the sensing periods and channel occupancy duration for
a single channel sensing scenario [6]. Besides, based on prediction information, SUs can select the
channels with higher probability of vacancy in multi-channel wideband sensing scenarios [7], and also
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primary user (PU) occupancy models can be used as empty channel indicators replacing the spectrum
sensing procedures [2,8]. A key issue for spectrum sensing operations is the evaluation of the so-called
hidden node margin (HNM). The HNM has been evaluated in sharing scenarios between white space
devices and digital terrestrial television systems [9].

Different initiatives for radioelectric spectrum channel modeling, mainly using deterministic and
stochastic models, have been proposed [3,10–16]. Differences among those proposals and the present
work lie in that in the first initiatives, the duty cycle (the average percentage of the channel utilization)
time series is modeled for different types of channels, whereas the proposal presented here models the
time series for received power in three GSM channels with different occupancy levels. For this purpose,
firstly we used seasonal autoregressive integrated moving average (SARIMA) algorithm, which is
adequate for analyzing time series with seasonality, in accordance with different studies [13–15].
Secondly, the generalized autoregressive conditional heteroskedasticity (GARCH) algorithm, which
had been applied in traffic modeling and forecast for different communications networks, was also
used [17–19].

The evaluation of the results obtained in algorithm forecasts is based on the following variables:
channel availability time (the time interval where the channel is not used by the PUs), channel
occupancy time (time interval where the channel is used by the PUs), observation time and error
criteria analysis (symmetrical mean absolute percentage error, SMAPE, mean absolute percentage
error, MAPE, and mean absolute error, MAE) [20–22].

2. Theory and Background

GARCH and SARIMA are deployed in a time series that is assumed as linear and with
a known statistical distribution. As presented below, this is partially met in long-term analysis
of time series measurements.

2.1. Seasonal Autoregressive Integrated Moving Average Algorithm

In general, if a time series exhibits potential seasonality indexed by s, then using a multiplied
SARIMA(p,d,q)(P,D,Q)s algorithm is advantageous, where d is the level of non-seasonal differencing,
p is the autoregressive (AR) non-seasonal order, q is the moving average (MA) non-seasonal order,
P is the number of seasonal autoregressive terms, D is the number of seasonal differences, and Q is the
number of seasonal moving average terms. The seasonal autoregressive integrated moving average
algorithm of Box and Jenkins [23] is given in the Equation (1),

∅p (B)Φp (Bs)∇d∇D
s xt = θq (B)ΘQ (Bs) et (1)

where B is the backward shift operator, xt is the observed time series of load at time t, et is the
independent, identical, normally distributed error (random shock) at period t; ∇D

s xt = (1− Bs)D xt,
Φp(Bs) and ΘQ(Bs) are the seasonal AR(p) and MA(q) operators, respectively, which are defined in
Equations (2) and (3),

Φp (Bs) = 1−Φ1Bs −Φ2B2s − . . .−ΦpBPs (2)

ΘQ (Bs) = 1−Θ1Bs −Θ2B2s − . . .−ΘQBQs (3)

where Φ1, Φ2, . . . , Φp are the parameters of the seasonal AR(p) model, Θ1, Θ2, . . . , ΘQ are the
parameters of the seasonal MA(q) [24].

The Box-Jenkins methodology consists of four iterative steps [25]:

• Step 1: Identification. This step focuses on the selection of d, D, p, P, q and Q. The number of
the order can be identified by observing the sample autocorrelations (ACF) and sample partial
autocorrelations (PACF).

• Step 2: Estimation. The historical data is used to estimate the parameters of the tentative model in
Step 1.



Algorithms 2016, 9, 82 3 of 18

• Step 3: Diagnostic checking. Diagnostic test is used to check the adequacy of the tentative model.
• Step 4: Forecasting. The final model in Step 3 is used to forecast the values [26].

2.2. Generalized Autoregressive Conditional Heteroskedastic Algorithm

An important number of models, most of which have the property that conditional variance
depends on past, have been proposed for capturing special data characteristics. Algorithms commonly
used are those with autoregressive conditional heteroskedasticity (ARCH) introduced in [27] and
generalized ARCH (GARCH) given by [28]. Modeling ARCH-GARCH considers conditional error
variance as a compression function of the past of the series.

ARCH modeling usually requires a great number of lags (q), and therefore a great number of
parameters. This might yield a model with a great number of parameters, which is in opposition to
the parsimony principle. This fact drives many times to difficulties when using the model to describe
data in an adequate way. On the contrary, a GARCH model uses an inferior quantity of parameters,
which makes it preferable to an ARCH model [29–31]. In this paper, the GARCH algorithm with order
p ≥ 0 and q ≥ 0 for the discrete-time stochastic process rt is expressed in Equations (4) and (5)

rt = µ + c, εt ∼ N (0, 1) (4)

σ2
t = α0 + ∑q

i=1 αir2
t−i + ∑p

j=1 β jσ
2
t−j (5)

where εt is an independent and identically distributed process with a zero mean and one standard
deviation, µ is the mean constant offset, σt

2 is variance, and α0 is the constant in the conditional
variance. Unknown parameters for model are α0, αi and βj for some positive integer p, q.

Just as in an ARIMA model, ACF and PACF are useful for p and q order identification in
a GARCH(p,q) process [30].

3. Case Study and Experiment Procedure

The decision to carry out this study was made during the spectrum measurements campaign held
in Bogota-Colombia where we obtained the measurements employed here from spectrum occupancy
study previously carried out [1,32]. The band analyzed was the GSM 850 MHz, as it is a band constantly
used and viable for analysis in time function with conventional equipment, like a spectrum analyzer.
The measurements used in this study correspond to a week, from 23 December to 29 December 2012.
In some studies [33], it has been indicated that a reasonable option to obtain representative data
without any a priori information about a band is to consider measurement periods of at least 24 h in
order to avoid under or overestimating frequency bands occupancy with some temporary patterns.
While a 24-h measurement period could be thought of as adequate in order to properly characterize the
activity of determined spectrum bands [34], in this research 7 days were analyzed, including patterns
for workdays and weekends. Additionally, this time period is sufficient to measure occupancy in
mobile networks with low use, as indicated in [2,34].

The channels to be modeled were selected after measuring the duty cycles of 60 channels at GSM
band. From these, three channels with different occupancy levels (high, medium and low), were chosen.
Figure 1 presents results of power measure for three downlink channels during a week, with different
power level. Spectrum analyzer configuration for this band was the following: a resolution bandwidth
of 100 kHz with a sweep time of 290 ms, which guarantees GSM signal detection with a bandwidth of
200 kHz. Daily duty cycles from PUs at selected channels are shown in Figure 2. Threshold (λ) used,
which for this event is of −89 dBm, was obtained from Equation (6) with a probability of false alarm
(Pfa) of 1% [35]. λwhich is above of the detected noise floor of −102 dBm [1],

Pf a =
Γ
(

m, λ
2

)
Γ (m)

(6)
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where Г(.) y Γ(. , .) are complete and incomplete gamma functions, respectively, and m is the product
of time times bandwidth.Algorithms 2016, 9, 82  4 of 18 
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Figure 1. Power measurements for three global systems for mobile communications (GSM) band
downlink channels.
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Figure 2. Duty cycles for three GSM band downlink channels.

In this work the HNM is calculated from the differences between measurements of received power
performed outside at street level and indoors, in a building. These measurements were performed
with a discone-type antenna and spectrum analyzer. The calculation allows analysis of the margin
between a non-licensed device indoors, and a PU outdoors without interference due to shadowing.
Table 1 shows the HNM found for each channel.

Table 1. Hidden node margin (HNM) for three different frequency channels for an urban environment.

Low Channel HNM (dB) Medium Channel HNM (dB) High Channel HNM (dB)

9.2 11.9 6.8

Figures 3–5 present histograms corresponding to opportunities distribution during time periods
of GSM band channels; it is observed that such opportunities have an exponential behavior, whose
approximate equations and the coefficient of determination (R2) are exhibited in each figure. Thus,
the occurrence increases for the channel occupancy, especially for shorter time periods of use. For low,
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medium and high occupancy channels, total times of opportunities were approximately 84 h, 81 h and
78 h, respectively, which indicates relatively low occupancy [2].Algorithms 2016, 9, 82  5 of 18 
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Figure 5. Time period opportunities distribution for high channel.

Following this, we proceeded to analyze the time series of measured channels over a week, which
was equivalent to 1,062,514 samples. To do this, ACF is initially presented, as observed in Figure 6.
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ACF diagrams for the three channels presents forms which are alternately positive and negative,
decaying to zero, the values are in 95%-confidence intervals, shown with the blue lines. Therefore,
this indicates that there is correlation [2,26].Algorithms 2016, 9, 82  6 of 18 
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Figure 6. Autocorrelation for three GSM band downlink channels.

When analyzing channels stationarity of Figure 6, it is observed that the mean and variance
are constant and similar to each other, on each one of the days from Monday to Friday. Therefore,
measurements at the weekend are not taken into consideration when training the analyzed models,
because the mean and variance are not similar and change in a significant way with regard to the
measurements from Monday to Friday.

3.1. Design of SARIMA Algorithm

In Figure 7 the trend and seasonality are presented in occupancy level for the three channels.
Seasonality had a period of 24 h, practically without trend and with stationary components, which
makes possible the use of a SARIMA model to forecast behavior of the GSM channels [26].
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Figure 7. Seasonality and trend components of the GSM channels.

Delay difference s, which for this event is selected as five (∆5), was equivalent to the number of
days of the week in which the signal was stationary [15]. Applying the augmented Dickey–Fuller
test [36], in the series of three channels from Monday to Friday, the null hypothesis of unit root is
rejected, which indicates stationarity. In order to find the parameters of SARIMA(p,d,q)(P,D,Q)s model,
ACF and PACF were calculated for ∆5 of respective channels, as shown in Figure 8.
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Figure 8. Simple and partial autocorrelation for GSM channels.

Using Box-Jenkins methodology [23], Figure 8 shows that PACF of ∆5 decays to zero with
a seasonal pattern, and crosses confidence level initially in lag 5 for negative side. This suggests that
a term non-seasonal AR(1) could be used, and a seasonal MA(5) could be added.

In order to avoid forecast overestimation (small variance and big errors), the Akaike information
criterion (AIC) [37] was selected to evaluate different reasonable combinations, as is observed in Table 2.
Thus, selected models were: SARIMA(1,0,5)(1,0,1)5, SARIMA(1,0,5)(0,0,1)5 and SARIMA(1,0,5)(0,0,1)5,
for occupancy levels of low, medium and high channels, respectively, and the characteristic equations,
in the same order are:

(1− 0.0135B)
(

1− 0.55B5
)
(1− B)

(
1− B5

)
xt =

(
1− 0.997B5

) (
1− 0.546B5

)
et (7)

(1− 0.0192B)
(

1 + 0.996B5
)
(1− B)

(
1− B5

)
xt =

(
1 + 0.0085B5

)
et (8)

(1− 0.0199B)
(

1− 0.016B5
)
(1− B)

(
1− B5

)
xt =

(
1− 0.994B5

)
et (9)

Table 2. Akaike information criterion (AIC) values for different seasonal autoregressive integrated
moving average (SARIMA) models.

p d q P D Q Low Occupancy
Channel AIC

Medium Occupancy
Channel AIC

High Occupancy
Channel AIC

1 0 5 0 0 1 −8.24 −30.6 −50.82
1 0 5 1 0 0 −8.3 −32.7 −51.7
1 1 5 0 0 1 −14.1 −46.9 −76.2
1 0 5 1 0 1 −8.19 −32.6 −50.9

3.2. Design of GARCH Algorithm

When analyzing in detail the large amount of acquired information, the existence of standard
deviation was observed; therefore the GARCH algorithm was used to forecast the behavior of measured
series. Stochastic models ARIMA and SARIMA are methods for univariate modeling. The main
difference among former models and GARCH model lies in the constant variance assumption.

Even though for the developed algorithm there is stationarity in original signal from Monday to
Friday, for this case the fifth difference is developed because there is a greater degree of stationarity.
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In Figure 9 the difference for each channel is presented. Channel measurements are converted into
returns by logarithmic transformation. The logarithmic returns are defined in Equation (10),

rt = ln
Pt

Pt−1
(10)

where Pt is power value in time t and Pt−1 is power value in time t−1.
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Now we present a formal statistical test in order to establish the presence of ARCH effects in the
data and correlation. H = 0 implies that there exist no significant correlation as well as H = 1 indicates
that there exists a significant correlation. In Tables 3 and 4, all the p values show that Ljung-Box-Pierce
Q-Test and Engle ARCH Test in lag 10, 15 and 20 are significant, revealing the presence of ARCH
effects (heteroskedasticity), indicating that GARCH modeling is appropriate.

Table 3. Ljung-Box-Pierce Q-Test for autocorrelation: (at 95% confidence) for GSM channels.

Lag H p Value Low Channel
Statistical Test

Medium Channel
Statistical Test

High Channel
Statistical Test

Critical
Value

10 1 0 725,124 731,923 731,240 18.3
15 1 0 725,136 731,956 731,266 24.99
20 1 0 725,138 731,996 731,313 31.41

Table 4. Engle autoregressive conditional heteroskedasticity (ARCH) test: (at 95% confidence) for
GSM channels.

Lag H p Value Low Channel
Statistical Test

Medium Channel
Statistical Test

High Channel
Statistical Test

Critical
Value

10 1 0 574,940 578,554 576,595 18.3
15 1 0 578,008 581,225 579,079 24.99
20 1 0 578,710 581,829 579,500 31.41

Dependence in data x1, . . . , xn was determined by computing correlations. This was done by
representing the ACF.

If the time series is the result of a completely random phenomenon, the autocorrelation should
be close to zero for all time-lag separations. Otherwise, one or more of the autocorrelations will be
significantly different from zero. Another useful way to examine dependencies of the series is to
revise the PACF, where the dependence of intermediate elements (those within the lag) is eliminated.
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In Figure 10, graphs of ACF, PACF and ACF of square returns present the existence of correlation in
data of channel occupancy.Algorithms 2016, 9, 82  9 of 18 
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Below, in Tables 5–7, the evaluation and selection of the GARCH model for each channel
was performed.

Table 5. Generalized autoregressive conditional heteroskedasticity (GARCH) model comparison for
low channel. SMAPE: symmetrical mean absolute percentage error; MAPE: mean absolute percentage
error; MAE: mean absolute error.

Model AIC
Bayesian

Information
Criterion (BIC)

Standard
Error

Log
Likelihood SMAPE MAPE MAE

GARCH(0,1) 201,838 201,873 7.8 × 10−4 96,127.5 −0.0249 0.0253 2.3606
GARCH(1,1) 192,263 192,309 7.82 × 10−4 96,127.5 −0.0249 0.0253 2.3604
GARCH(0,2) 192,622 192,649 7.8 × 10−4 96,127.5 −0.0248 0.0252 2.3492
GARCH(1,2) 192,265 192,299 0.0016 96,127.5 −0.0244 0.0248 2.3075
GARCH(2,1) 191,587 191,621 7.33 × 10−4 96,127.5 −0.0251 0.0255 2.3792
GARCH(2,2) 191,581 191,622 0.0034 96,127.5 −0.0243 0.0247 2.3060

Table 6. GARCH model comparison for medium channel.

Model AIC BIC Standard Error Log Likelihood SMAPE MAPE MAE

GARCH(0,1) 876,834 876,854 7.6 × 10−4 422,041 −0.0374 0.0393 3.4198
GARCH(1,1) 844,089 844,117 6.6 × 10−4 422,041 −0.0427 0.0440 3.8676
GARCH(0,2) 844,984 845,012 6.6 × 10−4 422,041 −0.0375 0.0395 3.4385
GARCH(1,2) 844,091 844,125 0.0012 422,041 −0.0411 0.0429 3.7699
GARCH(2,1) 843,470 843,504 6.0 × 10−4 422,041 −0.0410 0.0427 3.7531
GARCH(2,2) 843,472 843,513 5.0 × 10−4 422,041 −0.0434 0.0452 3.9895

Table 7. GARCH model comparison for high channel.

Model AIC BIC Standard Error Log Likelihood SMAPE MAPE MAE

GARCH(0,1) 1,223,114 1,223,135 7.8 × 10−4 608,609 −0.0514 0.0542 4.6565
GARCH(1,1) 1,217,225 1,217,252 6.6 × 10−4 608,609 −0.0551 0.0580 5.0138
GARCH(0,2) 1,220,306 1,220,333 6.7 × 10−4 608,609 −0.0534 0.0557 4.7957
GARCH(1,2) 1,217,227 1,217,261 5.3 × 10−4 608,609 −0.0566 0.0591 5.1279
GARCH(2,1) 1,214,308 1,214,343 6.5 × 10−4 608,609 −0.0540 0.0570 4.9224
GARCH(2,2) 1,214,310 1,214,352 5.4 × 10−4 608,609 −0.0620 0.0675 5.9397
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The GARCH model selection for each channel was done by fulfilling αi + βi < 1 criterion, so the
model is stationary, and then taking into account the more proximate values to zero of MAE, MAPE
and SMAPE from Tables 5–7. Therefore, the selected models for low, medium and high channel are
GARCH(2,2), GARCH(0,2) and GARCH(0,1), respectively.

Parameters for low channel model were estimated and are presented in Table 8. GARCH(2,2),
where α1 + α2 + β1 + β2 < 1 is fulfilled.

Table 8. Parameters estimation for low channel model.

Parameter Estimated Value Standard Error t Value

µ −96.112 0.0019308 −49,778.3308
α0 0.003516 0.00041447 8.4833

GARCH(1) 0.098255 0.19212 0.5114
GARCH(2) 0.90062 0.19201 4.6905
ARCH(1) 0.00029573 0.00018772 1.5753
ARCH(2) 0 0.00020886 0

Thus, the model according to Table 8 is presented in Equations (11) and (12),

rt = −96.112 + εt (11)

σ2
t = 0.003516 + 0.098255σ2

t−1 + 0.90062σ2
t−2 + 0.00029573ε2

t−1 (12)

For medium channel, GARCH(0,2), model values presented in Table 9 are estimated.

Table 9. Parameters estimation for medium channel model.

Parameter Estimated Value Standard Error t Value

µ −95.061 0.0024331 −39,069.8019
α0 5 0.012924 386.8834

ARCH(1) 0.085692 0.0010392 82.4572
ARCH(2) 0.088298 0.0010582 83.4378

Therefore, Equations (13) and (14) are obtained,

rt = −95.061 + εt (13)

σ2
t = 5 + 0.085692ε2

t−1 + 0.088298ε2
t−2 (14)

For high channel, GARCH(0,1), the following parameters were obtained, as shown in Table 10.

Table 10. Parameters estimation for high channel model.

Parameter Estimated Value Standard Error t Value

µ −94.585 0.0026236 −36,051.8702
α0 5 0.015341 325.9324

ARCH(1) 0.86058 0.0044771 192.2169

Then the model is described in Equations (15) and (16),

rt = −94.585 + εt (15)

σ2
t = 5 + 0.86058ε2

t−1 (16)
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ARCH-GARCH model analysis is based on evaluation of standardized residuals [31].
One assumption with GARCH model is that for a good model, residuals should follow a white
noise process. This is to say that it is expected that residuals be at random, independent and identically
distributed, following a normal distribution. Figure 11 presents the relationship between innovations
(residuals) derivate from adjusted model, the corresponding conditional standard deviations and
returns. Figure 11 shows that both innovations and returns exhibit variations. In the following
we intend to find out if by performing GARCH the autocorrelation of the standardized innovations
disappears, which would indicate the effectiveness of GARCH model.
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In Tables 11 and 12, results of Ljung-Box-Pierce Q-Test and Engle ARCH test for later analysis
are presented using standardized innovations. These tests indicate no presence of correlation or
ARCH effects. We have GARCH effects and also correlation between innovations that disappear after
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treating the data. Therefore, the GARCH model is a proper model for explaining the variances of the
three channels.

Table 11. Ljung-Box-Pierce Q-Test in standardized innovations for GSM channels.

Lag H
Low

Channel
p Value

Medium
Channel
p Value

High
Channel
p Value

Low Channel
Statistical Test

Medium Channel
Statistical Test

High Channel
Statistical Test

Critical
Value

10 0 0.424 0.402 0.701 25,787 26,701 33,455 18.3
15 0 0.7014 0.6883 0.8236 26,447 28,617 37,143 24.99
20 0 0.947 0.876 0.9355 26,945 30,313 40,772 31.41

Table 12. Engle ARCH test in standardized innovations for GSM channels.

Lag H
Low

Channel
p Value

Medium
Channel
p Value

High
Channel
p Value

Low Channel
Statistical Test

Medium Channel
Statistical Test

High Channel
Statistical Test

Critical
Value

10 0 0.539 0.479 0.6212 26,930 27,093 33,757 18.3
15 0 0.776 0.7144 0.7697 27,432 28,443 36,248 24.99
20 0 0.908 0.863 0.8841 27,792 29,443 38,240 31.41

Normality verification was performed by analyzing histograms of residuals and normal
probability graph, as shown in Figure 13. The histograms of the three channels shows that the
residuals are normally distributed. In turn, the probability graph confirms that residuals respond to
a normal distribution, since most of data are spread along the straight line.
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Figure 13. Histogram of residuals and normal probability for GSM channels.

4. Results and Discussion

In Figure 14 an example is displayed where there is application of the designed time series
algorithms. Here, the interaction between the CR user and the primary base station (BS) is shown by
received power from the primary transmitter. This is represented by the oval and the direction of the
arrows. The CR user can forecast the power level it will receive from the primary BS.

In the example of Figure 14, in order to analyze the SARIMA and GARCH algorithms, the forecast
of the power is performed by the CR user, making a comparison with the spectrum analyzer in which
the measurements were made. However, this depends on the architecture of CR deployed in the
environment. Due to the processor and power consumption being more limited in the CR user’s
computer, use of infrastructure architecture is recommended, where the forecast is carried out by the
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CR BS. This provides a better processor than that of the CR user, and has no limitations on power
consumption. However, there is a time period between data capture in the environment and the
processing, which adds a delay to the response. This must not be ignored, but the forecast helps to
reduce the negative impact of the delayed response.
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Figure 14. Example of application to forecast the received power from the base station (BS). CR:
cognitive radio.

The analysis of the precision of the forecast made with the SARIMA and GARCH algorithms
is presented, as follows. Figure 15 shows the SARIMA algorithm forecasts obtained from
Equations (7)–(9), and from GARCH algorithm based on Equations (11)–(16). This was contrasted with
the power measured data of Friday from 5:00 p.m. to 6:00 p.m. This period was chosen since during
this time an increased use of the channels by PUs was perceived.
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Figure 15. GSM channel series and forecast series with SARIMA and GARCH algorithms.

In Figures 16 and 17, availability and occupancy times of the measured and forecast channels are
presented. Availability time allows us to analyze the precision with which SUs could use availability
time in GSM channels for a CR system. In the same way, occupancy time examines the precision during
time in which PUs use GSM channels. Average precisions obtained between actual and forecast data
for availability times were: 82%, 54% and 60%, for the SARIMA algorithm; and 31%, 30% and 43%, for
the GARCH algorithm, corresponding to channels with low, medium and high occupation, respectively.
Average precisions for occupation times between real data and forecast data are equivalent to 58%,
77% and 78% for the SARIMA algorithm; and 44%, 46.6% and 44.2%, for the GARCH algorithm,
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corresponding to channels with low, medium and high occupancy levels, respectively. Additionally,
as expected, for each algorithm there is an inversely proportional relationship between channel
occupancy and availability time, as well as a directly proportional relationship between occupancy
probability and occupancy time of the channels.Algorithms 2016, 9, 82  14 of 18 
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Figure 17. Occupancy time of forecasted channels.

In Table 13 forecast and measured data are compared to different methods for error estimation
such as SMAPE, MAPE and MAE. Results of Table 13 point that only in data forecast for the medium
occupancy channel, the GARCH algorithm presents smaller errors than the SARIMA algorithm.

Table 13. Error variables comparison for forecasted values.

Channel
Occupancy

SMAPE-
SARIMA

SMAPE-
GARCH

MAPE-
SARIMA

MAPE-
GARCH

MAE-
SARIMA

MAE-
GARCH

Low −0.0170 −0.0243 0.0172 0.0247 1.6042 2.306
Medium −0.0470 −0.0375 0.0466 0.0395 4.2987 3.4385

High −0.0488 −0.0514 0.0497 0.0542 4.4195 4.6565
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Comparison of performance in forecast is shown in Figure 18, developed on a computer with
dual-core processor 2.4 GHz and 4 GB of random access memory (RAM) memory. Here is observed
that in general, for each model, the higher the observation time the lower the prediction error. However,
this entails no significance. Prediction error is lower in forecast of GARCH algorithms, but a longer
observation time in connection to SARIMA algorithm forecast is still necessary. Analyzing the
experimental results and considering the best of the cases, the SARIMA algorithm reduces the error
to 7.8% when the observation time increases 177.1% for the high occupancy channel. The GARCH
algorithm wanes in error about 15.3%, with an increase in the observation time of 128% for the high
occupancy channel. In both the ARIMA and GARCH algorithms, a training day to achieve acceptable
prediction errors in the three GSM channels is sufficient according to the experimental results.
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For the analysis of training, Tables 14–16 display the mean squared error for the forecast of
reception power for the SARIMA and GARCH algorithms, with up to five days of training data.
These results, and Figure 18, suggest that one training day in the SARIMA and GARCH algorithms is
sufficient to obtain an acceptable error.

Table 14. Result of mean squared error for low channel with different number of training days.

Number of
Training Days

SARIMA Mean
Squared Error

GARCH Mean
Squared Error

SARIMA
Processing Time

GARCH
Processing Time

1 18.64 25.48 3.88 s 12.16 s
2 17.9 25.34 3.52 s 18.57 s
3 18.29 24.51 4.25 s 34.38 s
4 17.53 24.82 5.92 s 41.42 s
5 17.17 23.76 7.65 s 55.59 s

Table 15. Result of mean squared error for medium channel with different number of training days.

Number of
Training Days

SARIMA Mean
Squared Error

GARCH Mean
Squared Error

SARIMA
Processing Time

GARCH
Processing Time

1 47.52 38.01 4.06 s 8.61 s
2 45.19 38.37 4.28 s 11.15 s
3 44.94 37.15 5.36 s 11.38 s
4 42.38 36.68 6.73 s 14.47 s
5 41.42 36.85 8.29 s 18.55 s
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Table 16. Result of mean squared error for high channel with different number of training days.

Number of
Training Days

SARIMA Mean
Squared Error

GARCH Mean
Squared Error

SARIMA
Processing Time

GARCH
Processing Time

1 50.69 56.77 3.79 s 7.57 s
2 48.35 59.8 3.96 s 9.08 s
3 49.04 53.95 4.18 s 10.61 s
4 46.51 51.56 4.82 s 14.33 s
5 44.96 48.28 6.47 s 15.83 s

5. Conclusions

The SARIMA and GARCH algorithms have been evaluated in this paper in order to forecast
the reception power in channels of a GSM band. Even though GARCH algorithm presented lower
prediction errors than SARIMA algorithm, the use of a SARIMA algorithm is more convenient for
a CR system, because it has higher precisions with respect to availability and occupancy times, with
which the use of spectrum efficiency is improved and the interference level and collisions between
PUs and SUs will be reduced. Additionally, the SARIMA algorithm employs lower observation times
than the GARCH algorithm. As noted, for the best of cases, observation times lower than four seconds
could be obtained for the three GSM channels, which is an advantage in practical CR systems.

For a CR system, the forecast developed in the GSM band could help to improve the use of
spectral efficiency, since it would allow CR users to share channels and avoid collisions with PUs in
the found opportunities.

The SARIMA and GARCH algorithms forecast not only the reception power; but the occupation
and availability times for GSM channels. It would also be feasible to use the training data from one
day for the forecast of a CR user’s received power from a primary BS.

The significance of the forecast of received power is that CR users can save energy in the process
of detecting the spectrum and take advantage of spectral opportunities, thereby increasing the rate of
successful transmission and transmission opportunities, reducing the time to find an available channel,
and adjusting transmission power levels to protect against collisions and interference with the PUs.
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