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Abstract: Reduction of contour error is a very important issue for high precise contour tracking
applications, and many control systems were proposed to deal with contour tracking problems
for two/three axial translational motion systems. However, there is no research on cross-coupled
contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring
control of multi-DOF serial manipulators is developed for the first time and a new cross-coupled PD
(CC-PD) control law is proposed, based on contour errors of the end-effector and tracking errors of
the joints. It is a combination of PD control for trajectory tracking at joint level and PD control for
contour tracking at the end-effector level. The contour error of the end-effector is transformed to the
equivalent tracking errors of the joints using the Jacobian regulation, and the CC-PD control law is
implemented in the joint level. Stability analysis of the proposed CC-PD control system is conducted
using the Lyapunov method, followed by some simulation studies for linear and nonlinear contour
tracking to verify the effectiveness of the proposed CC-PD control system.

Keywords: contour tracking; contour error; contouring control; robot; cross-coupled control;
PD control; Jacobian; stability analysis

1. Introduction

Robotic manipulators are important for automation and industrial applications in contour tracking
and trajectory tracking. Contour tracking is very popular in many industrial applications such as
welding, laser cutting, and machining [1–4], and contouring control is one of the most important tasks
for robotics and computer numerical control machine tools [5–9]. One of the most important issues
in machining is the reduction of contour errors to ensure the quality of machined parts. In robotic
applications such as precision machining, a desired task is often defined in terms of the end-effector
(task space) motion: contour tracking motion [10,11].

Robotic technology can provide an excellent base to reduce the contour error because of its
flexibility and affordability. A contour error is defined as the shortest distance between the current
position and the desired contour curve, and contour error is a key factor used to evaluate the quality
of a machined part. Conventional approach to deal with such a contouring problem is to treat it as
a tracking control problem for each individual axis or joint. Unfortunately, reducing tracking error
does not ensure reducing the contour error, because the contour error is a result of combined tracking
errors of all axes or joints, and the dynamics of each axis is coupled with other axes for a nonlinear
robotic system.

To deal with contour tracking problems, the cross coupling control (CCC) method was first
developed by Koren [1] for translational motion systems, followed by a variable-gain CCC in [2]. A PI
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type cross coupling controller was developed for contour tracking of a linear bi-axis motion system
based on linear control theory in [3]. A position loop-based cross-coupled control was proposed for
a two-axis motion stage in [4]. Cheng [5] applied the fuzzy logic technology to deal with a free-form
contour following problem by varying the feed rate of the system. Some surveys about the tracking
and contour error control for CNC systems were presented in [6,7].

For simple contours, the contour error can be calculated analytically as discussed in [1,2].
To calculate contour errors of complex freeform contours, the concept of equivalent error was
introduced for contouring control in [12]. A polar coordinate representation method was proposed
in [13] to calculate contour errors for a biaxial translational motion system. Contour error estimation
procedures for three-dimensional translational machining were developed in [8,9], based on the linear
dynamic model of a CNC machine system. An orthogonal global task coordinate frame [14] for the
calculation of contour errors was proposed and applied to a biaxial system. It should be noted that the
majority of contouring control is focusing on biaxial or multi-axial translational motion systems that
are linear dynamic systems.

There are two types of applications for robot manipulators in the task space level: the task
space trajectory tracking control and task space contour tracking control. For task space trajectory
tracking control, Cheah [10] developed a set of task space PD control laws based on the Jacobian
regulation. An adaptive tracking control was proposed for robots with unknown kinematic and
dynamic properties in [11]. In addition, the adaptive technology was applied to the contour coupling
control for a CNC system in [15]. As for the contouring control, a cross-coupled control algorithm
based on the Lyapunov stability criteria and the recursive updating technique was proposed and
applied to a two-link direct drive robot [16]. In addition, a contour control strategy based on the
coordinate transformation was developed in [17].

The contour tracking problem for 2-DOF robots was discussed in [16–18], but there is no research
on cross-coupled contour tracking control for multi-DOF robot manipulators. The main motivation
of this research is to develop a contouring control system, called cross coupled PD (CC-PD) control,
for multi-DOF robot manipulators with the combination of joint error and contour error as the
feedback signals [19]. In the developed CC-PD control system, the contour errors in the end-effector
are transformed to the equivalent tracking errors in the joint level through the Jacobian regulation [10],
and the control law is implemented in the joint level to simplify the control system design and
its implementation.

2. Dynamic Model and New Cross-Coupled Control Law

In this section, the dynamic model of a multi-DOF robotic manipulator is presented, followed by
an introduction of the contour error and its calculation. Then a transformation method is presented to
transfer the contour error at the task level to the tracking error in the joint level. After that, the CC-PD
control law is proposed for contouring tracking.

2.1. Dynamic Model of Robotic Manipulator

The dynamic model of an n-DOF serial planar robotic manipulator with revolute joints can be
expressed as [20]:

M (q)
..
q (t) + C

(
q,

.
q
) .

q (t) + G (q) + F
( .
q
)
= τ (t) (1)

where q (t) ,
.
q (t) , and

..
q (t) are n × 1 joint position, velocity and acceleration vectors, defined as

functions of time; M (q) is the symmetric positive-definite n× n inertia matrix; C
(
q,

.
q
)

is an n× n
matrix of the Coriolis and centrifugal forces; G (q) is an n× 1 vector of gravity terms; F

( .
q
)

is an n× 1
vector of friction forces, and τ (t) is an n× 1 vector of joint torques/forces.

In this paper, some properties of a rigid nonlinear robotic manipulator [20] associated with
Equation (1) is used in the stability analysis and are described as follows.

(P1) The inertia matrix M (q) is symmetric positive definite.
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(P2) The matrix 1
2

.
M (q)− C

(
q,

.
q
)

is a skew symmetric matrix, i.e.,{
xT
( .

M (q)− 2C
(
q,

.
q
))

x = 0
.

M (q) = C
(
q,

.
q
)
+ CT (q,

.
q
)

(P3) The matrix C
(
q,

.
q
)

satisfies {
C (q, x) y = C (q, y) x
C (q, x + z) y = C(q, x)y + C(q, z)y

where x, y, and z are velocity vectors.

(P4) M (q), C
(
q,

.
qd
)
, G (q), and F

( .
q
)

are bounded.

2.2. Contour Error of End-Effector

To obtain accurate contour trajectories is a fundamental requirement for modern high precision
manufacturing. The contour error can be used to evaluate the quality of contour tracking, and it
is defined as an orthogonal component of the derivation of an actual contour from the desired one.
Figure 1 shows the relationship and difference between a tracking error and a contour error for an XY
planar contour.
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Figure 1. Tracking and contour errors for a planar contour.

Assume small joint errors are obtained during the contour tracking process, tracking errors in the
joint level and at the end-effector of an n-DOF serial planar robot can be calculated as follows:

eqi (t) = qid (t)− qi (t)

ex (t) = −
n
∑

i=1
li

i
∑

j=1
eqj (t)sin

(
i

∑
j=1

qj (t)

)

ey (t) =
n
∑

i=1
li

i
∑

j=1
eqj (t)cos

(
i

∑
j=1

qj (t)

) (2)

where qid (t) and li are the desired joint position and the length of link i, respectively.
For the purpose of online calculation of the contour error ec, the following simple formulae

presented in [1,2] is used in this paper. For a straight-line contour, the contour error ec can be
expressed as:

ec = −Cxex + Cyey with Cx = sinθ, Cy = cosθ (3)

where θ is the angle between the desired straight line and the X-axis, ex and ey are the tracking errors
of the end effector in the X and Y axes, respectively. It can be seen that the contour error coefficients Cx

and Cy are constant for linear contour tracking.
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On the other hand, for a circular contour, the contour error coefficients are not constant and can
be obtained by the following Equation [2]:

ec = −Cxex + Cyey with Cx = sinθ − ex

2R
, Cy = cosθ +

ey

2R
(4)

It should be mentioned that the angle θ is not constant but a variable for a circular contour, related
to the location of the desired circle contour.

2.3. Equivalent Tracking Error of Contour Error

As mentioned in the introduction section, the proposed contouring control law is implemented in
the joint level. Therefore, the contour error of the end-effector must be mapped to the joint tracking
error. A correlation between the joint space and the task space can be easily obtained by the following
forward kinematics of the robotic manipulator:

Pt = f (q) (5)

where f (q) is a nonlinear mapping function from joint space to task space through the forward
kinematics of the robotic manipulator. By differentiating Equation (5), the end-effector velocity is
related with the joint space velocity as:

.
Pt =

.
f (q) = J (q)

.
q (6)

where J(q) is the Jacobian matrix that transforms the vector of the generalized joint velocities to the
vector of the generalized end-effector velocities.

As pointed out in [10], the Jacobian transpose regulator and inverse Jacobian regulator are very
robust with respect to uncertainty in kinematic parameters. Transforming of control space is necessary
as the contour performance is measured in the task space but the driving actuators are controlled in
the joint space. Similar to the process discussed in [10], the following equation is used to build the
relationship of the errors between the task space and the joint space:{

eP = J (q) eq
.
eP = J (q)

.
eq +

.
J (q) eq

(7)

where eP =
[

ex ey eφ

]T
is the error vector in the task space and eq =

[
eq1 · · · eqn

]T
is the

error vector in the joint space, respectively.
As eφ does not affect the contour error according to Equation (3), submitting Equation (7) into

Equation (3), one can see that the contour error can be expressed as a function of the tracking errors in
the joint space as follows: ec =

[
−Cx Cy 0

]
eP =

[
−Cx Cy 0

]
J (q) eq

.
ec =

[
−Cx Cy 0

] .
eP =

[
−Cx Cy 0

] ( .
J (q) eq + J (q)

.
eq

) (8)

2.4. Cross-Coupled Contouring Controller

As mentioned before, PD control is very popular for robots in industrial applications. In this
paper, a cross-coupled contouring controller called CC-PD is proposed as follows:

τ = Kpeq + Kd
.
eq + Kcpec + Kcd

.
ec (9)
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where Kp and Kd are the proportional and derivative control gain matrices in the joint space; all these
matrices are assumed to be positive definite. Kcp and Kcd are the proportional and derivative control
vectors with positive values in the task space, respectively.

From Equation (9), one can see that the proposed CC-PD is a combination of PD control in the
joint space based on the tracking errors and PD control in the task space based on the contour errors.
The PD controller in the joint space is used to maintain the stability of the robotic system, while
the PD controller in the task space is used to reduce the contour errors. The goal for developing
such a combined controller is to improve tracking performances at the joint level and the contour
performances at the task level as well.

Based on the Jacobian regulation, applying Equation (8) into Equation (9), the proposed CC-PD
control law can be simplified as:

τ =
(
Kp + Kcp

)
eq +

(
Kd + Kcd

) .
eq (10)

with

 Kcp = Kcp

[
−Cx Cy 0

]
J (q) + Kcd

[
−Cx Cy 0

] .
J (q)

Kcd = Kcd

[
−Cx Cy 0

]
J (q)

(11)

According to Equations (10) and (11), it can be seen that the proposed CC-PD control law is
an equivalent nonlinear PD control in the joint level, as the Jacobian matrix is a nonlinear function of
the joint positions.

3. Stability Analysis

The following notations are introduced to facilitate the stability analysis. λm (A) and λM (A)

represent the smallest and the largest eigenvalues of a positive define matrix A. If a square matrix A is
positive definite, then it is denoted as A � 0; If a square matrix A− B is positive definite, then it is
denoted as A− B � 0.

For positive definite matrices, the following properties [21] will be used in this paper:

(P5) If A � 0, then A−1 � 0; If A ≥ B � 0, then B−1 ≥ A−1 � 0.
(P6) If A � 0 and B � 0, then A + B � 0, ABA � 0, and BAB � 0.

According to P2, we have:

C
(
q,

.
q
) .

qd = C
(
q,

.
qd
) .

q = C
(
q,

.
qd
) .

qd − C
(
q,

.
qd
) .

eq

= C0
.
qd − C0

.
eq

(12)

The dynamic model in Equation (1) can be rewritten as a function of the tracking errors in the
following form.

M (q)
..
eq + C

(
q,

.
q
) .

eq +
(
Kd + Kcd

) .
eq +

(
Kp + Kcp

)
eq = M (q)

..
qd + C

(
q,

.
q
) .

qd + G (q) + F
( .
q
)

(13)

By applying Equation (12), Equation (13) is represented as the following simple form.

M
..
eq + C

.
eq + C0

.
eq + Kdd

.
eq + Kppeq = ρ (14)

with


Kpp = Kp + Kcp

Kdd = Kd + Kcd
ρ = M

..
qd + C0

.
qd + G (q) + F

( .
q
) .

It is assumed that the control gain matrices are positive definite.
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Theorem 1. For an n-DOF serial robotic manipulator described in Equation (1), if the proposed CC-PD control
law in Equation (9) is applied to the system, the controlled robotic manipulator is globally stable for contouring
control with bounded tracking errors, provided that the following conditions in Equation (15) are satisfied.

Kd � 0, Kp � M � 0
Kpp � 0, Kdd � 0
Kdd + C0 −M � 0
Kp − Kpp + Kd − Kdd + CT − C0 � 0
λm (Kdd + C0 −M) > 1

2 λM
(
Kp − Kpp + Kd − Kdd + CT − C0

)
> 0

λm
(
Kpp

)
> 1

2 λM
(
Kp − Kpp + Kd − Kdd + CT − C0

)
> 0

(15)

where Kp and Kd are user-defined symmetric positive definite matrices.

Proof of Stability of CC-PD Controller

To prove the stability of the proposed CC-PD contouring controller, the Lyapunov theorem [20,22]
is used by defining the following Lyapunov function candidate as:

V =
1
2

[
eq

.
eq

]T
L

[
eq
.
eq

]
(16)

where L =

[
Kp + Kd M

M M

]
.

As matrices Kp, Kd, and M are symmetric positive definite, then matrix L is also symmetric. From
condition Equation (15) and property P5, it can be easily proven that:{

M−1 � K−1
p � 0

M−1 − K−1
p � 0

(17)

Applying property P6 to Equation (17), we have:

S = M−MK−1
p M � 0 (18)

From Equation (18), it can be seen that the Schur complement [21] S of matrix Kp in matrix L is
symmetric positive definite. According to the proposition introduced in [20,22], it is demonstrated that
matrix L is symmetric positive definite. In addition, the control gain matrix Kd is symmetric positive
definite. Therefore, the Lyapunov function V in Equation (16) is a positive definite function, i.e., V ≥ 0.

Differentiating Equation (16) with respect to time, we have:

.
V =

[
eq

.
eq

]T
[

Kp + Kd M
M M

] [ .
eq
..
eq

]
+

1
2

[
eq

.
eq

]T
[

0
.

M
.

M
.

M

] [
eq
.
eq

]
(19)

Substituting M
..
eq from Equation (14) into Equation (19) and using properties P2 and P3 yields

.
V = − .

eT
q (Kdd + C0 −M)

.
eq − eT

q Kppeq + eT
q

(
Kp − Kpp + Kd − Kdd + CT − C0

) .
eq +

(
eq +

.
eq
)T

ρ (20)

From Equation (15), it is easy to prove that

eT
q
(
Kp − Kpp + Kd − Kdd + CT − C0

) .
eq ≤

λM(Kp−Kpp+Kd−Kdd+CT−C0)
2

(
eT

q eq +
.
eT

q
.
eq

)
(21)

From property P4, it can be proven that parameter ρ is bounded with ρb (> 0) as the upper bound.
It means ρ ≤ ||M||||

..
qd|| + ||C0||||

.
qd|| + ||G (q)|| + ||F

(
q,

.
q
)
|| = ρb.
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Therefore, the following inequality is hold:(
eq +

.
eq
)T

ρ ≤
(
||eq|| + ||

.
eq||

)
ρb (22)

Substituting Equations (21) and (22) into Equation (20) yields

.
V = − .

eT
q

(
Kdd + C0 −M− λM(Kp−Kpp+Kd−Kdd+CT−C0)

2 I
)

.
eq

−eT
q

(
Kpp −

λM(Kp−Kpp+Kd−Kdd+CT−C0)
2

)
eq +

(
||eq|| + ||

.
eq||

)
ρb

(23)

According to Equation (15), it can be seen that
γe = λm

(
Kpp −

λM(Kp−Kpp+Kd−Kdd+CT−C0)
2 I

)
> 0

γ .
e = λm

(
Kdd + C0 −M− λM(Kp−Kpp+Kd−Kdd+CT−C0)

2 I
)
> 0

(24)

Applying Equation (24) into Equation (23) yields

.
V ≤ −γ .

e||
.
eq||2

+ ρb||
.
eq||− γe||eq||2 + ρb||eq|| (25)

For all positive parameters, the following inequalities hold: −γe||eq||2 + ρb||eq|| ≤ − γe
4 ||eq||2 + (ρb)

2

γe

−γ .
e||

.
eq||2

+ ρb||
.
eq|| ≤ − γ .

e
4 ||

.
eq||2

+ (ρb)
2

γ .
e

(26)

Substituting Equation (26) into Equation (25) yields

.
V ≤ −

γ .
e

4
||

.
eq||2 − γe

4
||eq||2 +

(
γe + γ .

e
γeγ .

e

)
(ρb)

2 (27)

From Equation (27), it immediately follows that

.
V < 0 , ∀


||eq|| > δe =

2ρb
γe

√(
γe+γ .

e
γ .

e

)
||

.
eq|| > δ .

e =
2ρb
γ .

e

√(
γe+γ .

e
γe

)
In other words, the time derivative of the Lyapunov function V is negative outside the compact

set Bδ =
{

||eq|| ≤ δe, ||
.
eq|| ≤ δ .

e
}

, or equivalently, all solutions that start outside of Bδ will re-enter
the compact set Bδ within a finite time, and will remain there afterward. According to the Lyapunov
theorem [22], the controlled robotic manipulator is globally uniformly bounded, and the bounded
tracking errors can be obtained as follows:

||eq|| ≤ 2ρb
γe

√(
γe+γ .

e
γ .

e

)
||

.
eq|| ≤ 2ρb

γ .
e

√(
γe+γ .

e
γe

) (28)

From Equation (28), it can be seen that the tracking errors are controlled by the proportional and
derivative gains. Generally speaking, a large control gain Kpp (that is the combination of proportional
gains in the joint space and the task space) will increase the value of γe, while a large control gain
Kdd (that is the combination of derivative gains in these two spaces) will increase the value of γ .

e.
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From Equation (28), it is concluded that increasing both control gains will reduce the tracking errors.
However, the control gains cannot be chosen too large concerning the vibration of the system caused
by the amplified noises and disturbances. Therefore, a try-and-error method is used to determine the
control gains in this paper.

4. Simulation Verification and Discussion

In this section, some simulation study results are presented to demonstrate the effectiveness of
the proposed CC-PD controller. A 3-DOF serial robotic manipulator shown in Figure 2, with structural
parameters listed in Table 1, is used for contour tracking control experiments. The configuration of
joints in this paper is in the vertical direction, and the dynamic model can be found in [23,24].
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Table 1. Structural parameters of a 3-DOF robotic manipulator.

Link i Mass mi (kg) Length li (m) Mass Center ri (m) Inertia Ii (kg·m2)

1 1.0 0.50 0.25 0.10
2 1.0 0.50 0.25 0.10
3 0.5 0.30 0.15 0.05

In the simulation study, the following friction model in the robot joints [25] is used:

F
( .
qi
)
=

[
Fc + Fse

−|
.
qi.
qs
|
α]

sign
( .
qi
)
+ Fv

.
qi (29)

where the friction parameters are selected as: Fc = 3.4× 10−2, Fs = 4.5× 10−2, Fv = 3.7× 10−4,
.
qs = 10.7, and α = 2.

4.1. Linear Motion Contour Tracking

In the first example, a linear motion of the end-effector, which is defined from point A (0.5, 0.0) to
point B (0.2, 1.0) with a constant orientation of π/3 for time duration of 4 s, is tracked for the 3-DOF
robotic manipulator. To form a smooth motion in each joint, the 5th order polynomial trajectories for
positions at the end-effector level are designed, and the inverse kinematics analysis is conducted to get
positions and velocities of the joints [20].

In all simulations for linear contour motions, the following control gains are selected based on
Equation (15) and through the trial-and-error method.{

Kp = diag (3000, 3000, 3000)
Kd = diag (2000, 2000, 2000)

and

{
Kcp = [750, 750, 750]T

Kcd = [500, 500, 500]T
(30)
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Figure 3 shows the simulation results for tracking errors, controlled torques, and tracking errors
and contour errors in the end-effector under PD control and CC-PD control, respectively. From Figure 3,
one can see that the overall trajectory tracking and contour tracking performances in the task space,
as shown in Figure 3c, are better controlled by the proposed CC-PD control than those controlled
by the PD control, although the required control torques under these two control laws are very
similar, see Figure 3b, and the overall tracking errors in the joint space under PD control are slightly
smaller than those under CC-PD control, especially for joints 2 and 3, see Figure 3a. It demonstrates
the effectiveness of the cross-coupled control action in the CC-PD control law for contour tracking
performance improvement at the end-effector level.
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To exam the effect of the cross-coupled gains (Kcp and Kcd) on contour tracking performance
improvement, different factors for CC control gains are selected and simulations are conducted.
Figure 4 shows the contour tracking results for different cross-coupled gains for the factors from 0 to
4 (×0 to ×4), where CC-PD (×0) represents the PD control, and ×4 means the CC control gains are
increased to four times of the original CC gains in Equation (30). From this figure, it is clearly shown
that the improvement trends of contour tracking performances with the increase of the CC control
gains. This result is coincident with the theorem and the analysis conducted in the previous section.
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Figure 4. Contour tracking performance improvement for linear motion under different CC gains.

The second example is the contour tracking of a vertical line in the end-effector level. The vertical
line is defined from C (0.5, 0) to D (0.5, 0.6) with a varying orientation from 0 to pi/4, and is tracked
under the same control gains in Equation (30). Figure 5 shows the simulation results for the tracking
errors in the joint level and the end-effector level under PD and CC-PD control, respectively. Compared
the tracking error results for PD and CC-PD control shown in Figure 5b, one can see that the CC-PD
control also obtained a better contour tracking performance (black dashed lines) in the end-effector,
even compatible tracking errors were obtained in the joint level for both PD and CC-PD control, shown
in Figure 5a. From this example and the previous example, one can see the suitability of the same
control gains for different tracking problems.

Figure 6 shows the contour tracking performance improvement at the end-effector level for the
vertical line under different CC control gains. Once again, it demonstrates that the larger the CC
control gains, the smaller the contour errors. The maximum contour error is about 1.3 × 10−3 m when
only the PD control is used (CC-PD (×0)), while the maximum contour errors are about 0.95 × 10−3 m,
0.75 × 10−3 m, and 0.55 × 10−3 m for CC-PD control with original CC gains, doubled CC gains, and
quadrupled CC gains, respectively.
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Figure 5. Tracking control results for a vertical line under PD and CC-PD control; (a) Tracking errors in
joint space for PD control and CC-PD control; (b) Controlled torques for PD control and CC-PD control;
(c) Tracking and contour errors of the end-effector for PD control and CC-PD control.
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4.2. Circular Contour Tracking

Circular contour tracking control is more complicated than the linear contour tracking because of
the nonlinear property of the contour error coefficients in Equation (4). In this simulation, a circular
contour with a radius of 0.6 m and the center at (0, 0) is tracked in 10 s, using the same control gains
listed in Equation (30).

Figure 7 presents the comparison results based on PD and CC-PD control laws. Figure 7a shows
the tracking errors in the joint space, Figure 7b is the corresponding controlled torques, and Figure 7c
is the tracking and contour errors at the end-effector under PD and CC-PD control, respectively.
The maximum contour errors are 8.8× 10−4 m under PD control and 7.0× 10−4 m under CC-PD control.
It is shown that, under very similar controlled torques shown in Figure 7b, the CC-PD control obtained
better contour tracking performance than the PD control, even in a degraded tracking performance
for joint 3 compared with the counterpart of the PD control, as shown in Figure 7a. Therefore,
the effectiveness of the proposed CC-PD control is verified for complex contour tracking problems.
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To test the effort of the CC control gains on the contour tracking performance improvement for
circular motions, different factors are used with varying CC gains and the contour tracking results are
shown in Figure 8 where the red curve CC-PD (×0) represents the PD control contour error. It also
shows that, with the increase of the CC control gains, the maximum contour errors become smaller
and smaller, resulting in a similar conclusion obtained in linear contour tracking control.
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To verify the effect of the control gains on the contour tracking performance improvement, high
control gains with a factor of 10 are used for both PD and CC-PD control in the circular contour tracking
example, and Figure 9 shows the contour errors for both control laws. Compared with Figure 8, one can
see that the contour errors are reduced around 10 times when the control gains are increased 10 times.
It demonstrates that the control gains have significant contributions for contouring control, and it
proves the theorem developed in this paper.
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4.3. Discussions

In all the simulation studies, the same control gains were used for contour tracking of both linear
and nonlinear contours; good tracking performances were obtained for PD and CC-PD control, and
better contour tracking performances were obtained by CC-PD control. Such results demonstrated the
effectiveness of the CC-PD control and the simplicity of choosing control gains in the implementation.
In addition, simulation results also proved that large control gains will reduce the contour errors that
are coincident with the theorem proposed in this paper. Of course, in order to obtain good tracking
performances for different contours, tuning the control gains properly will be a good practice.
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It should be mentioned that the same PD control gains were used for both PD and CC-PD control
in the simulations, which is a simplification process for the purpose of comparison study. In order to
pursuit a comprehensive and fair comparison between PD control and CC-PD control, it is necessary to
use some artificial intelligent algorithms such as GA, PSO, and DE [26,27] to optimize the control gains
based on contour tracking performances and the bounded control torques, and that will be a desired
future research work.

In this paper, only the linear and circular contours were tracked under the PD and CC-PD control
laws. Theoretically, if the contour error estimation methods in [28,29] are used to replace Equation (4),
the proposed CC-PD control can be applied to free-path contour tracking problems, and that will
be a future research work. Additionally, this proposed control method can be applied in position
domain [30,31] for contour tracking performance improvement.

5. Conclusions

Contour tracking control is one of the most important tasks for motion control of the end-effector
of a robotic manipulator. In this paper, a cross-coupled contouring control called CC-PD control
was proposed for linear and nonlinear contour tracking control to a multi-DOF robotic manipulator.
The proposed CC-PD control consists of a PD control in joint level for system stability and a PD
contour control at the end-effector for contour tracking performance improvement. Based on the
Jacobian regulation, the contour error was mapped to the joint tracking errors and the CC-PD control
is implemented at the joint level.

Stability analysis was conducted for the proposed CC-PD control and simulation verification
study was performed. It is demonstrated that the CC-PD control is better than the PD control in terms
of the reduction of contour errors at the end-effector level for linear and nonlinear contour cases. It also
shows that the contour tracking performance can be improved with the increase of cross-coupled
control gains. More complicated contour tracking control and the optimization of control gains for the
proposed CC-PD control are some of the future work.
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