

  A Two-Stage Method to Test the Robustness of the Generalized Approximate Message Passing Algorithm




A Two-Stage Method to Test the Robustness of the Generalized Approximate Message Passing Algorithm







Algorithms 2016, 9(4), 79; doi:10.3390/a9040079




Article



A Two-Stage Method to Test the Robustness of the Generalized Approximate Message Passing Algorithm



Qingshan You, Yongjie Luo and Qun Wan *





School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China









*



Correspondence: Tel.: +86-28-61830358







Academic Editor: Bruno Carpentieri



Received: 11 October 2016 / Accepted: 17 November 2016 / Published: 22 November 2016



Abstract:



We propose a two-stage method to test the robustness of the generalized approximate message passing algorithm (GAMP). A pursuit process based on the marginal posterior probability is inserted in the standard GAMP algorithm to find the support of a sparse vector, and a revised GAMP process is used to estimate the amplitudes of the support. The numerical experiments with simulation and real world data confirm the robustness and performance of our proposed algorithm.
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1. Introduction


Compressed sensing (CS) has been a research focus in recent years [1]. Given the support of an unknown K-sparse vector [image: there is no content] as [image: there is no content], we consider an under-determined noisy linear system


[image: there is no content]



(1)




where [image: there is no content] is a compressed sampling observation, [image: there is no content] is an additive Gaussian noise, [image: there is no content] is the sensing matrix. The object is to reconstruct [image: there is no content] from [image: there is no content] and [image: there is no content]. There are many reconstruction algorithms to solve the CS problem. The message passing based methods, including approximate message passing (AMP) algorithm [2] and generalized approximate message passing (GAMP) algorithm [3], have remained the most efficient ever since they were proposed. They work very well in the zero-mean Gaussian sensing matrix case, but become unstable and divergent in the more general sensing matrix case. For example, although an improvement to the non-zero mean Gaussian sensing matrix case has in a sense been proposed [4], the highly columns-correlated non-Gaussian sensing matrix case is still a problem. We propose a new GAMP-like algorithm, termed Bernoulli-Gaussian Pursuit GAMP (BGP-GAMP), to raise the robustness of standard GAMP algorithm. Our algorithm firstly utilizes the marginal posterior probability of [image: there is no content] to sequentially find the support S, and then estimates the amplitudes on S by a tiny revised GAMP algorithm, termed Fixed Support GAMP (FS-GAMP) which has been proposed in our previous work [5]. A recent work has been proposed by Rodger [6], which is similar to our work, but gives another viewpoint from a neural network statistical model. The numerical experiments verify our idea and show a good performance and robustness.



The rest of this paper is organized as follows. Firstly, we review the standard GAMP, especially Bernoulli-Gaussian prior GAMP, algorithm in Section 2. Secondly, we propose the FsGAMP and BGP-GAMP algorithms in Section 3 and Section 4, respectively. Thirdly, experiments are conducted in Section 5. Finally, we draw a conclusion in the last section.




2. GAMP Algorithm Review


The GAMP algorithm can be classified to minimum mean error estimation form (MMSE-GAMP) and maximum posterior estimation form (MAP-GAMP) [3]. We restrict our attention to MMSE-GAMP, since the problems in the real world are noisy, such that the posterior function has a very complex shape with details which depend on the observation [image: there is no content]. However, MMSE is robust to such fluctuations.



Firstly, GAMP algorithm approximates the true marginal posterior [image: there is no content] by the output channel marginal posterior


[image: there is no content]



(2)




where [image: there is no content] is the estimation of [image: there is no content] condition on the observation [image: there is no content], and [image: there is no content] is the likelihood of the output channel [image: there is no content]. It is worth noting that [image: there is no content] means a noise, a random variable, and it corresponds to the estimated random variable [image: there is no content], instead of the original noise [image: there is no content] in Equation (1). Therefore, [image: there is no content] is the residual after estimation of [image: there is no content]. The iterative algorithm computes the conditional mean and variance of [image: there is no content]. We want to obtain the posterior mean and variance estimates


E{zm|pm=p^m,νmp}=∫zmpzm|pm(zm|p^m,νmp)dzm



(3)






var{zm|pm=p^m,νmp}=∫(zm−E{zm|pm=p^m,νmp})2pzm|pm(zm|p^m,νmp)dzm.



(4)







Secondly, GAMP algorithm approximates the true marginal posterior [image: there is no content] by the input channel marginal posterior


[image: there is no content]



(5)




where [image: there is no content] is the prior of random variable [image: there is no content] in the input channel [image: there is no content]. We want to obtain the posterior mean and variance estimates


E{xn|rn=r^n,νnr}=∫xnpxn|rn(xn|r^n,νnr)dxn



(6)






var{xn|rn=r^n,νnr}=∫(xn−E{xn|rn=r^n,νnr})2pxn|rn(xn|r^n,νnr)dxn.



(7)







GAMP algorithm is an intrinsic parallel computing process, since it decouples [image: there is no content] to the input channel [image: there is no content] estimation and the output channel [image: there is no content] estimation. According to the factor graph theory, the messages are probability measures. They can be classified to two types: from the variable node to the factor node, and from the factor node to the variable node. For AMP and GAMP algorithms, all the messages are passed simultaneously between the factor nodes and variable nodes along the edges on the factor graph. These probability measures can be approximated as Gaussian density, based on the derivation of AMP and GAMP algorithms. Therefore, the mean and variance of every entry of [image: there is no content] are i.i.d. Gaussian random variable. This intrinsic parallel computing implies a flaw: if [image: there is no content] does not satisfy restricted isometry property (RIP) very well, For example [image: there is no content] has highly correlated columns, GAMP will diverge. In real world problems, such as radar application, the sensing matrix [image: there is no content] may be deterministic, not statistics. Therefore the RIP analysis can not be applied to this situation, researchers use simulation to find the behavior of this kind of reconstruction. We will show it in Section 5.



The steps of GAMP are listed in Algorithm 1, where [image: there is no content] is a componentwise magnitude squared, the elementwise product and division are denoted as ⊙ and ⊘, respectively, notation [image: there is no content] means the componentwise form of a vector, e.g., [image: there is no content], and notation [image: there is no content] means the cardinality of a set, or the number of non-zero elements of a sparse vector.








	Algorithm 1: Generalized Approximate Message Passing (GAMP).



	 Input: [image: there is no content]

 Description: [image: there is no content]

	1:

	
[image: there is no content]




	2:

	
repeat




	3:

	
 [image: there is no content]




	4:

	
 [image: there is no content]




	5:

	
 z^(t)←[z^m(t)],wherez^m(t)≜E{zm|pm=p^m(t),νmp(t)}




	6:

	
 νz(t)←[νmz(t)],whereνmz(t)≜var{zm|pm=p^m(t),νmp(t)}




	7:

	
 [image: there is no content]




	8:

	
 [image: there is no content]




	9:

	
 [image: there is no content]




	10:

	
 [image: there is no content]




	11:

	
 x^(t+1)←[x^n(t+1)],wherex^n(t+1)≜E{xn|rn=r^n(t),νnr(t)}




	12:

	
 νx(t+1)←[νnx(t+1)],whereνnx(t+1)≜var{xn|rn=r^n(t),νnr(t)}




	13:

	
until Terminated












When the prior is a Bernoulli-Gaussian distribution [7]


[image: there is no content]



(8)




where λ is the sparsity-rate [image: there is no content], and the mean θ and variance [image: there is no content] are hyper-parameters which are set to zero and one respectively at the initiation and those parameters do not change in the algorithm running time. It is called BG-GAMP algorithm. One can obtain the input channel marginal posterior


[image: there is no content]



(9)






=(1−πn)δ(xn)+πnN(xn;γn,μn)



(10)




with the normalization factor


[image: there is no content]



(11)




and [image: there is no content]-dependent variables


[image: there is no content]



(12)






[image: there is no content]



(13)






[image: there is no content]



(14)




where [image: there is no content] is the input channel marginal posterior support probability [image: there is no content], according to Equation (10), and then [image: there is no content]. Substituting Equation (10) to Equations (6) and (7), we have


[image: there is no content]



(15)






[image: there is no content]



(16)







The hypothesis of Bernoulli-Gaussian data [image: there is no content] is sparse. Sparsity-rate λ has been set to [image: there is no content]. Although the sparsity K is unknown in practice, we can choose a small K value and an error bound, and then we do the recovery algorithm. If the recovery result makes the final reconstruction error lower than the bound, this result can be accepted, otherwise we decrease the K value and do the recovery again until the bound has been achieved. This procedure is like the Least Angle Regression (LARS) algorithm which tests all the regularization hyper-parameters.




3. Fixed Support GAMP Algorithm


According to the belief propagation theory, if the number of cycles on a factor graph is low, then the robustness of message passing will be enhanced [8]. Therefore, we have an idea that the message passing can be restricted just on the support Λ if Λ has been determined in some way. That is the meaning of FS-GAMP. The steps of FS-GAMP are listed in Algorithm 2. It is very similar to the GAMP algorithm, but the major difference between FS-GAMP and GAMP is that the entries which do not belong to the support Λ are assigned to 0 directly.








	Algorithm 2: Fixed Support GAMP (FS-GAMP).



	 Input: [image: there is no content]

 Description: [image: there is no content]

	1:

	
[image: there is no content]




	2:

	
repeat




	3:

	
 [image: there is no content]




	4:

	
 [image: there is no content]




	5:

	
 {(line 5)–(line 8) of GAMP}




	6:

	
 [image: there is no content]




	7:

	
 [image: there is no content]




	8:

	
 x^Λ(t+1)←[x^i(t+1)],wherei∈Λ,x^i(t+1)≜E{xi|ri=r^i(t),νir(t)}




	9:

	
 νΛx(t+1)←[νix(t+1)],wherei∈Λ,νix(t+1)≜var{xi|ri=r^i(t),νir(t)}




	10:

	
until













4. Bernoulli-Gaussian Pursuit GAMP Algorithm


The hypothesis of FS-GAMP algorithm is a known support Λ, but we do not know it. Now back to BG-GAMP, Equations (15) and (16) use the marginal posterior probability [image: there is no content] to weight the non-zero estimation part [image: there is no content] and the zero prior part θ. At each iteration of BG-GAMP, when [image: there is no content] is greater than zero-one switch threshold [image: there is no content], the non-zero estimation part takes over the major contribution. In this research we suppose that the non-zero prior probability of every entry in [image: there is no content] is [image: there is no content]. That implies the maximal entropy assumption. Therefore, the zero-one switch threshold is also set to [image: there is no content] in accordance with the maximal entropy assumption. For a matrix which does not meet RIP conditions very well, we observe that the mean and the variance of one [image: there is no content] entry shows no sign of convergence, while some entries’ [image: there is no content] already increase fast. When they are greater than ζ, the means and the variances of these entries also show no sign of convergence. This phenomenon spreads to more and more entries, causing all entries to be totally diverged.



This observation inspires us to maintain the current computing status until one [image: there is no content] entry has converged, and then continue the next entry (or entries). In other words, we introduce a pursuit process of lines (4)–(6) in Algorithm 3 to sequentially find the support of [image: there is no content], and then estimate the amplitudes on this support by FS-GAMP. BGP-GAMP means BG-GAMP with an intrinsic pursuit process. The steps of BGP-GAMP are listed in Algorithm 3. Note that the initial input parameters of FS-GAMP in line (7) are the output parameters of GAMP in line (3).



The computational complexity of GAMP part in BGP-GAMP algorithm is the same as the standard GAMP, that is [image: there is no content], at each iteration. The computational complexity of the FS-GAMP part in BGP-GAMP is [image: there is no content] at each iteration. Because [image: there is no content], the computational complexity of BGP-GAMP at each iteration is less than [image: there is no content].








	Algorithm 3: Bernoulli-Gaussian Pursuit GAMP (BGP-GAMP).



	 Input: [image: there is no content]

 Description: [image: there is no content]

	1:

	
[image: there is no content] Ø




	2:

	
repeat




	3:

	
 {(line 3)–(line 12) of GAMP}




	4:

	
 [image: there is no content], where [image: there is no content] obtained from (12)




	5:

	
 [image: there is no content]




	6:

	
 [image: there is no content]




	7:

	
 {FS-GAMP}




	8:

	
until Terminated.













5. Experiments


We investigate the performance of BGP-GAMP by three experiments. Four benchmark algorithms are adopted to compare with BGP-GAMP. Orthogonal matching pursuit (OMP) [9] and basis pursuit (BP) by interior point method to solve linear programming [10] are the most robust [image: there is no content] and [image: there is no content] optimization algorithms, other algorithms (old or new) are weaker than them in robustness. AMP and GAMP are not only the root cause of the robust problem, but also the basis of our method. The implementation of OMP comes from (http://www.cmc.edu/pages/faculty/DNeedell), BP comes from l1magic (http://users.ece.gatech.edu/justin/l1magic), AMP comes from Kamilov’s work (http://people.epfl.ch/ulugbek.kamilov) and GAMP comes from gamplab (http://eeweb.poly.edu/srangan/index.html).



We do [image: there is no content] trials in each experiment, and use the relative mean square error (RMSE) [image: there is no content] as the performance metric. Given [image: there is no content], we set [image: there is no content], and then [image: there is no content]. Choose K locations at random as the support of [image: there is no content], and the amplitude of each non-zero entry [image: there is no content] is independently drawn from [image: there is no content]. We set the signal-to-noise ratio (SNR) to 25 dB.



The first experiment, termed γ test, investigates non-zero mean Gaussian sensing matrix case. We create two types of sensing matrix: type 1 means [image: there is no content]; type 2 means [image: there is no content], where each entry of [image: there is no content] is i.i.d. drawn from [image: there is no content]. Set the range of γ to [image: there is no content]. Figure 1a shows that GAMP violently diverges at [image: there is no content], AMP fast diverges at [image: there is no content]. The severely sharp divergence of GAMP and AMP comes from the phase transition property of compressed sensing. Although BGP-GAMP also begins to diverge at [image: there is no content], the deterioration speed is slower than AMP. Furthermore, the RMSE of BGP-GAMP is always less than that of AMP. When [image: there is no content], the RMSE of BGP-GAMP is a little less than that of OMP, and when [image: there is no content], the RMSE of BGP-GAMP is obviously less than that of BP. Figure 1b shows that AMP violently diverges at [image: there is no content], GAMP violently diverges at [image: there is no content], but BGP-GAMP just begins to diverge at [image: there is no content]. The RMSE of BGP-GAMP is always less than that of BP, and less than that of OMP until [image: there is no content]. Moreover, Figure 1a,b shows that BGP-GAMP outperforms OMP slightly in performance over a parameter range [image: there is no content]. In summary, our proposed algorithm obtains better robustness compared with the standard AMP/GAMP algorithms, at the same time our proposed algorithm achieves performance advantage over a suitable parameter range compared with the standard OMP and BP algorithms.


Figure 1. Reconstruction performance comparison of the Non-zero mean sensing matrix. (a) Type-1 sensing matrix; (b) Type-2 sensing matrix.



[image: Algorithms 09 00079 g001]






The second experiment, termed α test, investigates the highly correlated columns sensing matrix [image: there is no content] case. The elements of [image: there is no content] are neither normal nor i.i.d distributed. Create two types of sensing matrix: type 1 means [image: there is no content], where [image: there is no content], and [image: there is no content]; type 2 means [image: there is no content] like type 1, but normalizes each column of [image: there is no content]. We know that [image: there is no content] is low rank for [image: there is no content]. Set the range of α to [0.20.3⋯1.0]. Since GAMP totally diverges at every α with type 1 and type 2 cases, it is not visible in Figure 2a,b. AMP also totally diverges at every α with type 2 case, therefore it is also not visible in Figure 2b. The two figures show that BGP-GAMP remains stable even in a low rank scenario [image: there is no content], and its performance is obviously better than AMP and BP, and a little better than OMP.


Figure 2. Reconstruction performance comparison of the highly column correlations sensing matrix. (a) Type-1 sensing matrix; (b) Type-2 sensing matrix.



[image: Algorithms 09 00079 g002]






It is worth noting that the threshold [image: there is no content] in Figure 1 and Figure 2 is the relative mean square error, not absolute mean square error, which means the average error amplitude is just [image: there is no content] of the original signal amplitude. These figures show, for instance, that the standard AMP algorithm and BP algorithm are approaching this threshold. Therefore, it is not a poor performance. We do not consider MAP-GAMP since MAP estimation is not general as MMSE estimation, please see [11] Section 3.6.3 for more discussion.



The last experiment uses real world data, namely, a segment of music by Mozart. The data has 81,000 sample points, and it is segmented to 54 blocks, each block has [image: there is no content] sample points. The compressed sampling rate is set to [image: there is no content], therefore, the measurement number is [image: there is no content]. We create the sensing matrix by DCT transform: [image: there is no content], where every element of Φ is drawn from [image: there is no content], and then multiplied a scale factor [image: there is no content] to it. Figure 3a shows the modulus of DCT coefficients of the original signal, and Figure 3b shows the modulus of DCT coefficients of the recovered signal. We can see that the major energy has been recovered from the compressed measurements.


Figure 3. Recover the audio signal by Bernoulli Gaussian Pursuit GAMP. (a) Spectra of the original signal; (b) Spectra of the recovered signal, major signal energy has been restored but lost some detail.



[image: Algorithms 09 00079 g003]







6. Conclusions


In this paper we propose a new compressed sensing algorithm, the two-stage method. This algorithm pursues the support of a sparse vector sequentially, an meanwhile estimates the amplitudes of the sparse vector by the FS-GAMP process. Numerical experiments with simulation and real world data confirm that our new algorithm performs very well in correctness and robustness. In future work we plan to analyze the variation rate of the marginal posterior probability π to obtain better results.
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