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Abstract: In this paper, a reweighted sparse representation algorithm based on noncircular sources
is proposed, and the problem of the direction of arrival (DOA) estimation for multiple-input
multiple-output (MIMO) radar with mutual coupling is addressed. Making full use of the special
structure of banded symmetric Toeplitz mutual coupling matrices (MCM), the proposed algorithm
firstly eliminates the effect of mutual coupling by linear transformation. Then, a reduced dimensional
transformation is exploited to reduce the computational complexity of the proposed algorithm.
Furthermore, by utilizing the noncircular feature of signals, the new extended received data matrix is
formulated to enlarge the array aperture. Finally, based on the new received data, a reweighted matrix
is constructed, and the proposed method further designs the joint reweighted sparse representation
scheme to achieve the DOA estimation by solving the l1-norm constraint minimization problem.
The proposed method enlarges the array aperture due to the application of signal noncircularity,
and in the presence of mutual coupling, the proposed algorithm provides higher resolution and
better angle estimation performance than ESPRIT-like, l1-SVD and l1-SRDML (sparse representation
deterministic maximum likelihood) algorithms. Numerical experiment results verify the effectiveness
and advantages of the proposed method.

Keywords: multiple-input multiple-output radar; direction of arrival estimation; mutual coupling;
reweighted sparse representation; noncircular signal

1. Introduction

With orthogonal transmitted waveforms, multiple-input multiple-output (MIMO) radar has
drawn increasing attention in the field of wireless communications. Compared with the conventional
phased-array radar, MIMO radar owns a number of advantages, such as higher resolution and better
parameter identifiability [1]. In addition, MIMO radar can be classified into the following two types:
statistical MIMO radar and colocated MIMO radar. Colocated MIMO radar can achieve more degrees
of freedom and higher spatial resolution, because its closely-spaced antennas form a virtual array with
a large aperture. Colocated MIMO radar includes the monostatic one and the bistatic one. In bistatic
MIMO radar, the transmit array and the receive array are separated away, while they are close to
each other in monostatic MIMO radar. In this paper, the angle estimation problem is investigated in
monostatic MIMO radar.

Algorithms 2016, 9, 61; doi:10.3390/a9030061 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms


Algorithms 2016, 9, 61 2 of 14

Parameter estimation is an important aspect in wireless communications and sensor array signal
processing [2]. In order to estimate the direction of arrival (DOA), a large number of subspace-based
algorithms have been proposed [3–5]. Recently, the emerging sparse representation (SR) and
compressed sensing (CS) have attracted more and more attention in various fields [6–8], such as
sensor array signal processing, imaging and image processing, and so forth. Furthermore, it has
been verified that SR-based DOA estimation algorithms have remarkable advantages over other
methods [9], for instance they adapt better to challenging circumstances and provide higher angle
resolution. A few SR-based algorithms, such as l1-SVD (singular value decomposition) [9] and
l1-SRACV (array covariance vectors) [10], have been proposed via sparse signal recovery. In [11],
based on the array covariance vector, the revised real-valued (RV) l1-SVD approach has better DOA
estimation performance and lower computation burden than l1-SVD [9] and RV l1-SVD [12].

However, in practical situations, the sensor array manifold is often affected by the errors of
unknown mutual coupling. When they are taken into account, the DOA estimation performance
of the above-mentioned methods is seriously degraded. With mutual coupling, the subspace-based
MUSIC-like (multiple signal classification-like) [13] algorithm is proposed. Besides, a ESPRIT-like
(estimation of signal parameters via rotational invariance techniques-like) algorithm is presented
in [14], which owns a low calculation burden. In [15], the SR-based revised l1-SVD algorithm eliminates
the errors of mutual coupling, and it achieves angle estimation by solving the problem of the l1-norm
constraint minimization. In [16], in the presence of mutual coupling, by introducing the refined
deterministic maximum likelihood (DML) procedure, a covariance vector-based sparse representation
algorithm is proposed with outstanding angle estimation performance. We call the method in [16]
l1-SRDML (sparse representation deterministic maximum likelihood).

In practical communication systems and radar applications, the complex noncircular sources are
widely used, such as binary phase shift keying (BPSK), multiple amplitude shift keying (MASK) and
unbalanced quadrature phase shift keying (UQPSK) modulated signals [17]. Noncircular signals can
be used to enlarge the array aperture without extra antennas, which contributes to the improvement of
angle estimation performance [18]. Exploiting the signal noncircularity, some subspace-based methods
have been developed for angle estimation in MIMO radar [17,19,20]. They have verified that compared
with traditional subspace-based algorithms, the methods that are based on noncircular signals can
achieve better DOA estimation performance. However, these subspace-based approaches do not
take the errors of unknown mutual coupling into account. Moreover, they perform poorly when
experiencing challenging circumstances, such as fewer snapshots, which can be solved by sparse
representation-based methods. For DOA estimation in MIMO radar with mutual coupling, to the best
of our knowledge, up to now, there are no references about SR-based methods that exploit the signal
noncircularity to extend the virtual array. Consequently, utilizing noncircular sources and the sparse
representation framework, we aim to eliminate the effect of mutual coupling and then achieve a better
DOA estimation.

In this paper, by using the noncircular signals, we propose a sparse representation-based DOA
estimation algorithm in MIMO radar with mutual coupling. The new method firstly eliminates the
effect of mutual coupling by extracting the information of mutual coupling coefficients into a diagonal
matrix. Secondly, based on the reduced dimensional transformation and the characteristics of signal
noncircularity, the new extended received data matrix is formulated to enlarge the array aperture.
Finally, a reweighted matrix is constructed, based on which a joint reweighted l1-norm minimization
sparse representation framework is designed to obtain the DOAs. In the presence of mutual coupling,
the proposed algorithm performs better than the conventional algorithms on account of the error
elimination and the application of noncircular signals.
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The rest of this paper is organized as follows. In Section 2, the MIMO radar system model
with mutual coupling and noncircular signals is described. In Section 3, the implementation process
of the proposed method is described in detail, including mutual coupling elimination, noncircular
signal-based extended matrix construction and the joint reweighted sparse representation-based
DOA estimation scheme. In Section 4, we give some related remarks and discussions regarding the
parameter setting and the computational complexity of the proposed method. Then, in Section 5,
simulations are implemented to verify the efficiency and the advantages of the proposed method.
Finally, our conclusions are summarized in Section 6.

Notation: (·)H, (·)T, (·)∗, (·)−1, E(·) and det(·) denote conjugate-transpose, transpose, conjugate,
inverse, expectation and determinant operators, respectively. ⊗ and � denote the Kronecker product
and the Khatri–Rao product, respectively. IK denotes a K× K dimensional unit matrix. ‖ · ‖1, ‖ · ‖2

and ‖ · ‖F denote the l1-norm, the l2-norm and the Frobenius-norm, respectively. diag(·) denotes the
diagonalization operation.

2. Problem Formulation

2.1. MIMO Radar System Model with Mutual Coupling

Consider a narrowband monostatic MIMO radar system, shown in Figure 1, whose transmit and
receive arrays are both half-wavelength d spaced uniform linear arrays (ULAs). In the transmit array,
M antennas transmit M orthogonal noncircular waveforms, such as BPSK modulated signals. In the
receive array, N antennas are impinged by P uncorrelated targets that can be deemed as point scatterers
in the far-field. Different from the mutually-separated arrays in bistatic MIMO radar, the transmitter
and the receiver are closely located in monostatic radar, as shown in Figure 2. Since the transmit array
and the receive array are collocated at the same site in monostatic MIMO radar systems [17], the echo
signal travels the same path as the transmitted signal. Therefore, for the p-th target, the directions
of departure of the transmitted signal and arrival of the echo from the target are the same [21],
i.e., θDOD = θDOA, both of which are denoted as DOA θp, p = 1, 2, . . . P. When mutual coupling is
taken into account in both the transmit array and the receive array, at the receiver, the output of the
matched filters at a certain snapshot is given by [16]:

x(t) = Ãs(t) + n(t) (1)

where x(t) ∈ CMN×1 is the received data vector, s(t) = [s1(t), s2(t), . . . , sP(t)]T ∈ CP×1 is the
complex-valued noncircular signal vector and n(t) ∈ CMN×1 is the additional Gaussian noise vector
with zero-mean and covariance matrix σ2IMN , in which σ2 is the noise power. Meanwhile, the detailed
expression of Ã is [14]:

Ã = [Ctat(θ1)⊗Crar(θ1), . . . , Ctat(θP)⊗Crar(θP)]

= (Ct ⊗Cr)[at(θ1)⊗ ar(θ1), . . . , at(θP)⊗ ar(θP)]
(2)

where Ã ∈ CMN×P, at(θp) = [1, ejπ sin(θp), ejπ2 sin(θp), . . . , ejπ(M−1) sin(θp)]T is the transmit steering vector
and ar(θp) = [1, ejπ sin(θp), ejπ2 sin(θp), . . . , ejπ(N−1) sin(θp)]T is the receive steering vector, p = 1, 2, . . . P.
Ct and Cr are mutual coupling matrices of the transmit array and the receive array, respectively. Ct

and Cr can be modeled as banded symmetric Toeplitz matrices, which are expressed as [22–24]:
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Ci =



ci0 ci1 · · · cik · · · 0

ci1 ci0 ci1 · · · . . .
...

... ci1 ci0
. . . . . . cik

cik · · · . . . . . . ci1
...

...
. . . · · · ci1 ci0 ci1

0 · · · cik · · · ci1 ci0


(3)

where i = t, r, cij is the non-zero mutual coupling coefficient, j = 0, 1, ..., k. In Figure 1, the coupling
effects of the m-th and the n-th elements in the transmit and the receive arrays are described,
respectively. β(m,q) is the coupling contribution from the q-th to the m-th elements in transmit array,
and β̄(n,q′) is the contribution from the q′-th to the n-th elements in the receive array, 1 ≤ m ≤ M,
1 ≤ n ≤ N, and |q−m| ≤ k, |q′ − n| ≤ k. β(m,q) and β̄(n,q′) contain the information of ct|q−m| and
cr|q′−n|, respectively. Mutual coupling coefficients are factors related to the distance between the two
antennas [23], and for the k + 1 non-zero coefficients, they satisfy 0 < |cik| < ... < |ci1| < |ci0| = 1.
Besides, for the ULA coupling model, just a few mutual coupling coefficients are non-zero ones [22–24],
and without loss of generality, 2k < min{M, N} is assumed. Then, by collecting J snapshots,
the received data in MIMO radar with mutual coupling is represented as follows:

X = CAS + N (4)

where X ∈ CMN×J is the data matrix, C = (Ct ⊗Cr) ∈ CMN×MN is the transmit-receive
mutual coupling matrix. A = [a(θ1), . . . , a(θP)] ∈ CMN×P is the steering matrix, with the
steering vector a(θp) = at(θp) ⊗ ar(θp), p = 1, 2, . . . P. S = [s(t1), . . . , s(tJ)] ∈ CP×J and
N = [n(t1), . . . , n(tJ)] ∈ CMN×J are the noncircular signal matrix and the complex Gaussian white
noise matrix, respectively.

...... ... ...

... ... ... ...
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Figure 1. Configuration of MIMO radar in the presence of mutual coupling.
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Figure 2. Difference between monostatic MIMO radar and bistatic MIMO radar.

2.2. Noncircular Signals

For complex random variables and vectors, circularity is an important property [18]. Making full
use of the properties of noncircular signals, the array aperture can be enlarged. The invariance
specialityof rotation can be used to judge if a complex random sequence is noncircular [18]. More
specifically, if stationary complex signal sequence q̄ is circular, it accords with E[q̄q̄H] 6= 0 and
E[q̄q̄T] = 0. By comparison, if the sequence is noncircular, then E[q̄q̄H] 6= 0 and E[q̄q̄T] 6= 0, which can
be utilized to increase the number of effective array elements. In addition, for zero-mean stationary
complex signal sequence q̄, it holds the property that:

E[q̄q̄T] = ρejψE[q̄q̄H] (5)

where 0 ≤ ρ ≤ 1 and ψ are noncircular rate and noncircular phase angle, respectively, and ρ depends
on the signal modulation type. In this paper, we consider the signals with maximum noncircular rate,
namely, ρ = 1 in s(t), such as BPSK and MASK modulated signals that are widely used in MIMO
radar systems. It has been pointed out that the noncircular signal vector s(t) in Equation (1) can be
rewritten as [17,25]:

s(t) = Λϕsr(t) (6)

where sr(t) = [sr1(t), sr2(t), . . . , srP(t)]T is the real-valued part of noncircular signal s(t),
and Λϕ = diag([ejϕ1 , ejϕ2 , . . . , ejϕP ]) is the noncircular phase matrix. Based on the composition and
structure of s(t), for the p-th target with t = 1, 2, . . . , J, E[spsTp] = ej2ϕp E[srpsTrp] = ej2ϕp E[spsHp] can be
obtained. In addition, each element in s(t) accords with Equation (5), i.e., E[spsTp] = ejψE[spsHp] with
ρ = 1 [26]. This indicates that the relationship between ϕp and ψp can be written as ϕp = ψp/2. With
the application of signal noncircularity, X in Equation (4) is expressed as:

X = CAΛϕSr + N (7)

where Sr = [sr(t1), . . . , sr(tJ)] is a real-valued matrix.
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3. The Proposed Algorithm

3.1. Mutual Coupling Elimination

To successfully implement the noncircular source-based sparse representation method, we firstly
eliminate the effect of mutual coupling. Exploiting the structure of mutual coupling matrices Ct and
Cr, we define two selection matrices as follows:

Γ1 = [0(M−2k)×k I(M−2k)×(M−2k) 0(M−2k)×k]

Γ2 = [0(N−2k)×k I(N−2k)×(N−2k) 0(N−2k)×k]
(8)

where Γ1 ∈ C(M−2k)×M, and Γ2 ∈ C(N−2k)×N . Γ1 and Γ2 can be used to choose the central rows
of the mutual coupling matrices and then transform the transmit-receive mutual coupling matrix
C into a diagonal one. Thus, let zp = ejπ sin(θp), by multiplying the selection matrix Γ1 on the left
side of the transmit steering vector with mutual coupling; the transformation of the i-th element in
Γ1Ctat(θp) ∈ C(M−2k)×1 can be derived as:

[Γ1Ctat(θp)](i) = ctkzi−1
p + ct(k−1)z

i
p + . . . + zi+k−1

p + . . . + ctkzi+k−1+k
p

= (∑k
j=−k ct|j|z

j+k
p )zi−1

p

= ωtpzi−1
p

(9)

where ωtp is a scalar that just contains the information of θp and mutual coupling in the transmit array.
Let M̄ = M− 2k; thus, for i = 1, 2, . . . , M̄, we have Γ1Ctat(θp) = ωtpãt, in which ãt is the new transmit
steering vector and can be expressed as ãt = [1, zp, z2

p . . . , zM̄−1
p ], p = 1, 2, . . . , P. Similar to Equation (9),

we use the other selection matrix Γ2 to extract the mutual coupling coefficients in Crar(θp) into a scalar,
that is:

[Γ1Crar(θp)](i) = crkzi−1
p + cr(k−1)z

i
p + . . . + zi+k−1

p + . . . + crkzi+k−1+k
p

= (∑k
j=−k cr|j|z

j+k
p )zi−1

p

= ωrpzi−1
p

(10)

where p = 1, 2, . . . , P. The value of ωrp depends on the mutual coupling coefficients and θp. Then, for
i = 1, 2, . . . , N̄, we further have Γ2Crar(θp) = ωrpãr with ãr = [1, zp, z2

p . . . , zN̄−1
p ] being the new

receive steering vector. As a result, exploiting the property of the Kronecker product operator,
let Γ = Γ1 ⊗ Γ2 ∈ CM̄N̄×MN be the selection matrix of transmit-receive array; we deduce that:

ΓCa(θp) = [Γ1Ctat(θp)]⊗ [Γ2Crar(θp)]

= ωtpωrpã(θp)
(11)

where ã(θp) = ãt(θp) ⊗ ãr(θp) ∈ CM̄N̄×1 is the new transmit-receive steering vector. Thus, for J
snapshots, the data matrix X in Equation (7) transfers into:

X̄ = ĀDΛϕSr + N̄ (12)

where Ā = [ã(θ1), ã(θ2), . . . , ã(θP)] ∈ CM̄N̄×P and N̄ = ΓN ∈ CM̄N̄×J are the
new transmit-receive steering matrix and noise matrix, respectively; in addition,
D = diag[ωt1ωr1, ωt2ωr2, . . . , ωtPωrP] ∈ CP×P. It can be observed in Equation (12) that non-zero
mutual coupling coefficients are extracted into a diagonal matrix D. Hence, for the new steering
matrix Ā, the errors of mutual coupling are eliminated.
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3.2. Noncircular Signal-Based Extended Matrix Construction

Based on the new received data matrix X̄, a reduced dimensional transformation is introduced in
the following. For the p-th target, the transmit-receive steering vector ã(θp) can be expressed as:

ã(θp) = (1, . . . , zN̄−1
p ; zp, . . . , zN̄

p ; . . . ; zM̄−1
p , . . . , zM̄+N̄−2

p )T (13)

where p = 1, 2, . . . , P. Many repeated terms are contained in ã(θp), and the non-repeated elements can
make up another vector b(θp) = [1, exp(jπsinθp), · · · , exp(jπ(M̄ + N̄ − 2)sinθp)]T∈ C(M̄+N̄−1)×1.
The relationship between ã(θp) and b(θp) can be derived as ã(θp) = Gb(θp), in which G is
represented as:

G = [LT
0 , LT

1 , · · · , LT
M̄−1]

T (14)

where G∈ CM̄N̄×(M̄+N̄−1), and Lm = [0N̄×m, IN̄ , 0N̄×(M̄−m−1)]∈ CN̄×(M̄+N̄−1) for m = 0, 1, ..., M̄− 1.
Thus, based on G, a reduced dimensional transformation matrix can be constructed as
R = (GHG)(−

1
2 )GH, then X̄ in Equation (12) turns into:

Y = (GHG)(−
1
2 )GHGBDΛϕSr + RN̄

= FBDΛϕSr + N̄d
(15)

where Y and N̄d = RN̄ are the new reduced dimensional data matrix and the new noise matrix,
respectively. F = (GHG)(

1
2 )∈ C(M̄+N̄−1)×(M̄+N̄−1) can be directly calculated as:

F = diag[1,
√

2, ..., min(
√

M̄,
√

N̄), ..., min(
√

M̄,
√

N̄)︸ ︷︷ ︸
|M̄−N̄|+1

, ....,
√

2, 1]
(16)

By the transformation, the dimension of the data matrix is reduced from M̄N̄ × J to (M̄ + N̄ −
1)× J. In addition, as RRH = IM̄+N̄−1, the transformation does not bring in the additional spatial
colored noises. In order to enlarge the array aperture by exploiting the noncircular signals, the new
received data matrix Y∈ C(M̄+N̄−1)×J can be extended as Z = [YT, YH]T∈ C2(M̄+N̄−1)×J . Since F, D and
Sr are real-valued matrices, Z is expressed as:

Z =

[
FBDΛϕ

FB∗DΛ∗ϕ

]
Sr +

[
N̄d
N̄∗d

]
(17)

3.3. Joint Reweighted Sparse Representation-Based DOA Estimation Scheme

In order to successfully apply the sparse representation theory to estimate the DOAs,
we bring in the SVD technique of Z, i.e., Z = UΛVH, where Λ = diag(ω1, ω2, . . . , ωM̄+N̄−1),
and ω1 ≥ ω2 ≥ · · · ≥ ωM̄+N̄−1 are singular values. Let Vs be composed of the P vectors in V that
correspond to (ω1, ω2, . . . , ωP). With Vs, the dimension of the observation matrix can be further
reduced [9], which is conducive to the signal reconstruction, that is:

Zv =

[
FBDΛϕSrVs

FB∗DΛ∗ϕSrVs

]
+

[
N̄dVs

N̄∗dVs

]
=

[
B̄T̄
B̃T̃

]
+

[
N̄ds
Ñds

]
(18)

where Zv = ZVs∈ C2(M̄+N̄−1)×P, B̄ = FB, T̄ = DΛϕSrVs, B̃ = FB∗, T̃ = DΛ∗ϕSrVs, N̄ds and Ñds
are the new noise matrices. Zv can be divided into the following two parts; the first (M̄ + N̄ − 1)
rows in Zv make up Zv1∈ C(M̄+N̄−1)×P, and the remaining rows compose Zv2∈ C(M̄+N̄−1)×P,
namely Zv = [ZT

v1, ZT
v2]

T. By constructing two complete dictionaries B̄θ̂ = F[b(θ̂1), b(θ̂2), . . . , b(θ̂L)]



Algorithms 2016, 9, 61 8 of 14

and B̃θ̂ = F[b∗(θ̂1), b∗(θ̂2), . . . , b∗(θ̂L)] with {θ̂l}L
l=1(L � P) being the discretized sampling grids of

all potential DOAs, the corresponding sparse representation models can be separately formulated as:

Zv1 = B̄θ̂T̄θ̂ + N̄ds

Zv2 = B̃θ̂T̃θ̂ + Ñds
(19)

where T̄θ̂∈ CL×P and T̃θ̂∈ CL×P hold the same row support with T̄ and T̃, respectively. For the two
models in Equation (19), if they are solved independently by conventional sparse representation
methods that are based on the l1-norm penalty [9], the signal noncircularity cannot be utilized to
extend the array aperture. In order to make the best of signal noncircularity, we design a joint

sparse vector r∈ CL×1 whose k-th element is r(k) =
√
(T̄(l2)

θ̂
(k))2 + (T̃(l2)

θ̂
(k))2, then the sparsities

of T̄θ̂ and T̃θ̂ are combined. In r(k), T̄(l2)
θ̂

(k) and T̃(l2)
θ̂

(k) are defined as T̄(l2)
θ̂

(k) =‖ T̄θ̂(k, :) ‖2 and

T̃(l2)
θ̂

(k) =‖ T̃θ̂(k, :) ‖2, respectively. More specifically, T̄(l2)
θ̂

(k) is equal to the l2-norm of the k-th row

in T̄θ̂ ; similarly, T̃(l2)
θ̂

(k) is equal to the l2-norm of the k-th row in T̃θ̂ . Let r̂ represent the solution
vector of the sparse signal reconstruction, r̂(k) ≥ r(k), k = 1, 2, . . . , L. As a result, based on the l1-norm
constrained minimization, a joint sparse representation scheme is designed as follows:

min ‖ r̂ ‖1, s.t. ‖ Zv1 − B̄θ̂T̄θ̂ ‖
2
F≤ η1 ‖ Zv2 − B̃θ̂T̃θ̂ ‖

2
F≤ η2 (20)

where η1 and η2 are regularization parameters that set the error amount. To make the l1-norm
penalty better approximate the l0-norm penalty, we introduce the reweighted matrix in the following.
Let Un be the noise subspace and composed of the (M̄ + N̄ − 1− P) vectors in Un that correspond
to (ωP+1, ωP+2, . . . , ωM̄+N̄−1). According to the subspace principle [13], for the true target θp,
[(ωtpωrpejϕp Fb(θp))T, (ωtpωrpe−jϕp Fb(θp)∗)T]T in Z is orthogonal to the noise subspace Un, that is:

Q(θp, ϕp, ωtp, ωrp) = [ωtpωrpejϕp ωtpωrpe−jϕp ]Q̄(θp)

[
ωtpωrpejϕp

ωtpωrpe−jϕp

]
→ 0 (21)

where:

Q̄(θp) =

[
Fb(θp) 0(M̄+N̄−1)×1
0(M̄+N̄−1)×1 Fb∗(θp)

]H
UnUH

n

[
Fb(θp) 0(M̄+N̄−1)×1
0(M̄+N̄−1)×1 Fb∗(θp)

]
(22)

Since Q(θp, ϕp, ωtp, ωrp) → 0, ωtp, ωrp and ejϕp are all non-zero scalars and the rank of UnUH
n

satisfies rank(UnUH
n) > 2, for the true DOA θp, the rank reduction of Q̄(θp) will take place, that is

det[Q̄(θp)]→ 0. Consequently, a reweighted vector is designed as:

w(i) = det[Q̄(θ̂i)] (23)

for i = 1, 2, . . . , L. Thus, the reweighted matrix is:

Wr = diag(w)/max(w) (24)

where Wr∈ CL×L is a diagonal matrix. Large weights in Wr can punish the entries that are more
likely to be zeros in w, while small weights reserve the larger entries. Hence, Wr can enhance the
solution of the sparse recovery problem in Equation (20). Then, for DOA estimation in the presence
of mutual coupling, the noncircular source-based joint reweighted sparse representation framework
transforms into:

min ‖Wr r̂ ‖1, s.t. ‖ Zv1 − B̄θ̂T̄θ̂ ‖F≤
√

η1 ‖ Zv2 − B̃θ̂T̃θ̂ ‖F≤
√

η2 (25)
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Effective SOC (second order cone) programming software packages, such as SeDuMi [27] and
CVX [28], can be used to solve Equation (25). As a result, by plotting r̂, the DOA estimation is achieved.

4. Related Remarks

Remark 1. In the problem of the sparse signal reconstruction that is based on the l1-norm minimization,
the chosen values of the regularization parameters η1 and η2 are important for the estimation accuracy. In the
proposed algorithm, noise matrix N in Equation (4) is complex white Gaussian with zero mean. By mutual
coupling elimination and reduced dimensional transformation, the corresponding selection matrix Γ and
transformation matrix R transform N into N̄d. According to the designed matrix structure of Γ and R,
ΓΓH = IM̄N̄ and RRH = IM̄+N̄−1 can be obtained.

Based on the invariance speciality of linear transformation in an asymptotic normal distribution [29],
if n is asymptotic normal with zero-mean and covariance matrix σ2IMN , RΓn complies with a
zero-mean asymptotic normal distribution with covariance matrix RΓ(σ2IMN)(RΓ)H = σ2IM̄+N̄−1.
Therefore, N̄d = [n̄d1, n̄d2, . . . , n̄dJ ] in Equation (15) is a zero-mean complex Gaussian white noise matrix.

In [9], it has been verified that if the noise n̄d is independent and identically distributed (i.i.d.) Gaussian,
then ‖ N̄ds ‖2

F has approximately a chi-square distribution with (M̄ + N̄ − 1)P degrees of freedom upon
normalization by the variance of n̄d, where N̄ds = N̄dVs with Vs being the signal subspace of Z [9]. As a
result, η1 and η2 can be chosen as the upper limit value of ‖ N̄ds ‖2

F and ‖ Ñds ‖2
F upon σ2, with a high

probability 1− ε confidence interval, and ε = 0.001 is enough. In addition, σ2 can be estimated by the average
of the squares of 2(M̄ + N̄ − 1)P smallest singular values of Z. By using MATLAB software, the function
chi2inv(1− ε, (M̄ + N̄ − 1)P)σ2 can be used to compute the regularization parameters.

Remark 2. The computational complexity of the proposed algorithm mainly focuses on eliminating the effect
of mutual coupling, constructing the reweighted matrix and obtaining the sparse solution from Equation (25),
which require O{M̄N̄MNJ}, O{[4(M̄ + N̄ − 1)(2(M̄ + N̄ − 1) − P) + 4(M̄ + N̄ − 1)(2(M̄ + N̄ −
1) − P) + 8(M̄ + N̄ − 1)]L̄} and O{L̄3P} calculation burden, respectively, where L̄ is the number of
the discretized sampling grids. Therefore, the total computational complexity of the proposed algorithm
is O{M̄N̄MNJ + [4(M̄ + N̄ − 1)(2(M̄ + N̄ − 1)− P + 1)]L̄ + L̄3P}. Although the constructions of the
extended data matrix and the reweighted matrix increase the computational complexity, they enlarge the
virtual array aperture and enhance the solution of the sparse reconstruction. As a result, the angle estimation
performance of the proposed method is improved.

Remark 3. The prior knowledge of the number of emitting sources is important. This is because in the absence
of a perfect knowledge of the target number P, either adding spurious sources or missing actual signals may
lead to the deviations of the signal and the noise subspaces, which further cause the deviations of extended
observation matrix Zv in Equation (18) and reweighted matrix Wr in Equation (24). Therefore, the selected
value of P affects the performance of the proposed algorithm. Fortunately, when P is unknown in practical
applications, some effective methods can be used to estimate it, such as the Akaike information criterion (AIC)
and the minimum description length (MDL) [30]. In the proposed algorithm, the number of emitting sources P
is assumed to be known.

Remark 4. After performing the mutual coupling elimination and the reduced dimensional transformation,
the received data matrix X in Equation (4) turns into Y in Equation (15), and the number of effective antenna
elements reduces from (M + N − 1) to (M̄ + N̄ − 1). Then, by using the real-valued signals that satisfy
Sr = S∗r extracted from the noncircular signals, the extended matrix Z with the dimension 2(M̄ + N̄ − 1)× J
is constructed in Equation (17). It implies that the extended data matrix Z corresponds to a virtual array, whose
virtual antenna number is twice that of the array corresponding to Y. As the exploitation of the noncircularity of
emitted signals enlarges the effective array aperture, the more diversity gain can be obtained in the proposed
algorithm. In addition, the reweighted matrix enhances the sparse solution. Thus, the proposed algorithm
considerably improves DOA estimation performance in the presence of mutual coupling.
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Remark 5. Mutual coupling coefficients are related to the distance between two antennas. For uniform
linear arrays (ULAs) of the considered MIMO radar system in the proposed algorithm, the mutual coupling
coefficients between two antenna elements satisfy ct(q,m) = ct(m,q) = ct|q−m| for the transmit array and
cr(q′ ,n) = cr(n,q′) = cr|q′−n| for the receive array [22], in which 1 ≤ q, m ≤ M and 1 ≤ q′, n ≤ N.
Consequently, all of the effects of mutual coupling in ULA can be modeled as a banded symmetric Toeplitz matrix
in Equation (3) [23], based on which selection matrices are constructed in Equation (8) to eliminate the mutual
coupling. Mutual coupling matrix in Equation (3) is modeled under the circumstance of symmetric coupling in
ULA. Hence, the proposed algorithm is not suitable for asymmetric coupling.

5. Simulation Results

In this section, using the ESPRIT-like [14] algorithm, the l1-SVD [15] algorithm and the
l1-SRDML [16] algorithm for comparison, some simulation experiments are implemented to
demonstrate the efficiency and the advantages of the proposed algorithm. The signal-to-noise ratio
(SNR) is defined as SNR = 10log10(||CAS||2F/||N||2F). Let θ̂i

p be the estimation of the true DOA θp for
the i-th Monte Carlo trial; the root mean square error (RMSE) of angle estimation is defined as:

(1/P)∑P
p=1

√
(1/Q)∑Q

i=1 (θ̂
i
p − θp)2 (26)

where Q is the total number of the Monte Carlo trials, which is Q = 200 in the simulations. Consider a
narrowband monostatic MIMO radar system, whose arrays are both half-wavelength spaced ULAs
with the effects of mutual coupling, and the numbers of transmit and receive antennas are M and
N, respectively. Let K = k + 1 be the nonzero mutual coupling coefficient number; two different
mutual coupling cases of the transmitter and the receiver are considered in the following simulations:
(1) K = 2 with the nonzero mutual coupling coefficients being [ct0, ct1] = [1, 0.1844 + j0.0427]
and [cr0, cr1] = [1, 0.0522 − j0.1049]; (2) K = 3 with [ct0, ct1, ct2] = [1, 0.6 + j0.2, 0.02 + j0.13] and
[cr0, cr1, cr2] = [1, 0.5 + j0.1, 0.01 + j0.05]. The number of uncorrelated targets P is assumed to be
known. Besides, the confidence interval is set to 0.99, and the discretized grids are uniform with 0.1◦

sampling from −90◦ to 90◦, for the proposed method, as well as l1-SVD and l1-SRDML algorithms.
When performing the experiments, we solve the signal reconstruction problem of the noncircular

source-based joint reweighted sparse representation framework in Equation (25). The sparse solution
vector r̂ is obtained by using the SOC programming software packages. When there are true DOAs
of targets located at certain points of the complete dictionary, the corresponding elements in r̂ are
non-zero, and the rest are zero. Therefore, the true DOA locations in dictionary correspond to the
largest P values of |r̂|. In the simulations, the functional form 10log10[|r̂|/max(|r̂|)] is used to plot
the spatial spectrum of angle estimation. Then, by finding P peaks in the spectrum, DOA estimation
is achieved.

Figure 3 depicts the spatial spectrum of the proposed method for the number of targets being
P = 3 and P = 5, respectively, where M = N = 6, J = 200, SNR is fixed at SNR = 0 dB and mutual
coupling Case (1) is considered. For P = 3, the DOAs of the uncorrelated targets are θ1 = −10◦,
θ2 = 0◦, θ3 = 10◦. For P = 5, they are θ1 = −20◦, θ1 = −10◦, θ1 = 0◦, θ2 = 10◦ and θ3 = 20◦,
respectively. From Figure 3, it can be observed that the spatial spectrum peaks of the proposed method
are sharp, and the sidelobe suppression is low. In addition, for different target numbers P, the spectrum
maintains the accuracy of DOA estimation. This indicates that the proposed method is effective to
perform DOA estimation accurately.
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Figure 3. Spatial spectrum of the proposed method with target number P = 3 and P = 5.

Figure 4 shows the RMSE of DOA estimation versus SNR in different methods with mutual
coupling Case (1), where M = N = 6, J = 200 and three targets with θ1 = −10◦, θ2 = 0◦,
θ3 = 10◦ are considered. Additionally, the values of RMSE are computed by Equation (26) with
Q trials. As can be seen in Figure 4, l1-SRDML owns a lower RMSE than the ESPRIT-like and
l1-SVD algorithms, because the deterministic maximum likelihood procedure improves the estimation
accuracy. In addition, the proposed method provides the best DOA estimation performance in all SNR
regions, for the reason that the noncircularity-based joint reweighted sparse representation scheme
enlarges the virtual array aperture and enhances the sparse solution.
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Figure 4. RMSE versus SNR in ESPRIT-like, l1-SVD and l1-SRDML (sparse representation deterministic
maximum likelihood) methods for nonzero mutual coupling coefficient number K = 2.

Figure 5 illustrates the RMSE of DOA estimation versus SNR in different methods with mutual
coupling Case (2), where M = N = 7, J = 200, and there are three uncorrelated targets located at
θ1 = −15◦, θ2 = 0◦, θ3 = 15◦. From Figure 5, it is clear that the performance of l1-SVD is inferior to the
other algorithms, and the proposed method has the lowest RMSE in all analyzed methods. This means
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that when the number of nonzero mutual coupling coefficients increases, the proposed method still
has superior DOA estimation performance.
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Figure 5. RMSE versus SNR in the ESPRIT-like, l1-SVD and l1-SRDML methods for nonzero mutual
coupling coefficient number K = 3.

Figure 6 shows the RMSE of DOA estimation versus snapshots of different methods with mutual
coupling Case (1), where M = N = 6, SNR = 0 dB, there are three uncorrelated targets with DOAs
being θ1 = −11.5◦, θ2 = 0◦, θ3 = 11.5◦ and the number of snapshots varies from J = 50 to J = 550.
It can be seen from Figure 6 that the proposed method performs well in the case of fewer snapshots, and
with obvious superiority over the ESPRIT-like, l1-SVD and l1-SRDML algorithms, the proposed method
performs the best in all pf the ranges of snapshots on account of the application of the reweighted
matrix and the noncircularity of emitted signals.
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Figure 6. RMSE versus snapshots in the ESPRIT-like, l1-SVD and l1-SRDML methods when SNR = 0 dB.

Figure 7 demonstrates the target resolution probability of different methods versus SNR with
mutual coupling Case (1), where M = N = 6, J = 100 and the DOAs of three targets are θ1 = −20◦,
θ2 = 0◦ and θ3 = 20◦, respectively. They can be regarded as successfully detected when all of their
absolute DOA estimation errors are within 0.1◦. It can be observed that when SNR is high enough,
all methods provide 100% target resolution probability. Owing to the increased number of virtual array
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elements, more diversity gain is obtained in the proposed algorithm. Consequently, the proposed
method provides higher resolution probability than the ESPRIT-like, l1-SVD and l1-SRDML algorithms
in all SNR regions, as shown in the simulation results of Figure 7.
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Figure 7. Target resolution probability versus SNR in the ESPRIT-like, l1-SVD and l1-SRDML methods
with snapshot number J = 100.

6. Conclusions

In this paper, we have proposed the noncircular source-based sparse representation algorithm for
DOA estimation in MIMO radar with mutual coupling. On the basis of the error matrix structure and
the properties of noncircular signals, the proposed method eliminates the effect of mutual coupling
and obtains the extended observation matrix. Then, the joint reweighted sparse representation scheme
is constructed to achieve the DOA estimation. The computational complexity of the proposed method
has been analyzed, and the simulation results have verified that in the presence of mutual coupling,
the proposed algorithm provides higher resolution and better angle estimation performance than the
ESPRIT-like, l1-SVD and l1-SRDML algorithms.
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