
algorithms

Article

Sign Function Based Sparse Adaptive Filtering
Algorithms for Robust Channel Estimation under
Non-Gaussian Noise Environments
Tingping Zhang 1,2,* and Guan Gui 3

1 School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 College of Computer Science, Chongqing University, Chongqing 400044, China
3 Institute of Signal Transmission and Processing, College of Telecommunication and Information Engineering,

Nanjing University of Posts and Telecommunications, Nanjing 210003, China; guiguan@njupt.edu.cn
* Correspondence: ztp@cqjtu.edu.cn; Tel./Fax: +86-23-6265-2751

Academic Editor: Paul M. Goggans
Received: 24 June 2016; Accepted: 9 August 2016; Published: 12 August 2016

Abstract: Robust channel estimation is required for coherent demodulation in multipath fading
wireless communication systems which are often deteriorated by non-Gaussian noises. Our research
is motivated by the fact that classical sparse least mean square error (LMS) algorithms are very
sensitive to impulsive noise while standard SLMS algorithm does not take into account the inherent
sparsity information of wireless channels. This paper proposes a sign function based sparse adaptive
filtering algorithm for developing robust channel estimation techniques. Specifically, sign function
based least mean square error (SLMS) algorithms to remove the non-Gaussian noise that is described
by a symmetric α-stable noise model. By exploiting channel sparsity, sparse SLMS algorithms
are proposed by introducing several effective sparse-promoting functions into the standard SLMS
algorithm. The convergence analysis of the proposed sparse SLMS algorithms indicates that they
outperform the standard SLMS algorithm for robust sparse channel estimation, which can be also
verified by simulation results.

Keywords: robust sparse channel estimation; sign function based least mean square error (SLMS);
sparsity-promoting function; non-Gaussian noise; convergence analysis

1. Introduction

Broadband signal transmission is considered an indispensable technique in next-generation
dependable wireless communication systems [1–3]. It is well known that both multipath fading and
additive noises are major determinants that impair the system performance. In such circumstances,
either coherence detection or demodulation needs to estimate channel state information (CSI) [1].
In the framework of a Gaussian noise model, some effective channel estimation techniques have
been studied [4–10]. In the assumptions of the non-Gaussian impulsive noise model, however,
existing estimation techniques do not perform robustly due to heavy tailed impulsive interference.
Generally speaking, impulsive noise is used to generate natural or man-made electromagnetic waves
that are different from the conventional Gaussian noise model [11]. For example, a second-order
statistics-based least mean square error (LMS) algorithm [4] cannot be directly applied in broadband
channel estimation [12]. To solve this problem, selecting a suitable noise model is necessary to devise a
stable channel estimation that can combat the harmful impulsive noises.

The aforementioned non-Gaussian noise can be modeled by the symmetric alpha-stable (SαS)
distribution [13]. Based on the SαS noise model, several adaptive filtering based robust channel
estimation techniques have been developed [14–16]. These techniques are based on the channel model
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assumption of dense finite impulse response (FIR), which may not suitable in broadband channel
estimation because the channel vector is supported only by a few dominant coefficients [17,18].

Considering the sparse structure in a wireless channel, this paper proposes a kind of sparse
SLMS algorithm with different sparse norm constraint functions. Specifically, we adopt five sparse
constraint functions as follows: zero-attracting (ZA) [7] and reweighted ZA (RZA) [7], reweighted
`1-norm (RL1) [19], `p-norm (LP), and `0-norm (L0) [20], to take advantage of sparsity and to mitigate
non-Gaussian noise interference. It is necessary to state that the short versions of the proposed
algorithms were initially presented in a conference but we did not give a performance analysis [21].
In this paper, we first propose five sparse SLMS algorithms for channel estimation. To verify the
stability of the proposed SLMS algorithms, convergence analysis is derived with respect to mean and
excess mean square error (MSE) performance. Finally, numerical simulations are provided to verify
the effectiveness of the proposed algorithms.

The rest of the paper is organized as follows. Section 2 introduces an alpha-stable impulsive noise
based sparse system model and traditional channel estimation technique. Based on the sparse channel
model, we propose five sparse SLMS algorithms in Section 3. To verify the proposed sparse SLMS
algorithms, convergence analysis is derived in Section 4. Later, computer simulations are provided to
validate the effectiveness of the propose algorithms in Section 5. Finally, Section 6 concludes the paper
and proposes future work.

2. Traditional Channel Estimation Technique

An input–output wireless system under the SαS noise environment is considered. The wireless
channel vector is described by N-length FIR sparse vector w = [w0, w1, . . . , wN−1]

T at discrete
time-index n. The received signal is obtained as

d(n) = wTx(n) + z(n) (1)

where x(n) = [x(n), x(n− 1), · · · , x(n− N + 1)]T is the input signal vector of the N most recent
input samples with distribution of CN

(
0,σ2

x
)

and z(n) ∼ φ (α,β,γ, δ) denotes a SαS noise variable.
To understand the characteristic function of SαS noise, here we define it as

p(t) = exp {jδt− γα |t|α [1− jβsgn(t)φ (t,α)]} (2)

where
0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, −∞ < δ < ∞ (3)

sgn(t) =


1, t > 0

0, t = 0

−1, t < 0

(4)

φ (t,α) =

{
tan(απ/2), α 6= 1

−log(|t|), α = 1
(5)

In Equation (2), α ∈ (0, 2] controls the tail heaviness of SαS noise. Since when α < 1 is rare to
happen SαS noise in practical systems, α ∈ (1, 2] is considered throughout this paper [11]. γ > 0
denotes the dispersive parameter, which can perform a similar role to Gaussian distribution; β ∈ [−1, 1]
stands for the symmetrical parameter. To have a better understanding of the alpha-stable noise, its
probability density function (PDF) curves are depicted in Figures 1 and 2 as examples. Figure 1a shows
that the PDF curve of symmetric alpha-stable noise changes with the parameter α, i.e., a smaller α
produces a larger PDF of the alpha-stable noise model and vice versa. In other words, α controls the
strength of the impulsive noise. Similarly, Figure 1b shows that the PDF curve of skewed α-stable
noise model also changes simultaneously with α and β. Since the skewed noise model may not exist in
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practical wireless communication systems, the symmetrical α-stable noise model is used in this paper;
the characteristic function of α-stable process reduces as

p(t) = exp (−γ |t|α) (6)

For convenience, symmetric α-stable noise variance is defined by

σ2
z = γ2/α (7)

and the generalized received signal noise ratio (GSNR) is defined by

Es/N0 (dB) , 10× log10

{
P0/γ2/α

}
(8)

where P0 denotes the received signal power while σ2
z = γ2/α plays the same role as the noise variance.

The objective of adaptive channel estimation is to perform adaptive estimate of w(n) with limited
complexity and memory given sequential observation {d(n), x(n)} in the presence of additive noise
z(n). That is to say, the estimate observation signal y(n) is given as

y(n) = wT(n)x(n) (9)

where w(n) denotes channel estimator. By combining (1) and (4), the estimation error e(n) is

e(n) = d(n)− y(n) = z(n)− xT(n)v(n) (10)

where v(n) = w(n)−w is the updating error of w(n) at iteration n. The cost function of standard
LMS was written as

GLMS (w(n)) = (1/2) e2(n) (11)

Using Equation (11), the standard LMS algorithm was derived as

w(n + 1) = w(n) + µ ∂G(w(n))
∂w(n)

= w(n) + µe(n)x(n)
(12)

where µ denotes a step-size that controls the gradient descend speed of the LMS. Letting
R = E[x(n)xT(n)] denotes the covariance matrix of input signal x(n) and λmax as its maximum
eigenvalue. The well-known stable convergence condition of the SLMS is

0 < µLMS < 1/λmax (13)

In order to remove SαS noise, the traditional SLMS algorithm [14] was first proposed as

w(n + 1) = w(n) + µsgn (e(n)) x(n) (14)

To ensure the stability of SLMS, µ should be chosen as

0 < µ <
√

2πσe(n)/λmax (15)

where σe(n) denotes the unconditional variance of estimation error e(n). For later theoretical analysis,
the σ2

e is conditioned by

E
{

e2(n) |v(n)
}
≈ E

{
e2(n)

}
= σ2

e (n)

= E
{[

z(n)− vT(n)x(n)
]T [z(n)− vT(n)x(n)

]}
= γ2/α + Tr {RC(n)}

(16)
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where C(n) = E
{

v(n)vT(n)
}

denotes the second-order moment matrix of channel estimation error
vector v(n).
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Figure 1. PDF comparisons of α-stable noise: (a) symmetric distribution; (b) skewed distribution;  
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Figure 1. PDF comparisons of α-stable noise: (a) symmetric distribution; (b) skewed distribution;
(c) scale distribution.
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Figure 2. Monte Carlo based MSE curves averaging over 1000 runs with respect to different
characteristic exponents α ∈ {1.0, 1.2, 1.4, 1.6, 1.8}, in scenarios of dispersion parameter γ = 1.0,
channel sparsity K = 8, channel length N = 128, and SNR = 10 dB.

3. Proposed Sparse SLMS Algorithms

By incorporating sparsity-aware function into the cost function of the standard SLMS in
Equation (6), sparse SLMS algorithms could be developed to take advantage of sparse structure
information, to mitigate SαS noise as well as to reconstruct channel FIR. First of all, this section
proposes five effective sparse SLMS algorithms with different sparse constraints. These proposed
algorithms are SLMS-ZA, SLMS-RZA, SLMS-RL1, SLMS-LP, and SLMS-L0. Later, performance analysis
will be given to confirm the effectiveness of the proposed algorithms.

3.1. First Proposed Algorithm: SLMS-ZA

The cost function of the LMS-ZA algorithm [7] was developed as

GZA (w(n)) = (1/2) e2(n) + λZA||w(n)||1 (17)

where λZA stands for a positive parameter to trade off instantaneous estimation square error and
sparse penalty of w(n). It is worth noting that the optimal selection of λZA is very difficult due to the
fact that λZA depends on many variables such as channel sparsity, instantaneous updating error e(n),
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SNR, and so on. Throughout this paper, the regularization parameter will be selected empirically via
the Monte Carlo method. According to Equation (17), the LMS-ZA algorithm was developed as

w(n + 1) = w(n)− µ ∂GZA(w(n))
∂w(n)

= w(n) + µe(n)x(n)− ρZAsgn (w(n))
(18)

where ρZA = µ · λZA depends the µ and λZA. To mitigate the SαS noises, by constraining sign function
on e(n), the SLMS-ZA algorithm is developed as

w(n + 1) = w(n) + µsgn (e(n)) x(n)− ρZAsgn (w(n)) (19)

where the first sgn(·) function is utilized to remove impulsive noise in e(n) while the second one acts
as a sparsity-inducing function to exploit channel sparsity in w(n). Please note that the steady-state
mean square error (MSE) performance of the proposed SLMS-ZA depends highly on ρZA.

3.2. Second Proposed Algorithm: SLMS-RZA

A stronger sparse penalty function can obtain more accurate sparse information [19]. By devising
an improved sparse penalty function RZA, we can develop an improved LMS-RZA algorithm. Its cost
function can be constructed as

GRZA (wi(n)) =
1
2

e2(n) + λRZA

N−1

∑
i=0

log (1 + εRZA |wi(n)|) (20)

where λRZA > 0 is a positive parameter. By deriving Equation (20), the update equation of SLMS-RZA
is obtained as

wi(n + 1) = wi(n) + µ
∂GRZA(wi(n))

∂wi(n)

= wi(n) + µe(n)x(n− i)− ρRZAsgn(wi(n))
1+εRZA |wi(n)|

(21)

where ρRZA = µλRZAεRZA. By collecting all of the coefficients as the matrix-vector form, Equation (21)
can be expressed as

w(n + 1) = w(n) + µe(n)x(n)− ρRZAsgn (w(n))
1 + εRZA |w(n)| (22)

where εRZA = 20 [7] denotes reweighted factor. By inducing sign function to constraint e(n) in
Equation (22), the stable SLMS-RZA algorithm is proposed as

w(n + 1) = w(n) + µsgn (e(n)) x(n)− ρRZAsgn (w(n))
1 + εRZA |w(n)| (23)

3.3. Third Proposed Algorithm: SLMS-RL1

In addition to the RZA in (23), RL1 function was also considered as an effective sparse constraint
in the field of compressive sensing (CS) [19]. By choosing a suitable reweighted factor, δRL1, RL1 could
approach the optimal `0-norm (L0) constraint. Hence, the LMS-RL1 algorithm has been considered an
attractive application of sparse channel estimation. The LMS-RL1 algorithm [5] was developed as

GRL1 (w(n)) = (1/2) e2(n) + λRL1|| f (n)w(n)||1 (24)

where λRL1 denotes positive regularization parameter and f (n) is defined as

[ f (n)]i =
1

δRL1 + |[w(n− 1)]i|
, i = 0, 1, · · · , N − 1 (25)
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where δRL1 > 0 and then [ f (n)]i > 0. By taking the derivation of Equation (24), the LMS-RL1 algorithm
was updated as

w(n + 1) = w(n) + µ ∂GRL1(w(n))
∂w(n)

= w(n) + µe(n)x(n)− ρRL1sgn ( f (n)w(n)) f T(n)

= w(n) + µe(n)x(n)− ρRL1sgn (w(n)) f T(n)

= w(n) + µe(n)x(n)− ρRL1sgn(w(n))
δRL1+|w(n−1)|

(26)

where ρRL1 = µλRL1. The third step of derivation can be obtained since sgn ( f (n)) = 11×N and then
sgn ( f (n)w(n)) = sgn (w(n)). Here the cost function GRL1(n) is convex due to the fact that it does
not depend on w(n). Likewise, sign function is adopted for constraint e(n) and then robust SLMS-RL1
algorithm is obtained as

w(n + 1) = w(n) + µsgn (e(n)) x(n)− ρRL1sgn (w(n))
δRL1 + |w(n− 1)| (27)

3.4. Fourth Proposed Algorithm: SLMS-LP

`p-norm sparse penalty is a nonconvex function to exploit sparse prior information. In [5], LMS-LP
based channel estimation algorithms was developed as

GLP (w(n)) = (1/2) e2(n) + λLP||w(n)||p (28)

where λLP > 0 is a positive parameter. The update function of LMS-LP is given as

w(n + 1) = w(n)− µ ∂GLP(w(n))
∂w(n)

= w(n) + µe(n)x(n)− ρLP||w(n)||1−p
p sgn(w(n))

εLP+|w(n)|1−p

(29)

where εLP > 0 is a threshold parameter and ρLP = µλLP. To remove the SαS noise, SLMS-LP based
robust adaptive channel estimation is written as

w(n + 1) = w(n) + µsgn (e(n)) x(n)−
ρLP||w(n)||1−p

p sgn (w(n))

εLP + |w(n)|1−p (30)

3.5. Fifth Proposed Algorithm: SLMS-L0

It is well known that the `0-norm penalty can exploit the sparse structure information. Hence,
the L0-LMS algorithm is constructed as

GL0 (w(n)) =
1
2

e2(n) + λL0||w(n)||0 (31)

where λL0 > 0 and ||w(n)||0 stands for optimal `0-norm function. However, it is a NP-hard problem
to solve the `0-norm sparse minimization [22]. The NP-hard problem in Equation (31) can be solved by
an approximate continuous function:

||w(n)||0 ≈∑ N−1
i=0

(
1− e−θ|wi(n)|

)
(32)

Then, the previous cost function (29) is changed to

GL0 (w(n)) =
1
2

e2(n) + λL0∑ N−1
i=0

(
1− e−θ|wi(n)|

)
(33)
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The first-order Taylor series expansion of exponential function e−θ|wi(n)| can be expressed as

e−θ|wi(n)| ≈
{

1− θ |wi(n)| , when |wi(n)| ≤ 1/θ

0, others
(34)

Then, the LMS-L0 based robust adaptive sparse channel estimation algorithm is given as

w(n + 1) = w(n) + µe(n)x(n)− ρL0sgn (w(n)) e−θ|w(n)| (35)

where ρL0 = µλL0. In Equation (35), the exponential function still exhausts high computational
resources. To further reduce it, a simple approximation function ζ (w(n)) is proposed in [20].
By introducing sign function into Equation (35), the SLMS-L0 based robust channel estimation
algorithm is written as

w(n + 1) = w(n) + µsgn (e(n)) x(n)− ρL0ζ (w(n)) (36)

where ρL0 = µλL0 and ζ (wi(n)) are defined as

ζ (wi(n)) =

{
2θ2wi(n)− 2θsgn (wi(n)) , when |wi(n)| ≤ 1/θ

0, others
(37)

for ζ (w(n)) = [ζ (w0(n)) , ζ (w1(n)) , . . . , ζ (wN−1(n))]
T .

4. Convergence Analysis of the Proposed Algorithms

Unlike the standard SLMS algorithm, the proposed sparse SLMS algorithms can further improve
estimation accuracy by exploiting channel sparsity. For convenience of theoretical analysis without
loss of generality, the above proposed sparse SLMS algorithms are generalized as

w(n + 1) = w(n) + µsgn (e(n)) x(n)− ρ f (w(n)) (38)

where f (w(n)) denotes sparsity constraint function and ρ denotes the regularization parameter.
Throughout this paper, our analysis is based on independent assumptions as below:

E (z(n)x(n)) = 0 (39)

E
[
z(n)x(n)vT(n)

]
= 0 (40)

E
[
z(n)v(n)xT(n)

]
= 0 (41)

E
[
z(n) f (w(n)) xT(n)

]
= 0 (42)

E
[
z(n)x(n) f T (w(n))

]
= 0 (43)

Theorem 1. If µ satisfies (15), the mean coefficient vector E {w(n)} approaches

w(∞) = w−
√
π/2µ−1ρR−1γ1/α f (w(∞)) (44)

Proof. By subtracting w from both sides of (35), the mean estimation error E {v(n + 1)} is derived as



Algorithms 2016, 9, 54 9 of 18

E {v(n + 1)} = E {v(n)}+ µE {sgn(e(n))x(n)} − ρ f (w(n))

≈ E {v(n)}+ µE {sgn (e(n)) x(n) |v(n)} − ρ f (w(n))

= E {v(n)}+
√

2/πµσ−1
e (n)E {e(n)x(n)} − ρ f (w(n))

=
{

I −
√

2/πµσ−1
e (n)R

}
E {v(n)} − ρ f (w(n))

(45)

It is worth mentioning that vector ρ f (w(n)) is bounded for all sparse constraints. For example,
if f (w(n)) = sgn(w(n)), then the bound is between −ρIN and ρIN , where IN is an N-length identity
vector. For n→ ∞ , Equation (45) can be rewritten as

E {v(∞)} =
{

I −
√

2/πµσ−1
e (∞)R

}
E {v(∞)} − ρ f (w(∞))

≈
{

I −
√

2/πµγ−1/αR
}

E {v(∞)} − ρ f (w(∞))
(46)

where Tr (RC(∞)) = σ2
xc(∞)� γ1/α and

σ2
e (∞) = limn→∞σ

2
e (n) = γ2/α + Tr (RC(∞)) ≈ γ2/α (47)

are utilized in the above equation. Since E {w(∞)} = w − E {v(∞)}, according to Equation (47),
one can easily get Theorem 1.

Theorem 2. Let Ω denotes the index set of nonzero taps, i.e., wi 6= 0 for i ∈ Ω. Assuming ρ is sufficiently
small so that for every i ∈ Ω, the excess MSE of sparse SLMS algorithms is

Pex(∞) =
µγ1/αϕ2√

2πϕ1
+
ργ1/αη′1√

2πµϕ1

(
ρ− η

′
2
η′1

)
(48)

where ϕ1, ϕ2, η′1 and η′2 are defined as:

ϕ1 = Tr[(I −
√

2/πµσ−1
e R)

−1
] (49)

ϕ2 = Tr[R(I −
√

2/πµσ−1
e R)

−1
] C (50)

η′1 ,
N

1−
√

2/πµγ−1/αλmax
(51)

η′2 , 2E
{

Tr
[
w(∞) f T (w(∞))

]}
− 2E

{
Tr
[
w f T (w(∞))

]}
(52)

Proof. By using the above independent assumptions in Equations (49)–(52), the second moment
C(n + 1) of the weight error vector v(n + 1) can be evaluated recursively as

C(n + 1) = E
{

v(n + 1)vT(n + 1)
}

= E
{
[v(n) + µsgn(e(n))x(n)− ρ f (w(n))] [v(n) + µsgn(e(n))x(n)− ρ f (w(n))]T

}
= E

{
v(n)vT(n)

}
+ µ2E

{
x(n)xT(n)

}
+µ

{
E
[
sgn (e(n)) v(n)xT(n)

]
+ E

[
sgn (e(n)) x(n)vT(n)

]}
︸ ︷︷ ︸

A1(n)

−µρ
{

E
[
sgn (e(n)) x(n) f T (w(n))

]
+ E

[
sgn (e(n)) f (w(n)) xT(n)

]}
︸ ︷︷ ︸

A2(n)

−ρ
{

E
[
v(n) f T (w(n))

]
+ E

[
f (w(n)) vT(n)

]}
︸ ︷︷ ︸

A3(n)

+ ρ2E
{

f (w(n)) f T (w(n))
}

︸ ︷︷ ︸
A4(n)

= C(n) + µ2R + A1(n)− (A2(n) + A3(n))︸ ︷︷ ︸
A5(n)

+ A4(n)

(53)
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where A1(n), A2(n), and A5(n) are further derived as

A1(n) ≈ µE
{

sgn (e(n)) v(n)xT(n) |v(n)
}
+ µE

{
sgn (e(n)) x(n)vT(n) |v(n)

}
= −
√
π/2µσ−1

e (n)
{

E
[
v(n)E

[
e(n)xT(n) |v(n)

]]
+ E

[
E [e(n)x(n) |v(n) ] vT(n)

]}
= −
√
π/2µσ−1

e (n)
{

E
[
v(n)vT(n)

]
R + RE

[
v(n)vT(n)

]}
= −
√
π/2µσ−1

e (n) [C(n)R + RC(n)]

(54)

A2(n) = µρ
{

E
[
sgn (e(n)) x(n) f T (w(n))

]
+ E

[
sgn (e(n)) f (w(n)) xT(n)

]}
≈ µρE

{
E
[
sgn (e(n)) x(n) f T (w(n)) |v(n)

]
+ E

[
sgn (e(n)) f (w(n)) xT(n) |v(n)

]}
= −
√

2/πµρσ−1
e E

{
E [x(n)e(n) |v(n) ] f T (w(n)) + f (w(n)) E

[
e(n)xT(n) |v(n)

]}
= −
√

2/πµρσ−1
e
{

RE
[
v(n) f T (w(n))

]
+ E

[
f (w(n)) vT(n)

]
R
} (55)

A5(n) , A2(n) + A3(n)
= −
√

2/πµρσ−1
e
{

RE
[
v(n) f T (w(n))

]
+ E

[
f (w(n)) vT(n)

]
R
}

+ρ
{

E
[
v(n) f T (w(n))

]
+ E

[
f (w(n)) vT(n)

]}
= ρ

(
I −
√

2/πµσ−1
e R

)
E
[
v(n) f T (w(n))

]
+ ρE

[
f (w(n)) vT(n)

] (
I −
√

2/πµσ−1
e R

) (56)

By substituting Equations (54) and (56) into Equation (53), we obtain

C(n + 1) = C(n) + µ2R + A1(n)− A5(n) + A4(n)
= C(n) + µ2R−

√
2/πµσ−1

e (n) [C(n)R + RC(n)]− A5(n) + A4(n)
(57)

Letting n→ ∞ and using Equation (47), Equation (57) is further rewritten as

C(∞)R + RC(∞) ≈
√

2/πµγ1/αR +
√

2/πµ−1γ1/α lim
n→∞

[A4(n)− A5(n)] (58)

Multiplying both sides of Equation (58) by
(

I −
√

2/πµσ−1
e R

)−1
from right, the following can be

derived as

[C(∞)R + RC(∞)]
(

I −
√

2/πµσ−1
e R

)−1 ≈
√

2/πµγ1/αR
(

I −
√

2/πµσ−1
e R

)−1

+
√

2/πµ−1γ1/α lim
n→∞

A4(n)
(

I −
√

2/πµσ−1
e R

)−1

n→∞

−
√

2/πµ−1γ1/α lim
n→∞

A5(n)
(

I −
√

2/πµσ−1
e R

)−1

(59)

Taking the trace of the two sides of Equation (59), since Tr (C(∞)R) = Tr (RC(∞)), the excess
MSE is derived as

Pex(∞) = Tr [RC(∞)]

=
√

2/πµγ1/α

2ϕ1
Tr
[

R
(

I −
√

2/πµσ−1
e R

)−1
]

︸ ︷︷ ︸
ϕ2

+
√

2/πµ−1γ1/α

2ϕ1
lim

n→∞
Tr
[

A4(n)
(

I −
√

2/πµσ−1
e R

)−1
]

︸ ︷︷ ︸
η1(n)

−
√

2/πµ−1γ1/α

2ϕ1
lim

n→∞
Tr
[

A5(n)
(

I −
√

2/πµσ−1
e R

)−1
]

︸ ︷︷ ︸
η2(n)

(60)

The matrix (I−
√

2/πµγ−1/αR) is symmetric, and its eigenvalue decomposition can be written as

I −
√

2/πµγ−1/αR = UVUT (61)
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with U being the orthonormal matrix of eigenvectors and V being a diagonal matrix of eigenvalues.
Therefore,

(
I −
√

2/πµσ−1
e R

)
= UV−1UT . Let λmax be the largest eigenvalue of the covariance matrix

R and µ be small enough such that (1−
√

2/πµγ−1/αλmax)
−1

> 0 under certain noise cases. Since V−1

is a diagonal matrix, elements are all non-negative and less than or equal to (1−
√

2/πµγ−1/αλmax)
−1

,
hence, η1 , limn→∞ η1(n) and η2 , limn→∞ η2(n) are further derived as

η1 , lim
n→∞

η(n) = lim
n→∞

Tr
{

A4
(

I −
√

2/πµσ−1
e R

)−1
}

= lim
n→∞

ρ2E
{

Tr
[

f (w(n))
(

I −
√

2/πµγ1/αR
)−1

f T (w(n))
]}

= lim
n→∞

ρ2E
{

Tr
[

f (w(n))UV−1UT f T (w(n))
]}

= lim
n→∞

ρ2E
{

Tr
[
V−1UT f (w(n)) f T (w(n))U

]}
≤ lim

n→∞
ρ2

1−
√

2/πµγ−1/αλmax
E
{

Tr
[
UT f (w(n)) f T (w(n))U

]}
= ρ2

1−
√

2/πµγ−1/αλmax
E
{

Tr
[

f T (w(∞))UUT f (w(∞))
]}

≤ ρ2

1−
√

2/πµγ−1/αλmax
E
{

f T (w(∞)) f (w(∞))
}
≤ Nρ2

1−
√

2/πµγ−1/αλmax

(62)

η2 , lim
n→∞

η2(n) = lim
n→∞

Tr
{

A5
(

I −
√

2/πµσ−1
e R

)−1
}

= lim
n→∞

ρE
{

Tr
[
v(n) f T (w(n)) + f (w(n)) vT(n)

]}
= lim

n→∞
2ρE

{
Tr
[
v(n) f T (w(n))

]}
= lim

n→∞
2ρE

{
Tr
[
w(n) f T (w(n))

]}
− 2ρE

{
Tr
[
w f T (w(n))

]}
= 2ρE

{
Tr
[
w(∞) f T (w(∞))

]}
− 2ρE

{
Tr
[
w f T (w(∞))

]}
. (63)

Substituting Equations (62) and (63) into Equation (60), the excess MSE is finally derived as

Pex(∞) =
µγ1/αϕ2√

2πϕ1
+
ργ1/αη′1√

2πµϕ1

(
ρ− η

′
2
η′1

)
(64)

where η′1 , η1/ρ2 and η′2 , η2/ρ2. According to Equation (62), one can find that η′1 is bound as

0 < η′2 ≤
N

1−
√

2/πµγ−1/αλmax
(65)

The excess MSE of sparse SLMS in Equation (65) implies that choosing suitable ρ < η′1/η′2 can
lead to smaller excess MSE than standard SLMS algorithm.

5. Numerical Simulations and Discussion

To evaluate the proposed robust channel estimation algorithms, we compare these algorithms in
terms of channel sparsity and non-Gaussian noise level. A typical broadband wireless communication
system is considered in computer simulations [3]. The baseband bandwidth is assigned as 60 MHz and
the carrier frequency is set as 2.1 GHz. Signal multipath transmission causes the 1.06 µs delay spread.
According to the Shannon sampling theory, the channel length is equivalent to n = 128. In addition,
average mean square error (MSE) is adopted for evaluate the estimation error. The MSE is defined as

MSE {w(n)} (dB) , 10log10 (1/M)∑ M
m=1 ||w(n)−w||22/||w||22 (66)
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where w and denote actual channel and estimator, respectively. M = 1000 independent runs are
adopted for Monte Carlo simulations. The nonzero channel taps are generated to satisfy random
Gaussian distribution as CN

(
0,σ2

w I
)

and all of these positions are randomly allocated within w,

which is normalized as E
{

||w||2
2

}
= 1. All of the simulation parameters are listed in Table 1.

Table 1. List of computer simulation parameters in robust adaptive sparse channel estimation.

Parameters Values

Training sequence Pseudo-random binary sequence

Non-Gaussian noise level α ∈ {1.0, 1.2, 1.4, , 1.6, 1.8, 2.0},
β = 0, γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}, δ = 0

Channel length N = 128
No. of nonzero coefficients K ∈ {2, 4, 8, 16}

Distribution of nonzero coefficient Random Gaussian CN (0, 1)
Received SNR 5 dB ∼ 30 dB

Gradient descend step size µ = 0.005
Sparsity-aware positive parameters

(i.e., ρZA = µλZA)
ρZA = 2× 10−4, ρRZA = 2× 10−3

ρRL1 = 5× 10−5, ρLP = 5× 10−6, ρLP = 2× 10−4

Reweight parameter of (S)LMS-RZA εRZA = 20
Threshold parameter of (S)LMS-RL1 δRL1 = 0.05
Threshold parameter of (S)LMS-LP εLP = 0.05

Approximate parameters of (S)LMS-L0 ∆ = 4, Q = 10

5.1. Experiment 1. MSE Curves of Proposed Algorithms vs. Different Alpha-Stable Noise

The proposed robust adaptive sparse channel estimation algorithms are evaluated with respect
to α in the scenarios of K = 8 and SNR = 10 dB, as shown in Figure 2. Under different alpha-stable
noise regimes, i.e., α ∈ {1.0, 1.2, 1.4, 1.6, 1.8}, our proposed algorithms can achieve much better MSE
performance than standard SLMS. With different sparsity constraint functions, i.e., ZA, RZA, LP, RL1,
and L0, different performance gain could be obtained. Since L0-norm constraint exploits channel
sparsity most efficiently in these sparse constraint functions, Figure 2 shows that the lowest MSE of
SLMS-L0 results in the lowest MSE. Indeed, Figure 2 implies that taking more channel sparse structure
information can obtain more performance gain. Hence, selecting an efficient sparse constraint function
is an important step in devising sparse SLMS algorithms. In addition, it is worth noting that the
convergence speed of SLMS-RZA is slightly slower than other sparse SLMS algorithms while its
steady-state MSE performance as good as SLMS-LP. According to Figure 2, proposed SLMS algorithms
are confirmed by simulation results in different impulsive noise cases.

5.2. Experiment 2. MSE Curves of Proposed Algorithms vs. Channel Sparsity

Our proposed channel estimation algorithms are evaluated with channel sparsity K ∈ {2, 4, 8, 16}
in the scenarios of α = 1.2, γ = 1.0, K = 8 and SNR = 10 dB, as shown in Figure 3. We can find that
the proposed sparse SLMS algorithms depend on channel sparsity K, i.e., our proposed algorithms
obtained correspondingly better MSE performance in a scenario of sparser channels. In other words,
exploiting more channel sparsity information could produce more performance gain and vice versa.
Hence, the proposed methods are effective to exploit channel sparsity as well as remove non-Gaussian
α-stable noise.
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5.3. Experiment 3. MSE Curves of Proposed Algorithms vs. Characteristic Exponent

The average MSE curves of the proposed algorithm with respect to characteristic exponent
α ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} in scenarios of dispersion parameter γ = 1.0, channel length
N = 128, channel sparsity K = 8 and SNR = 10 dB, are depicted as shown in Figure 4. The proposed
algorithm is very stable for the different strengths of impulsive noises that are controlled by the
characteristic exponent α. In addition, it is very interesting that the convergence speed of the proposed
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SLMS algorithms may be reduced by the relatively small α. The main reason the proposed SLMS
algorithm is utilized is that the sign function is stable at different values of α. Hence, the proposed
algorithm can mitigate non-Gaussian α-stable noise.
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Figure 4. Monte Carlo based MSE curves averaging over 1000 runs with respect to different
characteristic exponents α ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, in scenarios of dispersion parameter
γ = 1.0, channel length N = 128, channel sparsity K = 8, and SNR = 10 dB.

5.4. Experiment 4. MSE Curves of Proposed Algorithms vs. Dispersive Parameter

Dispersive distribution of α-stable noise has harmful effects. This experiment evaluates
the MSE performance of proposed SLMS algorithms in different dispersive parameters
γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5} in the scenarios of α = 1.2, K = 8, and SNR = 10 dB, as shown in Figure 5.
Larger γmeans more serious dispersion of α-stable noise and a worse performance for the proposed
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algorithm and vice versa. Figure 5 implies that the proposed SLMS algorithms are deteriorated by γ
rather than α. The main reason is that the proposed SLMS algorithm can mitigate the amplitude effect
of the α-stable noise due to the fact that the sign function is utilized in the proposed SLMS algorithms.
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Figure 5. Monte Carlo based MSE curves averaging over 1000 runs with respect to different dispersion
parameters γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}, in scenarios of characteristic exponent α = 1.2, channel length
N = 128, channel sparsity K = 8, and SNR = 10 dB.

5.5. Experiment 5. MSE Curves of Proposed Algorithms vs. SNR

In the different SNR regimes, the average MSE curves of the proposed algorithms are
demonstrated in Figure 6 in the scenarios of characteristic exponent α = 1.2, dispersive parameter
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γ = 1.0, channel length N = 128, and channel sparsity K = 8. The purpose of directing figures in
Figure 6 is to further confirm the effectiveness of the proposed algorithms under different SNR regimes.
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6. Conclusions

Based on SαS noise model, we have proposed five sparse SLMS algorithms for robust channel
estimation in this paper by introducing sparsity-inducing penalty functions into the standard
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SLMS algorithm so that channel sparsity can be exploited to improve the channel estimation
performance. Theoretical analysis verified the convergence of the proposed algorithms in terms
of mean and excess MSE. Numerical simulations were provided to validate the performance gain of
our proposed algorithm.
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