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Abstract:



We investigate the problem of minimizing the total power consumption under the constraint of the signal-to-noise ratio (SNR) requirement for the physical layer multicasting system with large-scale antenna arrays. In contrast with existing work, we explicitly consider both the transmit power and the circuit power scaling with the number of antennas. The joint antenna selection and beamforming technique is proposed to minimize the total power consumption. The problem is a challenging one, which aims to minimize the linear combination of [image: there is no content]-norm and [image: there is no content]-norm. To our best knowledge, this minimization problem has not yet been well solved. A random decremental antenna selection algorithm is designed, which is further modified by an approximation of the minimal transmit power based on the asymptotic orthogonality of the channels. Then, a more efficient decremental antenna selection algorithm is proposed based on minimizing the [image: there is no content] norm. Performance results show that the [image: there is no content] norm minimization algorithm greatly outperforms the random selection algorithm in terms of the total power consumption and the average run time.
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1. Introduction


Physical layer multicasting with a base station (BS) transmitting a common information to multiple terminals simultaneously has attracted intensive attentions recently. This system can support various applications such as the delivery of headline news, service information, and live broadcast, etc. Sidiropoulos et al. [1] studied the transmit power minimization problem constrained by the signal-to-noise ratios (SNRs) of a group of receivers. In addition to proving the NP hardness of the problem, they optimized the beamforming vector using the semidefinite relaxation (SDR) and randomization techniques. The problem for multiple cochannel groups was investigated in [2]. Since the number of antennas (N) is usually more than the number of available radio frequency (RF) chains (K) at the BS, the joint antenna selection and beamforming for a single group and multiple cochannel groups was studied in [3,4], respectively. Through jointly selecting K antennas from the total N antennas and optimizing the beamforming vector, the transmit power is minimized while meeting the quality of service (QoS) requirement of each receiver. Compared with the routine SDR approach, Tran et al. have solved the transmit power minimization problem using a successive convex approximation (SCA) approach with a massively reduced computational complexity [5]. Because of the low computational complexity, the SCA approach is suitable for the physical layer multicasting system with large-scale antenna arrays.



The multiple-input multiple-output (MIMO) system with large-scale antenna arrays was proposed in [6], and has been intensively studied for a higher spectral efficiency, reduced signal processing complexity, and improved energy efficiency compared with the traditional MIMO [7,8]. It is shown that the required transmit power to support a target rate is inversely proportional to the number of antennas in the massive MIMO system [9]. The optimal configurations of the RF chains was studied in [10] to maximize the transmit rate under the total power consumption constraint with or without the channel state information (CSI).



In the existing literature, the transmit power has been minimized, while the circuit power is neglected. However, the circuit power actually scales with the number of antennas and it should be considered for MIMO systems, especially the massive MIMO. In contrast to previous work, this paper aims to minimize the total power consumption under the SNR constraint of each receiver through jointly determining the antenna subset and the beamforming vector. Since the circuit power depends directly on the number of active RF chains in the antenna selection, we explicitly consider the circuit power in the total power consumption model. The main contributions of this paper are detailed as follows:

	
We formulate the total power consumption minimization problem by joint antenna selection and beamforming for physical layer multicasting with massive antennas.



	
Due to the higher complexity of the exhaustive search for the optimal solution, we propose three decremental antenna selection algorithms for the sub-optimal solution with low complexity.



	
On the basis of the SCA approach, we propose an algorithm to randomly select the antenna in a decremental manner, and modify the algorithm using the asymptotic orthogonality of the channels to improve the computational efficiency.



	
Instead of random selection, a more effective algorithm is further proposed based on the [image: there is no content] norm minimization.



	
Simulation results are provided to compare the performance of our proposed algorithms in terms of the total power consumption and the average run time.








The paper is organized as follows. Section 2 formulates the total power minimization problem. Three decremental antenna selction algorithms are proposed in Section 3. Simulation results are provided in Section 4 and conclusions are drawn in Section 5.



Notations: Throughout this paper, scalers and vectors are denoted by lowercase letters and boldface lowercase letters, respectively. For any vector, the superscript [image: there is no content] denotes the Hermitian transpose. The notations [image: there is no content] and [image: there is no content] denote the absolute value and 2-norm, respectively. We use [image: there is no content] to denote the circular symmetric complex Gaussian distribution with mean m and covariance [image: there is no content].




2. Problem Formulation


We consider the physical-layer multicasting system, where a single BS equipped with N antennas and N RF chains broadcasts a common message to M single antenna receivers. The received signal at the receiver i is given as


[image: there is no content]



(1)




where [image: there is no content] is the common signal transmitted to M receivers. [image: there is no content] and the [image: there is no content] vector [image: there is no content] represent the large-scale and small-scale fading of the i-th receiver’s channel, respectively. [image: there is no content] is the beamforming vector and [image: there is no content] is the additive white Gaussian noise at the receiver i. The received SNR of the i-th receiver is


[image: there is no content]



(2)







Considering the circuit power of the RF chains, the total power minimization problem can be formulated as:


P1:minw∈CN∥w∥22η+Pcirw0s.t.|wHhi|2≥γ¯i,i=1,…,M



(3)




where [image: there is no content] with [image: there is no content] denoting the SNR threshold of the i-th receiver. In the objective function, the first term represents the transmit power with η denoting the power amplifier efficiency, and the second term represents the circuit power consumption with [image: there is no content] denoting the circuit power cost per RF chain. The [image: there is no content]-norm [image: there is no content] represents the number of nonzero entries of the beamforming vector [image: there is no content], where [image: there is no content] represents the n-th element of [image: there is no content]. We can select the antenna subset corresponding to the nonzero entries of the beamforming vector and the unnecessary RF chains are switched off to reduce the circuit power consumption. The circuit power consumption is proportional to the number of active RF chains [image: there is no content]. The total consumed power comprises of both the transmit power and the circuit power of the RF chains.




3. Decremental Antenna Selction Algorithms


Since the [image: there is no content]-norm is non-convex and it has no accurate approximations, it is difficult to solve the optimization problem [image: there is no content]. To our best knowledge, there exists no approach to minimize the linear combination of [image: there is no content]-norm and [image: there is no content]-norm. The optimal solution can be found by exhaustive searching [image: there is no content] antenna subsets, i.e., solving the following NP-hard problem with [image: there is no content] times,


P2:minw∈CN∥w∥22s.t.|wHhi|2≥γ¯i,i=1,…,M



(4)







The complexity is enormous when the BS is equipped with large-scale antenna arrays. An iterative SCA algorithm has been proposed by Tran et al. to solve the problem [image: there is no content] effectively [5]. In this sections, we try to find the near-optimal solution by jointly optimizing the antenna subset and its beamforming vector.



Theorem 1. 

Let Υ and Φ denote two antenna subsets with the relationship [image: there is no content]. [image: there is no content]and [image: there is no content]are the optimal beamforming vectors regarding to Υ and Φ, respectively. The minimal transmission power consumed by the antenna subset Υ is no less than that of Φ, i.e., [image: there is no content].





Proof. 

Let [image: there is no content], then the elements of beamforming vector corresponding to the antenna subset [image: there is no content] equal zero. It is obvious that [image: there is no content]. ☐





As can be seen from Theorem 1, with the shrinking of the antenna subset, the minimal transmit power consumption gets larger, while the circuit power consumption gets smaller. Therefore, we can determine a tradeoff between the circuit power and the transmit power through designing the decremental antenna selection algorithms. The initial antenna subset is defined as [image: there is no content] with all the antennas selected. In each iteration, a new antenna subset is obtained from the previous subset according to different methods. The iteration of antenna selection continues when the total power consumption of the new antenna subset is less than the previous antenna subset. So, in each step of the antenna selection, we can make sure that the obtained new subset is superior to the previous subset and it is thus updated. Otherwise, when the total power consumption of the current iteration is no less than the previous subset, the antenna selection process is terminated. In this process, the total power consumption decreases step by step. Inspired by this fact, we proposed three decremental antenna selection algorithms based on the SCA approach.



3.1. Random Decremental Selection (RDS) Algorithm


We first propose a random decremental selection (RDS) algorithm. In the r-th step, k antennas are randomly selected from the antenna subset [image: there is no content] and removed, the new subset is [image: there is no content]. Then, we calculate the minimal transmit power consumption of [image: there is no content] using the SCA approach as it leads to an efficient solution with lower transmit power consumption compared with the routine SDR approach [1]. The total consumed power of [image: there is no content] can be obtained by summing the circuit power and the minimal transmit power calculated by the SCA approach [5]. If the antenna subset [image: there is no content] consumes less power than [image: there is no content], the algorithm goes into the next step, otherwise, the algorithm should be terminated with [image: there is no content] being the selected best antenna subset. Since k antennas are randomly selected and removed from the previous subset in each iteration, the tradeoff between the system performance and the algorithm efficiency can be balanced by judiciously adjusting the parameter k.




3.2. Modified Random Decremental Selection (MRDS)


To improve the efficiency of the RDS algorithm, we further propose the modified random decremental selection (MRDS) algorithm through introducing an effective and accurate approximation of the minimal transmit power consumption based on the asymptotic orthogonality of the channels [11]. The asymptotic orthogonality reduces the complexity of signal processing. To maximize the minimum SINR of all the users constrained by the transmit power, Xiang et al. proved that the asymptotically optimal beamformer when [image: there is no content] is a linear combination of the channels between the BS and its served users [12].



Theorem 2. 

To minimize the transmit power constrained by the SNR requirement, the optimal beamforming vector is a linear combination of user’ channels if they are orthogonal, that is [image: there is no content], where [image: there is no content]is the coefficient of user i in the combination.






Proof. 

Let [image: there is no content] be an orthogonal basis for the complement of the space spanned by [image: there is no content], then


[image: there is no content]



(5)







Let [image: there is no content]. We can observe that if [image: there is no content] satisfies the constrains, [image: there is no content] also satisfies, and [image: there is no content] due to the orthogonality of [image: there is no content] and [image: there is no content]. Thus, the beamforming vector [image: there is no content] is optimal unless all the coefficients [image: there is no content] equal zero. ☐







Based on the SNR constrains, the optimal beamforming vector for the problem [image: there is no content] is given as [image: there is no content] when the channels are orthogonal. The minimal transmit power is [image: there is no content]. Since [image: there is no content] as [image: there is no content], the minimal transmit power is reduced by approximately [image: there is no content] through adding one antenna. Therefore, when the channels are orthogonal, the decreasing speed of the minimal transmit power gets slower with the enlarge of the antenna size N. Since the channels are asymptotically orthogonal but not exactly orthogonal, to satisfy all the constrains of the problem [image: there is no content], the beamforming vector [image: there is no content] should be scaled as [image: there is no content] with [image: there is no content].



The corresponding transmit power [image: there is no content] will be an accurate approximation of the minimal transmit power when the channels are asymptotically orthogonal. To check the orthogonality of the channels, we investigate the correlation matrix C with [image: there is no content]. If [image: there is no content], the channels are regarded as orthogonal and the minimal transmit power can be calculated more efficiently using the linear approximation instead of the SCA approach. Compared to the worst-case complexity [image: there is no content] per iteration for the SCA approach [5], the linear approximation introduced here merely has the complexity of [image: there is no content]. Since the linear approximation has a much lower complexity, the MRDS algorithm is more efficient than the RDS algorithm. Apparently, the probability of channel orthogonality gets larger with the increase of the parameter δ, as a result, the MRDS algorithm turns to be more efficient. However, the linear approximation becomes inaccurate when δ is large enough, so δ should be determined as a compromise between the accuracy and the efficiency.




3.3. [image: there is no content]-Norm Minimization (L0NM) Algorithm


In each step of the RDS and the MRDS algorithms, k antennas are randomly selected and dropped, and the beamforming vector is optimized given the selected antenna subset. In other words, we first fix the item [image: there is no content] and then minimize the item [image: there is no content] as the [image: there is no content]-norm and the [image: there is no content]-norm cannot be minimized simultaneously. The main drawback of the two algorithms is the randomness of the antenna selection. In this subsection, we propose an [image: there is no content]-norm minimization (L0NM) algorithm with higher efficiency. Different from the RDS and the MRDS algorithms, L0NM selects the antennas through minimizing the [image: there is no content]-norm instead of random selection. That is, we first fix the item [image: there is no content] and then minimize the item [image: there is no content].



In the r-th step, we first calculate the minimum transmit power [image: there is no content] by the SCA approach for the previous subset [image: there is no content] whose [image: there is no content]-norm is [image: there is no content]. Then, we set a positive value θ, if the new subset satisfies the following requirement, i.e.,


[image: there is no content]



(6)




which implies


[image: there is no content]



(7)







The subset [image: there is no content] is superior to the subset [image: there is no content]. The requirement Equation (7) is equivalent to minimize [image: there is no content] and the minimal value of [image: there is no content] should be less than [image: there is no content]. So, we have the following optimization problem,


P3:minw(r)∈CNw(r)0s.t.w(r)22≤w(r−1)22+ηθw(r)Hhi(r−1)2≥γ¯i,i=1,⋯,M



(8)







The problem [image: there is no content] is a minimum [image: there is no content]-norm problem where both the objective function and the first constraint are non-convex. Since the [image: there is no content]-norm is the closest convex approximation to the [image: there is no content]-norm [3,13], we replace the [image: there is no content]-norm with [image: there is no content]-norm which can also induces the sparsity. Then, the problem [image: there is no content] can be reformulated as


P4:minw(r)∈CNw(r)1s.t.w(r)22≤w(r−1)22+ηθw(r)Hhi(r−1)2≥γ¯i,i=1,⋯,M



(9)







For the non-convexity of the SNR constraints, we adopt the iterative successive convex approximation method similarly as [5]. In each iteration step, the minimal transmit power increases by a fixed value [image: there is no content]. Since the decreasing speed of the minimal transmit power becomes slower with the increase of N, we drop more antennas in the first step to improve the efficiency of the L0NM algorithm. The operation of the L0NM algorithm is summarized as Algorithm 1.








	Algorithm 1 [image: there is no content]-Norm Minimization (L0NM) Algorithm



	Input: M, N, η, [image: there is no content], [image: there is no content], [image: there is no content] and θ.



	Output: The optimal subset [image: there is no content] and the beamforming vector [image: there is no content].



	Main procedure:

	
Initialization



Given the initial set [image: there is no content] including all the antennas and [image: there is no content]. Set [image: there is no content].



	
Step r



Calculate the minimum transmit power [image: there is no content] for [image: there is no content] according to the SCA approach. To solve the minimum [image: there is no content]-norm problem [image: there is no content], the objective function is replaced by [image: there is no content]-norm. Solve the reformulated problem [image: there is no content]. If [image: there is no content], [image: there is no content] is the antenna subset corresponding to the nonzero entries of [image: there is no content], [image: there is no content], and repeat this operation. Otherwise, stop and the optimal subset is [image: there is no content].



	
End











Remark 1. 

Considering a high antenna correlation or a large amount of line of sight, the MRDS algorithm is not suitable because the factors have an harmful impact on the channel orthogonality. However, the L0MN algorithm is not influenced by the antenna correlation and amount of line of sight.







4. Simulation Results


In this section, we first evaluate the asymptotical orthogonality of the channels between the BS and its served users, which reflects the computational efficiency of MRDS. Figure 1 shows the orthogonal probability ([image: there is no content]) versus the number of BS antennas with [image: there is no content], 15, and 20. The orthogonal probability gets larger with the increase of the number of BS antennas or with the decrease of the user amounts.


Figure 1. The orthogonal probability ([image: there is no content]) versus the number of base station (BS) antennas.



[image: Algorithms 09 00042 g001 1024]






In Figure 2 and Figure 3, the performance of the three proposed algorithms are compared to show the total power consumption and the computation time by 500 independent trials. In our experiments, we use the log-distance path loss model, in which the path loss at distance d is set as [image: there is no content] [14], where n is the path loss exponent and [image: there is no content] is the free-space path loss at the reference distance [image: there is no content] and the carrier frequency of [image: there is no content]. The simulation parameters are detailed in Table 1. Without loss of generality, All the users are assumed to be located 1200 m away from the BS, and all [image: there is no content]s are the same and vary from 0 dB to 30 dB.


Figure 2. The average minimum total consumed power calculated by our methods versus the signal-to-noise ratio (SNR) constrains.



[image: Algorithms 09 00042 g002 1024]





Figure 3. The average run time of our algorithms versus the SNR constrains.



[image: Algorithms 09 00042 g003 1024]






Table 1. Simulation Parameters.







	
Parameter

	
Value

	
Parameter

	
Value






	
N

	
200

	
η

	
1




	
n

	
3.8

	
θ

	
0.8 W




	
[image: there is no content]

	
100 m

	
[image: there is no content]

	
−96 dBm




	
[image: there is no content]

	
80 mW

	
[image: there is no content]

	
2.5 GHz [10]










Figure 2 shows the average minimal total power consumption calculated by our methods versus the SNR constrains when [image: there is no content]. The average minimal power consumption gets larger when the SNR requirement becomes more strictly. The difference of the average minimum total consumed power is minor between the RDS algorithm and the MRDS algorithm. The L0NM algorithm significantly outperforms the RDS algorithm, because it does not remove antennas randomly in each step as done by the RDS algorithm.



Figure 3 evaluates the average run time of our algorithms versus the SNR constrains when [image: there is no content]. The codes are executed on a 64-bit desktop with 8 Gbyte RAM and Intel CORE i5 using YALMIP as the Matlab package. It can be seen that, either the MRDS algorithm or the L0NM algorithm provides noticeable improvement compared with the RDS algorithm in terms of the average run time.




5. Conclusions


We have studied in this paper how to jointly design the antenna selection and beamforming for the multicasting system with large-scale antenna arrays to minimize the total power consumption while guaranteeing the SNR requirement of each user. We proposed three decremental selection algorithms termed as RDS, MRDS, and L0MN. Performance results show that the L0NM algorithm can greatly outperform the random selection algorithm in terms of the total power consumption and the average run time.
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