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Abstract: Type-2 fuzzy logic controllers (T2 FLC) can be viewed as an emerging class of intelligent
controllers because of their abilities in handling uncertainties; in many cases, they have been shown to
outperform their Type-1 counterparts. This paper presents a literature review on recent applications
of T2 FLCs. To follow the developments in this field, we first review general T2 FLCs and the
most well-known interval T2 FLS algorithms that have been used for control design. Certain
applications of these controllers include robotic control, bandwidth control, industrial systems
control, electrical control and aircraft control. The most promising applications are found in the
robotics and automotive areas, where T2 FLCs have been demonstrated and proven to perform
better than traditional controllers. With the development of enhanced algorithms, along with the
advancement in both hardware and software, we shall witness increasing applications of these
frontier controllers.

Keywords: Type-2 fuzzy logic systems; Type-2 fuzzy logic control; general Type-2 fuzzy logic
controllers; interval Type-2 fuzzy logic controllers; Karnik-Mendel algorithms; Wu–Mendel method;
Biglarbegian–Melek–Mendel method; Nie–Tan method

1. Introduction

Fuzzy logic sets were first introduced by Zadeh [1]. Developments in fuzzy logic then stimulated
the creation of fuzzy logic systems (FLSs), which emerged in many applications in systems modeling
and control. Mamdani and Baaklini are the ones that presented the first fuzzy logic controller (FLC) [2].
Earlier FLS designs were generally categorized as Type-1 fuzzy logic systems (T1 FLSs). T1 FLSs were
used by Japanese companies who adopted the FLSs and implemented them in a water treatment plant
by Fuji Electric in 1983 and in a subway system by Hitachi in 1987.

One of the main challenges in the design of T1 FLSs is the shape of a membership function (MF)
that is used. To incorporate uncertainty in fuzzy systems, Zadeh introduced Type-2 fuzzy sets (T2 FSs).
These are an extension of T1 FSs, which adds an extra degree of freedom to entitle an uncertainty factor
in the systems [3]. T2 FSs have membership grades, which are also fuzzy [4]. According to Hisdal
in [5], “increased fuzziness in a description means increased ability to handle inexact information in a
logically correct manner”. This extra uncertainly gives the T2 FLS an extra degree of freedom (DOF)
and increases the complexity in most T2 FLS applications [3].

Due to the mathematical complexity of T2 FLSs, a simpler form of them was proposed, called
interval Type-2 fuzzy logic systems (IT2 FLS). In an IT2 FLS, the uncertainty is mapped into a third
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dimension where the value of the MF is also mapped for each point on a two-dimensional domain.
This special IT2 FLS is a simpler form of T2 FLS and also relies on the mathematics of T1 FLS [6]. The
major difference is that the defuzzifier block of a T1 FLS is replaced by an output processing block in
a T2 FLS. This block consists of a type reduction (TR) followed by defuzzification, meaning that the
TR is the function that maps a T2 FS to a T1 FS. This enables mapping the uncertainty to an interval
between the upper membership function (UMF) and the lower membership function (LMF).

T2 FLSs, including IT2 FLSs, are a more recent approach to solving problems that in many cases
a T1 FLS cannot properly accomplish. The robustness of both T1 and IT2 FLSs is investigated in [7].
It was determined that the IT2 FLS outputs have small approximation errors; however, choosing to
design a T1 or IT2 FLS is relatively application dependent. Furthermore, in [8], it has been shown
that increasing the number of rules and the number of MFs beyond a certain limit is impractical. This
increases the complexity of the FLC with almost no effect on the output. Regardless of this, IT2 FLSs
are used in many applications, such as robot control, bandwidth control, industrial systems control,
electrical control and aircraft control.

In this paper, we present the new applications of T2 FLC and introduce the vital and key areas
where they have been successfully implemented and used. While the intent of this paper is not
focusing on theory or how to design these systems, we ‘briefly’ review different T2 FLC systems and
their structures, so interested readers have a better understanding of them. Consequently, we focus
mainly on the applications, present challenges and future directions in this field, which are of interest
to engineers, practitioners and researchers who would like to use T2 FLC in their applications.

The remainder of the paper is organized as follows: in Section 2 of this paper, we briefly discuss
the most well-known IT2 algorithms; in Section 3, we present a literature review of IT2 FLCs along
with their applications; and finally, in Section 4, we draw conclusions and future directions.

2. T2 FLS

In this section, we review T2 FLSs. We start with a description of general T2 FLSs in Section 2.1,
followed by IT2 FLSs in Section 2.2. Type-1 fuzzy systems are not presented here, as currently, there
are many works in this area. The main difference of Type-2 fuzzy systems with respect to Type-1 is
the use of membership functions in which the membership is fuzzy instead of crisp. In Type-1, it is
assumed that membership can be assigned as a crisp numeric value, which is not necessarily a realistic
assumption. On the other hand, in general or interval Type-2 fuzzy sets, it is considered that there is
uncertainty in knowing the values of the membership, and therefore, the concept of the footprint of
uncertainty is introduced to model uncertainty in real-world problems.

2.1. General T2 FLS

A general T2 FLS (GT2 FLS) accounts for the MF uncertainties, but it weights all of the uncertainties
nonuniformly. In an IT2 FLS, however, all of the uncertainty weights are considered to be uniform.
The MF of a GT2 FLS is represented in 3D space, where the z-axis resembles the MF value provided by
µA, px, uq. Both IT2s and GT2 FLSs are parametric models, but GT2 FLSs have more parameters than
IT2 FLSs. A GT2 FLS can be represented in four different ways, such as points, wavy slices, horizontal
slices and vertical slices [9]. In Figure 1, the structure of a GT2 FLS is shown, which consists of several
blocks. The fuzzifier maps a crisp input vector with multiple inputs into other input FSs. These FSs are
also known as input T2 FSs. The inference engine combines rules and gives a mapping from input
T2 FSs to output T2 FSs. The output of the inference engine is a T2 set, which can give a T1 FS using
extended defuzzification methods. This is the TR since it transforms output T2 FSs to T1 FSs, and it
obtains a TR set. To get the crisp output from T2 FLS, the TR set is defuzzified by finding the centroid
of it or through other methods, such as choosing the highest membership point in the TR set [10].
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In Figure 1, the structure of a GT2 FLS is shown which consists of several blocks. The fuzzifier
maps a crisp input vector with multiple inputs into other input FSs. These FSs are also known as input
T2 FSs. The inference engine combines rules and gives a mapping from input T2 FSs to output T2
FSs. The output of inference engine is a T2 set which can give a T1 FSs using extended defuzzification
methods. This is the TR since it transforms output T2 FSs to T1 FSs and it obtains a TR set. To get
the crisp output from T2 FLS, the TR set is defuzzified by finding the centroid of it, or through other
methods such as choosing the highest membership point in the TR set [10].

The rule structure of a general T2 FLS is given by [9]:
If x1 is Fi

1 and xn is Fi
n, then y is Yi where i “ 1, . . . , M.

In the above rule base, xj is the j-th input to the system (e.g., sensor input), Fi
j is the j-th input

Type-2 fuzzy membership and Yi is the output Type-2 fuzzy membership function.

2.2. IT2 FLS

In this section, we review the most well-known algorithms for computing the output of an IT2
FLS [11]. These algorithms are: Karnik–Mendel (KM), Nie–Tan (NT), Biglarbegian–Melek–Mendel
(BMM) and Wu–Mendel (WM) [12]. The KM algorithms contain TR methods, which reduce a T2
set into a T1 set [10]. The other algorithms bypass TR and directly compute the output of a T2
FLS. Alternative methods, such as Coupland–John, Du–Ying, the Tao–Taur–Chang–Chang method,
Li–Yi–Zhao and many others are also mentioned.

2.2.1. Karnik–Mendel Method

The KM method was first developed by N.N. Karnik and J.M. Mendel [13,14]. According to [15],
this method is the most widely-used method for TR of an IT2 FS. TR is a major road block in computing
the output of a T2 FLS.

Many enhanced versions have been proposed that use the KM method; however, they work with
a different strategy. Wu and Nie presented the enhanced iterative algorithm with stop Condition
(EIASC), where five variations are compared experimentally, and the most efficient one is the optimum
algorithm also known as EIASC [16].

Liu and Mendel [17] introduced the α-cut algorithm for solving the fuzzy weighted average
(FWA) problem. This algorithm uses the KM algorithm to compute the FWA α-cut endpoints. Another
work proposed a boundary function based on the KM TR method of IT2 PID controllers [18]. This
KM method generated a boundary function KM, which was proved to be superior and more feasible.
Other algorithms were also developed that improve on existing KM algorithms. This is called the
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enhanced Karnik–Mendel (EKM) originally presented by Wu and Mendel [19]. It was found that on
average, the EKM method was able to reduce computational time by 39% compared to KM. In [20],
Melgarejo and Duran developed two hardware architectural proposals for the EKM method. The first
approach uses a sequential online arithmetic, whereas the second approach includes operators based
on the CORDIC (coordinated rotation digital computer) algorithm. The CORDIC algorithm showed
better performance in terms of speed and accuracy.

The fundamental KM algorithms converge to exact solutions monotonically and at a
super-exponential rate. They can also run in parallel because they are independent [21]. For IT2
FLS, Yi in the above rule base is interval Type-2 sets and is represented by two intervals of

”

yi, yi
ı

. To

calculate the IT2 FLS output, we first arrange yi
r and yi

l in ascending order. The following steps show
how to compute left and right intervals for the KM algorithm [11,13]:

(1) Arrange yi
r in ascending order.

(2) yr is calculated as:

yr “

řM
i “ 1 f i

ryi
r

řM
i “ 1 f i

r
(1)

f i
r “

f i ` f i

2 ; let y1r “ yr (note that f i, f i are the firing intervals).

(3) Find S, such that yS
r ď y1r ď yS ` 1

r .

(4) Find y1r “
řM

i “ 1 f i
r yi

r
řM

i “ 1 f i
r

with f i
r “ f i for i ď S and f i

r “ f i for i ą S; now, let y2r “ yr.

(5) If y2r ‰ y1r, go to Step 6. If y2r “ y1r, set yr “ y2r, and stop.
(6) Let y1r = y2r, and go to Step 3.

The algorithm for computing y1 is similar to that of the yr algorithm, except that all instances of
yr, y1r, y2r, yi

r, yR
r , yR ` 1

r , f i
r and R are replaced with yl , y1l , y2l , yi

l , yL
l , yL ` 1

l , f i
l and L, respectively.

Finally, the defuzzified output is the average of yr and yl as follows:

YKM “

ˆ

yl ` yr

2

˙

(2)

2.2.2. Wu–Mendel Method

The Wu–Mendel method was presented to speed up the T2 FLC1 by overcoming the TR
computational burden. This can be done by reducing the number of iterations before convergence
occurs [12]. Wu–Mendel uncertainty bounds method provides mathematical formulas for the inner
and outer bound sets, which can be used to approximate the TR set [22]. It has been shown that the
WM method produces similar results to those obtained using the KM TR. Furthermore, it can result in
much faster responses than the KM algorithms. The bounds derived in the WM method can estimate
the uncertainty in IT2 FLS output without performing TR [22]. This algorithm approximates the TR set
by using the min-max uncertainty bounds [22]. These uncertainty bounds are defined as yl ď yl ď yl
and yr ď yr ď yr as follows:

yl “ mint

řM
i “ 1 f iyi

l
řM

i “ 1 f i
,
řM

i “ 1 f iyi
l

řM
i “ 1 f i

u (3)

yr “ maxt
řM

i “ 1 f iyi
r

řM
i “ 1 f i

,

řM
i “ 1 f iyi

r
řM

i “ 1 f i
u (4)

yl “ yl ´ r

řM
i “ 1

´

f i ´ f i
¯

řM
i “ 1 f i řM

i “ 1 f i
ˆ

´

řM
i “ 1 f ipyi

l ´ y1
l q

řM
i “ 1 f ipyM

l ´ yi
lq
¯

´

řM
i “ 1 f ipyi

l ´ y1
l q `

řM
i “ 1 f ipyM

l ´ yi
lq
¯ s (5)
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yr “ yr ` r

řM
i “ 1

´

f i ´ f i
¯

řM
i “ 1 f i řM

i “ 1 f i
ˆ

´

řM
i “ 1 f ipyi

r ´ y1
r q

řM
i “ 1 f ipyM

r ´ yi
rq
¯

´

řM
i “ 1 f ipyi

r ´ y1
r q `

řM
i “ 1 f ipyM

r ´ yi
rq
¯ s (6)

The output is then computed as follows:

YWM “
1
2
r
yl ´ yl

2
`

yr ´ yr

2
s (7)

2.2.3. Biglarbegian–Melek–Mendel Method

The Biglarbegian–Melek–Mendel algorithm computes the output value of an IT2 FLS as a
combination of two T1 FS.

This method is similar to the NT method, which replaces TR and is given as follows [23]:

YBMM “ m

řM
i “ 1 f iyi

řM
i “ 1 f i

` n
řM

i “ 1 f iyi

řM
i “ 1 f i

(8)

where the parameters m and n are used to tune the system and YBMM is the final crisp output of
the IT2 FLS.

The structure of this controller embeds two free parameters, m and n, that are used for tuning the
controller. This controller has a simpler structure than WM and has been used to determine stability
and robust control design [24].

2.2.4. Nie–Tan Method

The Nie–Tan method was developed by Maowen Nie and Woei Wan Tan [25]. It works by
calculating the union of a fired rule output set first. It then computes the mean of the LMF and the
UMF, respectively. This will result in a T1 FS where the centroid is the defuzzified value. It does not
involve embedded sets during processing or derivation, leading to a very conceptually simple method.

The NT algorithm was developed using the vertical slice representation as opposed to the
wavy-slice representation, which the KM uses [12]. In the original paper, the NT method and the
KM method had minimal differences in the defuzzified output [25]. This is advantageous as the NT
method is less computationally expensive. Additionally, the output can be expressed in a closed form
thereby providing an efficient tool for the theoretical analysis of IT2 FLSs. Comparatively, the NT
method also has a lower computational complexity than the KM and WM algorithms. A disadvantage
to this method is that the uncertainty level cannot be provided.

It is also reiterated in [26] that the NT and KM outputs are very close. They simulated various
IT2 FS defuzzifiers using various MFs. These MFs were: (1) symmetric Gaussian MFs with uncertain
standard deviation; (2) triangular LMF and piecewise Gaussian UMF; (3) piecewise Gaussian MFs; and
(4) piecewise linear MFs. Using these MFs, they tested EIASC, enhanced opposite direction searching
algorithm (EODS), enhanced KM (EKM), NT and improved NT (INT).

The INT method was proposed in [26], and it was demonstrated that it has less absolute and
relative errors than the NT method. The fundamental NT closed-form equation, which replaces the TR,
is shown in [25] as:

YNT “

řM
i “ 1 yi f i `

řM
i “ 1 yi f i

řM
i “ 1 f i `

řM
i “ 1 f i

(9)

2.2.5. Other IT2 Algorithms

Alternative methods are also developed to decrease the computational complexity and increase
execution speed. Coupland and John (CJ) applied a geometric construction of the centroid to find the
crisp output of a T2 FLS [27]. It builds a polygon where the firing strengths lie. If there are “N” fired
rules, the polygon then has 2N points on the boundary. The defuzzified output will then lie on the
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center of the polygon [28]. It was found in [29] that the CJ method provided the best performance. The
CJ method also satisfied the left and right end points in a majority of cases.

Similar to the CJ method, Greenfield designed a TR in which each IT2 FS is replaced by a T1 FS
with membership grades computed recursively. Once all of the IT2 FSs are replaced by artificial T1
FSs, the entire IT2 FLS is reduced to a T1 FLS. This will then simplify the defuzzification using the
collapsing method [30]. This method is identical to the NT method if there is only one input. If there
are more inputs, however, the firing level is different.

Another method by Du–Ying (DY) proposes an average defuzzifier [31]. It will compute all of the
crisp outputs using all of the possible combinations of upper and lower firing levels to total 2N outputs.
The final output is then averaged from all of these values. This method is very computationally
expensive as each extra rule will add to the computation exponentially [28].

In the Tao–Taur–Chang–Chang method (TTCCM), a simplified IT2 FLS is generated by a
combination of two IT1 FSs [32]. The first IT1 FLS is built from the possible left-most IT1 FS, and
the second is built from the possible right-most IT1 FS. From this, an IT2 FS was made by blurring
a triangular IT1 FS with both the left and the right. This method has some setbacks, as it does not
consider IT2 FSs with irregular FOUs.

The Li–Yi–Zhao (LYZ) method utilizes an inclusion function for each rule. It finds the maximum
value of the upper bound for each rule while also finding the minimum value as the lower bound for
each rule [33]. These bounds are very loose given that the rule base is low, as well. It does however
avoid the iterative procedure of KM methods.

The hierarchical collapsing (HC) method was also developed, which utilizes α-plane
decomposition to prepare a direct defuzzification procedure [34]. This proposed method was shown
to be fast and robust.

Another method developed by Melgarejo utilized a combination of an exhaustive search with
recursive computation in a field-programmable gate array (FPGA) [35]. They proposed a fast recursive
TR method, which also finds the left and right centroids. This method avoided using a switch method
and had higher computational speed over KM. More in-depth TR methods are discussed in [12]. For
the design of IT2 FLSs, please see a recent survey [36].

3. Review of IT2 FLCs

3.1. Robotic Control

In [37], a T2 FLC was designed for navigating a mobile robot in dynamic environments with a
hierarchical structure (HFLC). The HFLC reduces the number of rules to increase the speed in real-time
applications. Using the T2 FLC resulted in very good real-time control.

In [38], an IT2 Takagi–Sugeno–Kang (TSK) FLC was developed for modular and reconfigurable
robots (MRRs). This controller was designed for tracking purposes, which can be implemented in real
time. Experiments were done on the IT2 TSK FLC, which shows that it can be applied with guaranteed
uniformly ultimately bounded (UUB) stability. It was also determined that the proposed controller
can, in some cases, outperform some linear and non-linear controllers in similar configurations.

In [39], Liu et al. proposed a T2 fuzzy control system (FCS) for biped robots based on a switched
nonlinear model. This paper also proposes a new fuzzy c-mean variance (FCMV) clustering algorithm
to model the T2 FCS. At the time, there were no appropriate mathematical tools to design a control
system for the biped robot. Prospects from this work are to develop a switched system theory for
industrial applications.

In [40], a mobile robot wall-follower was controlled using a reinforcement ant optimized fuzzy
controller (RAOFC). The rules are automatically generated for the robots using an aligned IT2 fuzzy
clustering (AIT2FC) technique. Using the AIT2FC reduced the number of FSs for each input dimension.
Furthermore, the consequence of each rule is generated using a Q-value-aided ant colony optimization
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(QACO). It was found that by using T2 FSs, the FC was more robust to uncertainties in the environment
and noise.

The Pioneer 3-DX was an experimental platform for which an optimized IT2 fuzzy PID controller
was designed [41]. This controller was evaluated for the path tracking problem. It was found that
the IT2-FPID controller was superior in the control performance in the presence of disturbances and
uncertainties in comparison to PID, T1-PID and T1-FPID self-tuning controllers.

T2 FCs have been implemented in many real-time control applications; however, the main issues
of adopting such systems is their complexity in large-scale implementations. T2 FLCs systems have
not been “widely” implemented in robotics due to the limitations of mathematical proofs to have
closed-loop system stability, although there are some recent works that have been able to overcome
this problem, such as the work of Khanesar et al. [42].

In [43], Chaoui and Gueaieb implemented an IT2 FLCs on a flexible-joint manipulator. This work
takes into account a trade-off between the link position and the actuators’ internal stability, and it is
based on sliding mode control. It was shown that this controller was superior to T1 FLC in simulations.

In [44], an IT2 TSK FLS was developed for tracking control of robot manipulators. The IT2 TSK
FLS was able to approximate the uncertainty and the non-linear robot dynamics. This was then
incorporated into a controller, which combined the IT2 TSK FLS and a sliding mode control (SMC)
with different weights. This controller was designed to minimize the approximation errors and to
reduce the amount of uncertainty in the system. An advantage of this design was that the IT2 TSK FLS
controller combines the robustness of SMC with the adaptive IT2 TSK FLS. Experiments were done
on a robot with two degrees of freedom. It was concluded that the IT2 TSK FLS controller performed
better than an adaptive IT1 FLS and provided more flexibility.

In [45], an IT2FLC was used for controlling multiple robots to cooperate and reach certain targets.
This controller was optimized using a particle swarm optimization algorithm (PSO). The PSO algorithm
can find a solution to an optimization problem by searching space and predict social behavior in the
presence of objectives [46]. This method allows the robot to find the best solution by iterations after
the particles of the algorithm are randomly distributed. After this, the best values are found, and the
particles update their velocity and position. To handle the collision avoidance, a hybrid reciprocal
velocity obstacles (HRVO) were used in tandem. It was concluded that the PSO-optimized IT2 FLS
was faster the non-optimized IT2 FLS.

Martinez et al. in [47] used a genetic algorithm (GA) for the optimization of a T2 FLC for the
dynamic model of a unicycle mobile robot. In [48], a combination of PSO and GA was used and
was proved to have the best performance possible. The same combination of algorithms was used
later on to minimize the steady state error of linear systems in [49]. Furthermore, in [50], a hybrid
PSO-GA optimization method was used for the automatic design of the FLC. The optimal FLC design
was tested using benchmark control plants and an autonomous mobile robot for trajectory tracking
control. This bio-inspired method was determined to be feasible for these control applications, and it
is a feasible method for improving FLC designs.

The ant colony optimization (ACO) is another method used to design optimal T2 FLSs. The ACO
technique is inspired by the foraging behavior of real ants. It is a population-based, meta-heuristic
technique that takes advantage of past performance memory and mainly depends on values defined
for its parameters [51].

ACO was found to be robust and versatile in handling a wide range of combinatorial optimization
problems [46]. In [51], a new fuzzy approach was presented for diversity control. This approach was
used in controlling the trajectory of a unicycle mobile robot with optimized MFs. For this mobile robot,
encouraging results were demonstrated.

Tuning techniques for T2 FLCs are widely used, and they have been applied in two different ways.
The first is by tuning the MFs of a given rule set, and the second method is by selecting an optimal
subset of rules from all of the possible rules [52]. For tuning FLCs, evolutionary algorithms are the
most adopted. However, a simple tuning algorithm (STA) can also be used. The STA was designed to
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improve the response of T1 FLCs in practical, intuitive and simple ways. In [53], an extension of the
STA was presented on the theory of T2 FLCs using a parallel model implementation. This paper also
presented a mechanism to calculate the feedback gain, new integral criteria parameters and the effect of
the AND/OR operator combinations on the fuzzy rules. All of these mechanisms helped in improving
the performance and applicability. Tuning techniques can also be classified as derivative-based,
derivative-free and hybrid tuning methods. This classification refers to the information that is used
during the tuning process.

Extended discrete action reinforcement learning automata (EDARLA) is a technique that tracks
the input reference signal by computing MF parameters. EDARLA was presented in [54], where it is
used for adapting parameters and tuning processes. This technique searches for parameters in every
cell dimensional space. It updates at discrete sample points, so the chance of obtaining better results is
more likely to occur.

Discrete action reinforcement learning automata (DARLA) and continuous action reinforcement
learning automata (CARLA) are two other techniques used. The DARLA technique is operated by
selecting actions in a stochastic trial and error process in an unknown environment, whereas CARLA
is operated on a separate action [54]. The automata set in CARLA runs in a parallel implementation,
thus determining multiple parameters. Actions have an associated probability density function, which
helps in the selection process for better performance purposes. In [52,54], it was proven that the best
results were obtained using T2 FLCs systems using the EDARLA technique compared to CARLA
and DARLA.

Robotic excavator controllers were also designed based on IT2 FLC structure. In [55], the servo
position control of an electro-hydraulic excavator was demonstrated. The controller utilized fluid flow
rates, pump hydraulics and friction forces. The position of the bucket with respect to the boom, arm
and bucket axes was controlled.

A Delta Parallel Robot was also studied using a T1 FLC and an IT2 FLC [56]. The performance
of the two controllers was evaluated in the presence of sensory noise and other uncertain system
parameters. The parameter being evaluated was the position control of the robot. Experiments
were done using both controllers and it was determined that the IT2 FLC provided improvements in
both performance and robustness. It was also found that increasing the fuzziness also improves the
uncertainty robustness to a certain level. Once this level is hit, increasing the fuzziness can lead to
massive performance degradations.

3.2. Controller Systems Using IT2 FLC and Neural Networks

In [57], a bilateral teleoperation system was controlled through a T2 fuzzy wavelet neural network
(T2FWNN). This teleoperation system allows a human operator to send commands to a local master
manipulator where it then drives a slave manipulator in a remote location. This is highly non-linear, as
communication delays and corrupt data affect the data link. The main advantage of this controller is
that it can handle unknown environmental interactions; it can handle uncertainties associated with
information and data in the knowledge base; and it can remove most noise added to data transmitted
through the communication channel. This controller was compared to the T1FWNN controller and
conventional FC, and it was more efficient.

In [42], the feedback error learning of magnetic satellites was controlled using a T2FWNN with
elliptic MFs. The learning is based on the feedback error learning method, and the stability of the
learning is proven, but also the stability of the overall system, to ensure robustness. The simulation
of the proposed control scheme shows that the adaptive T2FNN when it is used in parallel with a
conventional PD controller can control the system effectively, and it outperforms conventional PD
controller when it is used alone. It is also shown that the use of T2FNN with elliptic Type-2 MFs added
makes it possible to cope with uncertainties in terms of measurement noise more effectively.
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3.3. Internet Bandwidth Control

IT2 controllers are not limited to controlling autonomous robots. In a paper by Jammeh et al., an
IT2 FLC was used for congestion control across networks [58]. In this specific case, the video streaming
quality was measured. This is difficult, as the bit rate must be adjusted in order to account for network
traffic volatility. In earlier research, a T1 FLC is capable of reducing packet loss and rate fluctuations;
however, to cope with the uncertainty of the network traffic, an IT2 FLC was designed to demonstrate
the difference. The two testing methods used were streaming a video during Internet cross-traffic
and streaming a video with other videos running at the same time. The proposed IT2 FLC showed a
significant performance boost over the IT1 FLC. Furthermore, when subjected to random noise, the IT2
FLC again showed a performance boost. From these results, it can be seen that an IT2 FLC is capable
of optimizing congestion control during video streaming during an All-Internet Protocol network.

A similar IT2 FLC controller was developed and implemented for Voice over Internet Protocol
(VoIP) [59]. This is due to the real-time delivery requirements of VoIP and the uncertainty of network
degradation. The controller infers a network state based on the average delivered perceived quality
of service along with the degradation from increased network congestion. From this information,
the IT2 FLC updates an adaptive multi-rate codec in real time. The codec is updated to match the
network state and the voice quality. This controller was then tested, and it was shown to outperform
the existing state-of-the-art scheme implemented.

Broadband wireless Internet Protocol Television (IPTV) applications were also investigated [60].
The IT2 FLC adjusted the bit rate every frame based on the packet delay. This was compared to
conventional controllers, such as TCP-friendly rate control (TFRC) and TCP emulation at receivers
(TEAR) congestion controllers. This was tested by streaming more video traffic than the network could
handle, which in some cases was up to 50 video streams. During an overloaded network, the IT2 FLC
improved the quality by approximately 1 dB per client.

In [61], the author used FLCs to adjust prices of bandwidth per one unit based on the demand and
availability of bandwidth. It was concluded that the fuzzy logic pricing controller sets the price for the
aggregated Obtainable Forwarding (OF) traffic demand at the boundary note of the DiffServ Network.

Improving wireless sensor networks is a challenge in order to provide continuous connectivity in
ad hoc networks. To measure the performance of a wireless sensor network, two parameters can be
used, which are latency and energy efficiency [62]. In [62], two contributions were proposed; the first
was a role-based mobility-aware interference mechanism to determine the main characteristics of a
wireless network’s performance, such a, energy, distance, speed, etc.; the second contribution was for
the decision making process using T2 FLS. The results showed that an optimal energy balance for the
network can be guaranteed for a life time.

3.4. Industrial System Controllers

IT2 FLCs have also been used in industrial operations, as well, e.g., inside a hot strip mill [63].
During the operation of the mill, a steel slab is heated, machined and rolled to a hot rolled coil.
Typically, these operations will span more than 500 m, which will affect the temperature of the slab. It
is very important to regulate the temperature, as the properties of steel will fluctuate. A T1 and IT2
FLC were implemented to control the coiler entry temperature. This was done by adjusting the cooling
water flow to achieve the target entry temperature. In the experiments, the IT2 FLC achieved better
performance and stability compared to the T1 FLC. It was concluded that the IT2 FLC controller is
feasible in this design.

Finishing strip mills also require the control of the rolling gap positions in order to achieve
the desired strip head thickness. To do this, an X-ray gauge sensor was linked to an IT2 FLC [64].
Additional inputs are the transfer bar thickness, the entry width, the entry temperature, the target
thickness, the output width, the output temperature, the standing work roll diameter, the work roll
speed, the stand entry thickness, the stand exit thickness, the stand rolling force and the percent
carbon of the strip. The finishing mill stand screw was adjusted to target the required thickness. The
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feasibility of the proposed IT2 FLC was also shown, and it was found that this controller equalized
the performance of the finishing mill stand screw and achieved the target strip thickness while under
high uncertainty.

Precise positioning is required for the fabrication of nano- and micro-components in the
semiconductor industry. Since these components are very small, an IT2 FLC was proposed for a
linear ultrasonic motor [65]. The simulation results show that the adaptive IT2 did not require prior
knowledge of the plant. It was concluded that the IT2 FLC was more effective and robust over
the T1 FLC.

IT2 FLCs have been used in AC motors, such as permanent magnet synchronous motors
(PMSM) [66] or permanent magnet linear synchronous motor (PMLSM) [67].

PMSM are used in many applications requiring high efficiency and high torque-to-weight ratios.
Since they are AC systems, their controllers are typically designed from a PID or PI regulator. These are
very efficient; however, they are also subjected to uncertainties, such as varying loads, plant parameter
variations and other non-linarites. An IT2 FLC was designed to account for these uncertainties. It
was tested in different ways with either extreme parameter variations or external disturbances. It was
found that the IT2 FLC was able to maintain the tracking errors within an acceptable interval. PMSMs
offer many benefits; however, uncertainties in the drive mechanism can affect their performance, since
there are no ball screws or gears. External loads, non-linear friction forces and parameter variations
are some examples. In order to account for these, IT2 FLC have been designed and used. First, the
self-adaptive IT2 FLC was run in order to learn the inverse kinematics of the system. Then, the inverse
self-adaptive IT2 FLC is built with error feedback. From the experimental results, it was shown that
the IT2 FLC outperformed the T1 FLC.

An induction motor was also controlled using a T2 FLC [68]. This motor used space vector
pulse width modulation (PWM) to control the torque of the motor. Typically, these are run with a
proportional-integral (PI) controller; however, a PI controller does not provide efficient performance
during sudden changes in the load or speed. It was shown that the IT2 FLC performed better than the
PI controller. The flux distortion, starting current, torque pulsation and speed regulation were much
lower with the IT2 FLC. This was then tested using a prototype DSPACE DS1104. It was found that
the typical PI controller had a current total harmonic distortion of 3.3%, while the T2 FLC reduced
that to 2.3%.

A comparative study was done based on the speed control of direct torque and flux control
induction motor drives [69]. There were five different speed control techniques, such as PI controllers,
sliding-mode speed controllers (SMSC), a T1 FLC, a T1 fuzzy SMSC and a T2 FLC. Each one was tested
under parameter uncertainties and load disturbances. The simulations were conducted in MATLAB
with a wide variety of different operating conditions. The T1 fuzzy SMSC was shown to have
disturbance rejection; however, it was unable to purge the chatter phenomenon during steady state
operations. The T2 FLC was the optimal in terms of disturbance rejection and parameter uncertainties.

A permanent magnet DC (PMDC) motor was incorporated into an IT2 FLC [70]. In this study, the
control system deals with sector dead-zones and external disturbances. The IT2 model approximates
the motor dynamics using fuzzy inference and online update laws. This method improves upon
the ordinary model, since this method estimates the non-linear system functions, since the system
parameters are unknown. The IT2 configuration parameters can be attenuated to bring the system to
an optimal tracking performance. It was found that the IT2 FLC performs better than the ordinary
model in the presence of external disturbances and dead zone non-linearity.

An IT2 FLC was designed for a DC motor, but in this case, the variable controlled was the velocity
regulation [71]. The IT2 FLC was tested against a T1 FLC and a PID controller to regulate the velocity.
Various uncertainties were introduced, and each controller was designed in MATLAB and uploaded
into Very High Descriptive Language (VHDL) for an FPGA. It was found that after multiple trials, the
IT2 FLC performed better from the results of a t-distribution statistical test.
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In a similar paper, the speed control of a DC motor was regulated using an average approximation
IT2 FLC (AT2-FLC) [72]. It was used on an FPGA, which provides implementation in real time. It
was found that the timing results using 20 bits on the FPGA decreased the error by 62% compared to
using eight bits. Using an AT2-FLC decreased the error compared to PID tuning using Ziegler–Nichols
tuning. These results show that more T2-MF and fuzzy rules can be utilized for better results with an
increase in runtime.

A parallel cable-driven lifting mechanism was also controlled using T2 FSs [73]. This problem was
split into six subsystems, where each subsystem had an IT2 fuzzy nonlinear autoregressive exogenous
(NARX) model. It controlled all of the actuator tension, while taking in the degrees of inclination as
the input. It was found that this control method was able to balance the tensions of the four lifting
cables while also keeping the top surface level.

3.5. Power Management and Electrical Control

An energy management system was also controlled using an IT2 FLC [74]. In this application, a
hybrid electrical vehicle was tested, which managed three sources of power: batteries, super-capacitors
and the fuel cell system. The inputs of the FLC were vehicle speed, reference power, battery power,
super-capacitor system power, fuel cell system power, battery voltage, battery state-of-charge and
super-capacitor state-of-charge. The system was evaluated using a computer simulation, and it was
shown that FL energy management was able to fulfill the energy requirements of the vehicle.

This controller was tested using an actual heavy duty vehicle [75]. The energy management
system design was a result of using the knowledge of several experts. During the experimental
validation of the IT2 FLCs, it was found that the controller was able to handle the energy management
in hybrid electric vehicles. This paper did not cover the optimization of the IT2 FLC; therefore, it was
determined that an IT2 FLC was not necessarily better than a T1 FLC.

A T2 FLC was also designed for power systems [76]. For power systems, small magnitude changes
and low frequency oscillations could occur. If this persists for long periods of time, this could lead to a
loss of synchronization and possibly blackouts. This paper presents a power system stabilizer (PSS)
based on a synergetic control approach. A T2 controller was designed that was found to suppress
unwanted oscillations rapidly. The results indicated good performance and satisfactory dynamic
behavior compared to the T1 controller.

IT2 FLCs have also been used to control numerous electronic components for industrial power
systems. In a paper by Tripathy and Mishra, a power system was improved by utilizing a thyristor
controlled series capacitor (TCSC) [77]. Often, industrial generators are controlled by a PSS to improve
the damping of multi-machine power systems. Unfortunately, there is a frequency range from (0.2 Hz
to 1.0 Hz), which is not sufficiently damped using a PSS alone. Using a TCSC can however improve
the damping of the power system if the parameters are optimized. Due to the dynamic operation
of the power system, the IT2 FLC was proposed. In these conditions the controller was tested and
managed to handle the non-linearity of the power system better than a fixed-gain tuned controller. It
was also found that since the TCSC worked in parallel with the PSS, it was also able to damp small
perturbations within the whole system.

Power systems applications are a popular process to analyze IT2 FLCs. In a paper by Panda et al.,
an IT2 FLC was designed for a TCSC [78]. This controller was developed to improve the damping
of power system oscillations. Simulations were done to compare the effectiveness of particle swarm
optimization (PSO), T1 FL and T2 FL. It was determined that the T2 FLC was more effective than the
PSO and T1 FL methods. The robustness was tested using different operating conditions, various
disturbances and with different parameter variations.

Voltage regulation is also an issue, which can be improved using IT2 FLCs [79]. In this example,
the controller was designed to regulate the voltage of a synchronous generator. The uncertainty stems
from changing turbine outputs, loads and transmission line parameters. In order to maintain constant
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power, an exciter was connected to the generator. During the simulations, the IT2 FLC controller
surpassed the performance of traditional PID controllers during the step response.

Load frequency control (LFC) applications were also investigated for electrical power systems
during their design and operation [80]. The FLC was applied to a two-area interconnected reheat
thermal power system. Typically for these applications, a PI controller is used exclusively. When they
are tuned, the gain is fixed, which can negatively affect the performance when there is a wide range of
operating conditions. In this study, it was found that the T2 FLC is able to guarantee robust stability
and robust performance under a large range of uncertainties and loads.

In [81], a recent study presents a new feed water controller under the automatic power regulating
system for an advanced boiling water reactor. This controller was designed using a rule-based
hierarchical FLC algorithm and was implemented using an FGPA. It was proved that transient
response and steady state tracking capabilities showed satisfactory results upon testing of two different
trajectories in power and flow maps. It was also proven that FPGA-based hierarchical FLC is a practical
and useful method in power operations in advanced nuclear power plant applications.

An IT2 FLC was also utilized to control an active magnetic levitation system [82]. In this levitation
system, electromagnets are used to support any component attached within the magnetic field. Due to
the non-linearity of levitation systems, it was proposed to use an IT2 FLC instead of a traditional PID
controller. This idea was further implemented by reducing the IT2 FLC to a single input IT2 FLC. In
this study, it was shown that a less computationally-intensive controller was developed with a better
response and speed than both T2 and T1 FLCs.

IT2 FLCs have also been designed for controlling photovoltaic (PV) systems [83]. During the
operation of a PV system, the voltage produced by the solar cells cannot be modeled as a constant DC
voltage. PV systems are more comparable to a fluctuating current source, which changes according to
the temperature, irradiation level, load current and other factors. Due to the nature of PV modules,
they are modeled with a current-voltage (I-V) curve, which produces the most power at the maximum
power point (MPP) on the curve. To do this, the PV system must be constantly monitored and changed
to exploit the MPP. The IT2 FLC changes the duty cycle based on the rate of change of output power
and the rate of change on the terminal voltage. Since the IT2 FLC is used, the uncertainty of MPP
tracking is accounted for, and the simulation results showed that the MPP tracking was able to rapidly
respond to uncertain atmospheric conditions.

Another IT2 FLC was designed for a single-phase grid interactive PV system [84]. In this paper,
an MPP tracking boost converter and grid interactive voltage source inverter were used. For the
system, the DC source is converted to AC and imported to the electrical grid. Simulations were done
in MATLAB, and it was shown that the IT2 FLC had a fast transient response in tracking the MPP.

3.6. Aircraft Control

A T2 fuzzy cerebellar model articulation controller (CMAC) was designed for an automatic
aircraft landing system [85]. Conventional automatic aircraft landing systems (ALS) are bounded by
certain limits, such as wind shear and turbulence. If these are too high, the ALS cannot be used. It is
therefore beneficial to introduce an ALS that can handle higher wind shear and turbulence in order to
land the aircraft safely. In this paper, T1 and T2 fuzzy CMACs were added in parallel to the PID to
control the pitch autopilot. It was found that the adaptive T2 CMAC was able to guide the aircraft
under a turbulence strength of 165 feet per second. This was more robust than the PID-only controller,
which can only handle 30 feet per second.

In aircraft control, an IT2 FLC was developed for hypersonic flight, which is defined as speeds
faster than Mach 5 [86]. In this study, the generic hypersonic flight vehicle (GHFV) is proposed to
cruise at a speed of approximately Mach 15 at an altitude of 33,000 m. This type of flight is highly
non-linear, and it includes very large uncertainties. The controller tracks the altitude command signal
and was able to maintain the velocity of the vehicle.
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IT2 FLCs are also designed for a micro aircraft vehicle (MAV) [87]. This IT2 FLC approximated
the function of the altitude angle of the MAV. It was able to account for the non-linearity and the
uncertainty of the dynamic model. It used the Lyapunov stability theorem to track the error of the
MAV altitude control system. It was found that results from the IT2 gain adaptive sliding mode
controller were favorable compared to the T1 sliding mode controller and the conventional-based
sliding mode controller.

The same authors created an IT2 FLC for quadrotor micro aircraft vehicles [88]. In this study,
two IT2 FLCs and one PD controller were designed. They were designed to account for the system
uncertainties, variations and external disturbances of the MAV. The IT2 FLCs were self-organizing (IT2
SO); one IT2 SO was made to learn the inverse model of the MAV, and the other was a secondary copy
to account for model errors, uncertainties and disturbances. It was found using real-time experiments
that the IT2 SO controllers outperformed the PD controller.

3.7. General Control Problems

IT2 FLCs were designed for other applications than robotics, communication, industrial
automation, a few of which were mentioned above. For example, in [89], an IT2 FLC was designed
to handle data with uncertainties for nonlinear multiple-input multiple-output (MIMO) systems.
Simulations were performed, and it was shown that the IT2 FLC was able to handle unpredicted
internal disturbances and data uncertainties very well. It was also shown that a T1 FLC was also
capable of handling the errors; however, this controller has more control effort than the IT2 FLC.

In another work [90], an adaptive IT2 fuzzy sliding-based mode controller was designed for a
chaotic system. This controller consisted of a fuzzy control design and a hitting control design. An IT2
FLC was designed to imitate the feedback linearization, whereas the hitting controller was designed to
control the error between the feedback linearization and the IT2 FLC. From the simulations, it was
concluded that the control system was robust while achieving good performance.

An inverted pendulum on a cart system was proposed as a model to be controlled using an IT2
PID system in [91]. This controller was designed using the simplified TR method, which was able to
handle the effects of structure uncertainties. The results were compared to a similar controller that
used the uncertainty bound method. Results showed improved performance using the TR method. In
addition, the proposed controller outperformed a T1F-PID controller.

In [92], a new observer-based indirect adaptive IT2 FLC was developed for a mass-spring-damper
system in a tracking application. In the modeling of this system, Coulomb friction, non-linear spring
forces, non-linear friction forces and non-linear disturbances were considered. The controller outputs
the external forces to control the system position. It was shown in the simulations that the IT2 FLC
handles the unpredicted internal disturbance very well. The performance of the IT2 FLC showed better
results compared to a T1 FLC. Moreover, the T1 FLC required more control effort.

In [93], an IT2 FS with actuator faults was used to design an IT2 state-feedback sampled data
controller. This controller was constructed to guarantee stability and effective performance for
possible actuator failures. The IT2 state-feedback sampled data controller was designed such that the
closed-loop system is asymptotically stable for all actuator failures using the Lyapunov stability theory.
It was then tested using the inverted pendulum model, which was found to be effective. It was found
to be reliable because the controller is able to guarantee the asymptotic stability and H8 performance
if the actuator fails. Combining T2 FLC and neural networks can be used in developing controllers
with learning capabilities while they handle uncertainties [94].

3.8. Membership Functions Used in T2 FLC Applications

After analyzing all of the papers presented in this section, we consider that is important to
mention the types of membership functions that are used in the fuzzy models and what profits did
they give. We can observe that in 15 percent of the papers, only triangular MFs are used. On the other
hand, 33 percent of the papers make a combination of MFs; using triangular MFs on the center and



Algorithms 2016, 9, 39 14 of 19

trapezoidal MFs at the ends. In another case, 40 percent of the papers only use Gaussian MFs in the
fuzzy controllers. In two percent of the papers, triangular MFs at the center and Gaussian MFs at the
ends are used; also, another two percent uses the elliptic MFs. Finally, in eight percent of the papers, the
type of MFs is unknown, as it is not indicated by the authors. In reviewing the developed controllers
in the literature, we find that in many cases, triangular membership functions are used when there are
software or hardware limitations, e.g., when the fuzzy controller needs to be implemented on a circuit,
which is more easily done with triangular functions that do not require a lot of memory resources
in hardware. In other cases, when possible, Gaussian functions are used because they provide more
continuous performance, but require more memory (space) resources. In applications where the fuzzy
controllers could be implemented in software and there is no problem with space and time limitations,
Gaussian or combinations with other membership functions can be used.

4. Conclusions

This paper introduced a general overview of T2 FLCs. We briefly reviewed general T2 FLSs,
as well as IT2 FLSs algorithms. Next, we presented a comprehensive literature survey of most
updated real-world applications of T2 FLCs. The most applied areas of T2 FLCs are seen in robotic
control, bandwidth control, industrial systems control, electrical control and aircraft control. The most
promising applications are found in robotics and automotive, where improvements over traditional
controllers have been achieved. It was shown that IT2 FLCs have many benefits over T1 FLCs, especially
in uncertain systems, and in many cases, it was shown that IT2 FLCs outperformed traditional PID
controllers, as well [95]. Moving forward, if the computational complexities of T2 FLCs can be
compensated using enhanced algorithms or better software/hardware, then using these controllers
for systems with uncertainty is promising. As technology develops, it is natural to witness increasing
applications of these advanced controllers. It is believed that many other applications can be developed
and discovered for generic and industrial applications.

Several algorithms are being developed in the hopes of improving the robustness, performance
and speed of existing algorithms. Mostly these approaches seek to calculate the centroid endpoints
of IT2 FSs, which is similar to the KM method. Some algorithms that have been discussed are the
EKM, INT, CJ, DY, TTCCM, LYZ and HC methods. Some of these methods work better for different
applications; however, as of now, there is no conclusive evidence that one is better than the other.
It is expected that newer and more advanced techniques will continue to be developed and that
improvements to existing algorithms will be discovered.

Other developments in the area of T2 FLCs are the optimization methods that are applied to
these controllers. These methods are currently bio-inspired, which include GA, PSO and ACO [96].
There are also optimization methods that involve quantum computing, such as the Type-2 quantum
fuzzy logic controller (T2QFLC) [97]. Similar to the T2 algorithms, there is no consensus as to which
optimization method is best as of yet. Other optimization methods that have not been used yet are
membrane computing, harmony computing and electro-magnetism-based computing.

T2 FLCs have also been increasingly combined with traditional PI, PD or PID controllers. These
hybrid methods have shown more robust behavior [94]. It is however unknown whether these hybrid
control methods will be implemented in industrial settings due to increased costs and computational
time. To increase the speed to near real-time, FPGAs have been increasingly utilized. They are seen
as an effective near real-time hardware method, which can tackle the computational time problem.
Furthermore, faster FPGAs and improved software will continue to facilitate the implementation of
IT2 FLCs for more applications in the future.

An important future direction for work in Type-2 fuzzy control is using general Type-2 fuzzy
systems in real control applications, [98]. As shown in our illustrative example of Section 4, general
Type-2 fuzzy controllers have the potential to outperform interval Type-2 and Type-1 fuzzy controllers;
the only thing limiting right now the use of general Type-2 fuzzy controllers in real-world applications
is the extra computational overhead required for processing general Type-2 fuzzy systems. We believe
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that theoretical advances in Type-2 fuzzy logic and in hardware technology will make the use of
general Type-2 fuzzy controllers possible in real-world applications in the near future.
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Abbreviations

The following abbreviations are used in this manuscript:

FLS fuzzy logic systems
FLC fuzzy logic controller
T2 Type-2
IT2 Type-2
T1 Type-1
KM Karnik–Mendel
EKM Enhanced Karnik–Mendel
WM Wu–Mendel
BMM Biglarbegian–Melek–Mendel
NT Nie–Tan
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