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Abstract: For camera calibration based on direct linear transformation (DLT), the camera’s intrinsic
and extrinsic parameters are simultaneously calibrated, which may cause coupling errors in the
parameters and affect the calibration parameter accuracy. In this paper, we propose an improved
direct linear transformation (IDLT) algorithm for calibration parameter decoupling. This algorithm
uses a linear relationship of calibration parameter errors and obtains calibration parameters by
moving a three-dimensional template. Simulation experiments were conducted to compare the
calibration accuracy of DLT and IDLT algorithms with image noise and distortion. The results
show that the IDLT algorithm calibration parameters achieve higher accuracy because the algorithm
removes the coupling errors.
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1. Introduction

With the technological developments of digital cameras and microprocessors, computer vision has
been widely applied to robot navigation, surveillance, three-dimensional (3D) reconstruction and other
fields for its high speed, high accuracy and non-contact nature. To obtain improved 3D information
from a two-dimensional (2D) image, it is necessary to calibrate the intrinsic parameters of the camera,
such as the focal distance and optical center point, as well its extrinsic parameters, such as rotation
and translation, which relate the world coordinate system to the camera coordinate system. Over the
last decade, numerous studies have focused on this area. In [1], the authors proposed an efficient
approach for the dynamic calibration of multiple cameras. In [2], the authors proposed a calibration
algorithm based on line images. In [3], the authors used one-dimensional (1D) information to calibrate
the parameters. All of these algorithms make camera calibration faster and more convenient.

To obtain high accuracy parameter results, high accuracy 3D or 2D templates can be used. These
algorithms include direct linear transformation (DLT) [4], the Tsai calibration method [5] and the Zhang
calibration method [6]. In space rendezvous and docking, as well as in visual tracking applications,
it is necessary to obtain the specific extrinsic and intrinsic parameters of the camera. At the same
time, with the wide application of the coordinate measuring machine (CMM) [7,8], high precision,
large range 3D templates have become more readily applied. The DLT algorithm is more suitable for
these applications.

The DLT algorithm is based on the perspective projection between 3D space points and 2D image
points. It calculates a transformation matrix and obtains the camera’s intrinsic and extrinsic parameters
according to the parameter decomposition. With this model, only one 3D template in one position is
required for calculation; therefore, the template size, number of feature points and relative distance
between the template and camera are critical [9–11].
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Camera calibration with image noise and distortion remains a difficult task. Algorithms typically
solve the camera parameters by analysis; then, they solve the model of image noise and distortion by
optimization [6,12,13]. All traditional optimization algorithms applied to visual systems, such as the
modified Newton algorithm, the Levenberg–Marquardt algorithm and the genetic algorithm, require a
good initial solution to optimize. Therefore, the analytic solution is not only robust to image noise, but
also effective for addressing distortion.

When the calibration data contain noise and distortion, coupling errors exist between the camera’s
extrinsic and intrinsic parameters. This means that an error in an extrinsic parameter may be
compensated by an error in an intrinsic parameter [14–16]. Existing parameter decoupling methods use
calibration models without considering extrinsic parameters. These include vanishing points [15,17,18],
straight lines [16,19], and cross ratios [20,21]. In the present study, the image re-projection error from
the mathematical model and the camera pinhole geometric model were analyzed. The results show
that the coupling error causes a small re-projection error variance and a large calibration parameter
error variance. At the same time, this variance is related to the template size, number of feature points
and relative distance between the template and camera. To improve the calibration accuracy of the
camera parameters, a decoupling algorithm of intrinsic and extrinsic parameters is proposed based
on DLT.

The remainder of this paper is organized as follows. The relationship between the coupling
error, template size and relative distance between the template and camera is described in Section 2.
The proposed improved DLT (IDLT) algorithm for camera calibration is proposed in Section 3. The
experimental results are presented in Section 4, and the conclusions are given in Section 5.

2. Parameter Coupling Analysis

2.1. Camera Model

The camera model is shown in Figure 1. A 3D point is denoted by Pi “
”

Xi Yi Zi

ıT
. A

2D image point is denoted by pi “
”

ui νi

ıT
. The relationship between 3D point Pi and its image

projection, pi, is given by:
ui “ u0 ` ax

r11Xi`r12Yi`r13Zi`tx
r31Xi`r32Yi`r33Zi`tz

νi “ ν0 ` ay
r21Xi`r22Yi`r23Zi`ty
r31Xi`r32Yi`r33Zi`tz

(1)

where ax = f /dx, ay = f /dy and f is the camera focal distance. In addition, dx, dy are pixel sizes in the
horizontal and vertical directions; (u0, v0) is the optical center point of the image; and R, T are the
rotation matrix and translation vector, respectively, which relate the world coordinate system to the
camera coordinate system. Furthermore, rij is the i-th row and j-th column element of R, and tx, ty, tz

are the elements of T. For simplicity, the rotation matrix is represented by Euler angles, ψ, θ, φ, which
represent the rotation around the respective x, y and z axes.
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Owing to the influence of image noise and distortion, the calibration parameters, image points
and space points do not completely conform to Equation (1). Thus, we have:

∆ui “ ui ´ u0 ´ ax
r11X`r12Y`r13Z`tx
r31X`r32Y`r33Z`tz

∆νi “ νi ´ ν0 ´ ay
r21X`r22Y`r23Z`ty
r31X`r32Y`r33Z`tz

(2)

min f pu, νq “
n
ÿ

i“1

p∆u2
i ` ∆ν2

i q (3)

Equation (2) describes the calculation of image re-projection errors. Small re-projection errors are
desired, which means that the calibration results satisfy Equation (3). However, the question arises of
if a small image re-projection error will lead to the high calibration accuracy of the camera parameters.
Analysis of the relationship between the image re-projection error and the calibration accuracy is
therefore required.

2.2. Error Coupling Analysis

The two equations in Equation (2) have the same form. We thus analyze the first equation; all
conclusions can apply to the second equation. We assume that u0 has error 4u0 and that tx has error
4tx. From Equation (2), we have:

∆u1i “ ui ´ pu0 ` ∆u0q ´ ax
r11Xi`r12Yi`r13Zi`ptx`∆txq

r31Xi`r32Yi`r33Zi`tz

“ ∆ui ´ p∆u0 `
∆txax

r31Xi`r32Yi`r33Zi`tz
q

(4)

when ∆tx “ ´pr31Xi ` r32Yi ` r33Zi ` tzq{ax∆u0, we have ∆u1i “ ∆ui. The image re-projection error
will not change. However, because the space point coordinate values are different, other image point
re-projection errors will be changed. We assume that:

∆tx “ ´
r31X1`r32Y1`r33Z1`tz

ax
∆u0

“ ´
r31Xi`r32Yi`r33Zi`tz

ax
∆u0 ´

r31dXi`r32dYi`r33dZi
ax

∆u0

(5)

where dXi = X1 ´ Xi, dYi = Y1 ´ Yi, dZi = Z1 ´ Zi, and image re-projection errors are given by:

∆u1i “ ∆ui ` ∆u2 i with ∆u2 i “
r31dXi ` r32dYi ` r33dZi
r31Xi ` r32Yi ` r33Zi ` tz

∆u0 (6)

Based on Equation (6), if dZi is very small and tz is very large, the change in image re-projection
errors will be very small. This is because coupling 4u0 and 4tx reduces the image re-projection error.
In order to reduce the coupling effect, better results can be obtained if the 3D template is large and
close to the camera. In fact, the template size is limited, and the calibration distance is limited by the
field of view and the lens parameter.

With respect to focal distance and translation vector, we assume ax has error 4ax and tz has error
4tz. From Equation (2), we have:

∆u1i “ ui ´ u0 ´
pax ` ∆axqCi

Bi ` ∆tz
(7)

where Bi “ r31Xi ` r32Yi ` r33Zi and Ci “ r11Xi ` r12Yi ` r13Zi. We assume that ∆ax{∆tz “ ax{B1, and
we obtain ∆u11 “ ∆u1. Other image re-projection errors are:

∆u1i “ ∆ui ` ∆u2 i with ∆u2 i “ ´
axCi∆tz

B1pBi ` ∆tzq
« ´

axCi
Bi

ˆ
∆tz

B1
(8)
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From Equation (1), we have axCi{Bi « pui ´ u0q. We assume that the Euler angles of the world
coordinate system relative to the camera coordinate system are zero. By setting the first space point
Z1 “ 1, we have:

∆u2 i “ ´
ui ´ u0

tz
∆tz (9)

Based on Equation (9), if pui ´ u0q is small and tz is large, the change in the image re-projection
error will be very small. This is because coupling 4ax and 4tz reduces the image re-projection error.
To reduce the coupling effect, better results can be obtained if the 3D template is closer to the camera.
Similar to the distortion, the camera focal distance and translation vector coupling error are related to
the image point location. Therefore, under the influence of distortion, the camera focal distance and
translation vector coupling error may increase the calibration error.

The coupling error is present in the geometric model. The camera model is also called a pinhole
model; that is, the space point, image point and camera origin are located on the same line. Figure 2
shows the coupling between the optical center point of the image and the translation vector. When the
optical center point of image Oc is offset, the origin of the camera coordinate system shifts. To continue
fitting the pinhole model, the space point, Pi, under the camera coordinate system will produce an
offset. The space point under the world coordinate system is fixed so that the relationship between the
world coordinate system and camera coordinate system changes.
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Figure 2. Relationship between the principal point and translation.

Figure 3 shows the coupling between the camera focal distance and the translation vector. The
camera focal distance is calibrated based on the relative distance between multiple space points. When
the camera focal distance changes, that is the origin of the camera coordinate system, Oc, moves to
O'c, the world coordinate system moves along the direction of the optical axis of the camera because
the distance is fixed between P1 and P2. When the Euler angles are zero, the value of the optical axis
direction is tz.

In summary, under the influence of image noise and distortion, when the size of the templates,
number of feature points and relative distance between the template and camera are certain, coupling
errors occur in the camera’s intrinsic and extrinsic parameters that affect the calibration parameter
accuracy. Therefore, to improve the accuracy of the calibration parameters, it is necessary to remove
the parameter coupling errors.
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3. Improved Direct Linear Transformation

3.1. Direct Linear Transformation

The DLT algorithm dates to the work of [4] or earlier. In [13,22], the authors analyzed the definition
of the world coordinate system and proposed the use of data normalization to reduce the noise impact
on the camera calibration parameters. In [10,23], the authors proposed combining the DLT algorithm
with an optimization algorithm to address the camera distortion models.

The DLT algorithm consists of two steps: (1) homogeneous equation solving; and (2) parameter
factorization. Space point P and its image p are related by homography M:

sp “ MP with M “ K[R|T] (10)

where K is the camera intrinsic matrix. mij is the i-th row and j-th column element of M.
The 12 parameters in M3ˆ4 are unknown in the matrix M'12ˆ1. From Equation (10), we have:

AM’ “ 0 with ||M'|| “ C (11)

where C is a constant, and:

A “

«

PT 0 ´uPT

0 PT ´νPT

ff

A “

«

PT 0 ´uPT

0 PT ´νPT

ff

(12)

Because Equation (11) is a homogeneous equation, we assume that m34 is equal to one. The M
matrix can be solved by singular value decomposition. We can then obtain the intrinsic and extrinsic
parameters of the camera through factorization.

tz “ 1{
a

m31
2 `m322 `m332 (13)

u0 “ t2
zpm11m31 `m12m32 `m13m33q (14)
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ν0 “ t2
zpm21m31 `m22m32 `m23m33q (15)

ax “ t2
z

b

pm12m33 ´m13m32q
2
` pm11m33 ´m13m31q

2
` pm11m32 ´m12m31q

2 (16)

ay “ t2
z

b

pm22m33 ´m23m32q
2
` pm21m33 ´m23m31q

2
` pm21m32 ´m22m31q

2 (17)

tx “ tzpm14 ´ u0q{ax (18)

ty “ tzpm24 ´ ν0q{ay (19)

r11 “ tzpm11 ´ u0m31q{ax r12 “ tzpm12 ´ u0m32q{ax r13 “ tzpm13 ´ u0m33q{ax

r21 “ tzpm21 ´ ν0m31q{ax r22 “ tzpm22 ´ ν0m32q{ax r23 “ tzpm23 ´ ν0m33q{ax

r31 “ tzm31 r32 “ tzm32 r33 “ tzm33

(20)

Accordingly, at least six non-coplanar feature points and their corresponding image points—the
camera focal distance, optical center point, rotation matrix and translation vector—can be solved
according to Equations (11)–(20).

However, with the influence of image noise and distortion, mij contains errors. From
Equations (18) and (19), we have:

tx ` ∆tx “
ptz`∆tzqpm14`∆m14´u0´∆u0q

ax`∆ax

ty ` ∆ty “
ptz`∆tzqpm24´u0`∆m24´∆u0q

ay`∆ay

(21)

where 4tx, 4tz, 4m14, 4ty and 4m24 are errors. When tx «
tzpm14´u0q

ax`∆ax
, ty «

tzpm24´ν0q
ay`∆ay

, we have:

∆tx “
tzp∆m14´∆u0q

ax`∆ax
`

∆tzpm14´u0q
ax`∆ax

`
∆tzp∆m14´∆u0q

ax`∆ax

∆ty “
tzp∆m24´∆ν0q

ay`∆ay
`

∆tzpm24´ν0q
ay`∆ay

`
∆tzp∆m24´∆ν0q

ay`∆ay

(22)

In Equation (22), the third molecule is much smaller than the others and can be ignored. When
tz ą tx and ∆u0 " ∆m14, we have:

∆tx “ ´tz∆u0{ax (23)

At the same time, when tz ą ty and ∆ν0 " ∆m24, we have:

∆ty “ ´tz∆ν0{ay (24)

With respect to the coupling error between the focal distance and translation vector, to simplify
the analysis model, we assume that the Euler angles of the world coordinate system relative to the
camera coordinate system are zero. Then, we have:

M “

»

—

–

ax{tz 0 u0{tz ptxax ` tzu0q{tz

0 ay{tz ν0{tz ptyay ` tzν0q{tz

0 0 1{tz 1

fi

ffi

fl

(25)

From Equation (13), we have:
tz “ 1{m33 (26)

From Equations (16) and (17), we have:

ax “ t2
zm11m33 “ m11tz

ay “ t2
zm22m33 “ m22tz

(27)



Algorithms 2016, 9, 31 7 of 15

Owing to the influence of image noise and distortion, M contains errors. From Equation (27), we
thus have:

ax ` ∆ax “ m11tz `m11∆tz ` ∆m11tz ` ∆m11∆tz

ay ` ∆ay “ m22tz `m22∆tz ` ∆m22tz ` ∆m22∆tz
(28)

where 4ax, 4tz, 4m11, 4ay and 4m22 are errors. ∆m11∆tz and ∆m22∆tz are much smaller than the
others and can be ignored. Then, we have:

∆ax “ m11∆tz ` ∆m11tz

∆ay “ m22∆tz ` ∆m22tz
(29)

On account of ∆tz " ∆m11 and ∆tz " ∆m22, we have:

∆ax “ m11∆tz

∆ay “ m22∆tz
(30)

Equations (23), (24) and (30) show that a linear relationship exists between the calibration
parameters after ignoring some minor errors. We use a simulation to illustrate the size of some
of the ignored minor errors. In the simulation, we have ax = 1454.5, ay = 1454.5, u0 = 700 pixel and
v0 = 512 pixel; moreover, the size of the pattern is 0.7 m ˆ 0.7 m ˆ 0.3 m. The relationship of the
world coordinate system relative to the camera coordinate system relationship is represented by
R = [20, 20, 20] (˝) and T = [´0.25, ´0.25, tz] (mm). Gaussian noise with a zero mean and a 0.1-pixel
standard deviation is added to the projected image points. The analysis of Equations (23) and (24) is
shown in Figure 4. The difference between 4ax, 4ay and the results of Equations (23) and (24) is small.
The analysis of Equation (30) is shown in Figure 5. Because the Euler angles are not equal to 0˝, 4tx,
4ty and the result of Equation (30) are different. However, the difference is small.
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Figure 4. Error approximate analysis: (a) tx error analysis; (b) ty error analysis.

Under the influence of image noise and lens distortion, the M matrix of the DLT algorithm
contains errors. These errors further affect the accuracy of the calibration parameters. Through the
above analysis, there is a linear coupling relationship between ∆tx and ∆u0, ∆ty and ∆ν0, ∆ax and ∆tz

and ∆ay and ∆tz after ignoring some minor errors.
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Figure 5. Error approximate analysis: (a) ax error comparison; (b) ay error comparison.

3.2. Improved Direct Linear Transformation

Owing to the linear relationship that exists between the intrinsic and extrinsic parameter errors,
all of these errors are unknown, and the specific error value cannot be directly solved. We assume that
the 3D template only moves along the z axis. a1x, a1y, u10, ν10, t1x, t1y and t1z1 are calibration values
of the DLT algorithm before the z axis translation. a2 x, a2 y, u2 0, ν2 0, t2 x, t2 y and t1z2 are calibration
values of the DLT algorithm after the z axis translation. From Equations (23) and (24), we have:

∆t1x “ t1x ´ tx “ ´tz1pu10 ´ u0q{ax

∆t2 x “ t2 x ´ tx “ ´tz2pu2 0 ´ u0q{ax
(31)

∆t1y “ t1y ´ ty “ ´tz1pν
1
0 ´ ν0q{ay

∆t2 y “ t2 y ´ ty “ ´tz2pν2 0 ´ ν0q{ay
(32)

where ax, ay, u0, ν0, tx, ty, tz1 and tz2 are true values. Because the translation occurs only along the z
axis, we set tz2 “ ntz1. From Equations (31) and (32), we have:

t1x ´ t2 x

n´ 1
“

tz1

ax
p

nu2 0 ´ u10
n´ 1

´ u0q (33)

t1y ´ t2 y

n´ 1
“

tz1

ax
p

nν2 0 ´ ν10
n´ 1

´ ν0q (34)

From Equation (33), a linear relationship exists between pnu2 0 ´ u10q{pn´ 1q and
pt1x ´ t2 xq{pn´ 1q. By repeatedly moving the 3D template, u0 can be solved with a linear
least-squares fit. Similarly, ν0 can be solved by Equation (34).

From Equations (31) and (32), we have:

nt1x ´ t2 x

n´ 1
“ tx ´

tz

ax

npu2 0 ´ u10q
n´ 1

(35)

nt1y ´ t2 y

n´ 1
“ ty ´

tz

ay

npν2 0 ´ ν10q

n´ 1
(36)

A linear relationship exists between npu2 0 ´ u10q{pn´ 1q and pnt1x ´ t2 xq{n´ 1,
npν2 0 ´ ν10q{pn´ 1q and pnt1y ´ t2 yq{pn´ 1q. Thus, tx, ty can be solved by Equations (35) and (36).

From Equation (30), we have:

a1x ´ ax “ pr11ax ` r31u0qpt1z1 ´ tz1q{tz1

a2 x ´ ax “ pr11ax ` r31u0qpt1z2 ´ tz2q{tz2
(37)
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From Equation (37), we have:

pr11ax ` r31u0qppt1z2 ´ t1z1q ´ ptz2 ´ tz1qq ´ ptz2 a2 x ´ tz1 a1x ´ axptz2 ´ tz1qq “ 0 (38)

We set dz1 “ tz2 ´ tz1. We then obtain:

pr11ax ` r31u0q
t1z2 ´ t1z1 ´ dz1

dz1
´ tz1

a2 x ´ a1x
dz1

´ a2 x ` ax “ 0 (39)

Because pa2 x ´ a1xq{dz1 is small, we use t1z1 to replace tz1. Then, we have:

pr11ax ` r31u0q
t1z2 ´ t1z1 ´ dz1

dz1
´ pt1z1

a2 x ´ a1x
dz1

` a2 xq ` ax “ 0 (40)

A linear relationship exists between pt1z2 ´ t1z1 ´ dz1q{dz1 and t1z1pa2 x ´ a1xq{dz1 ` a2 x. By
repeatedly moving the 3D template, ax can be solved with a linear least-squares fit.

With respect to tz1, from Equation (37), we have:

∆a1x
∆a2 x

“
npt1z1 ´ tz1q

t1z2 ´ ntz1

(41)

Then,
∆a1xt1z2 ´ n∆a2 xt1z1 “ tz1pn∆a1x ´ n∆a2 xq (42)

A linear relationship exists between ∆a1xt1z2 ´ n∆a2 xt1z1 and n∆a1x ´ n∆a2 x. By repeatedly
moving the template, tz1 can be solved with a linear least-squares fit.

For ay, we have:

pr22ay ` r32ν0q
t1z2 ´ t1z1 ´ dz1

dz1
´ pt1z1

a2 y ´ a1y
dz1

` a2 yq ` ay “ 0 (43)

∆a1yt1z2 ´ n∆a2 yt1z1 “ tz1pn∆a1y ´ n∆a2 yq (44)

A linear relationship exists between t1z2 ´ t1z1 ´ dz1{dz1 and pa2 y ´ a1yqt1z1{dz1 ` a2 y and
∆a1yt1z2 ´ n∆a2 yt1z1 and n∆a1y ´ n∆a2 y. By repeatedly moving the template, ay, tz1 can be solved
with a linear least-squares fit.

In sum, the 3D template along the z axis to the translation performs a DLT algorithm at each
location. With the results of the DLT, u0, ν0, tx, ty, ax, ay and tz1 can again be solved with a linear
least-squares fit by Equations (33)–(36), (40) and (42)–(44).

4. Experimental Section

The simulation and physical experiment parameters were set as follows. The camera focal length
was 12 mm. The image resolution was 1400 ˆ 1024. The pixel size was 7.4 µm ˆ 7.4 µm.

4.1. Simulation Experiment

The size of the 3D template was 0.7 m ˆ 0.7 m ˆ 0.3 m and contained a pattern of 8 ˆ 8 ˆ 3 points.
The rotation matrix and translation vector were R = [10, 10, 10] (˝) and T = [´0.35, ´0.35, tz] (m),
tz = 1.2–3.2 m. Gaussian noise with a 0 mean and a 0.01–0.5-pixel standard deviation was added to the
projected image points. The 3D template moved 0.1 m at a time. The IDLT algorithm was calculated
after 18 times of movement. A total of 100 independent tests was performed for each noise to obtain
the parameter error mean and standard deviation. The error mean plus three times the standard
deviation was used to represent the calibration error.

Because the calibration error became larger as tz increased, we only analyzed the results at
tz “ 1.2m. The results of the DLT and IDLT calibration are shown in Figure 6. For u0 and v0, the errors
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of IDLT are less than 10% of the error of DLT. The errors in tx and ty are less than 0.1 mm. For ax, ay

and tz, the errors of IDLT are less than 60% of the error of DLT.
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Figure 6. Calibration error analysis between direct linear translation (DLT) and improved DLT (IDLT) 
with noise: (a) error of 0u ; (b) error of 0v ; (c) error of xt ; (d) error of yt ; (e) error of xa ; (f) error of 

zt  based on xa ; (g) error of ya ; (h) error of zt  based on ya . 

Figure 7 shows the calibration result with noise and distortion. Gaussian noise with a 0 mean 
and a 0.1-pixel standard deviation is added to the projected image points. Image distortion comes 
from ideal image points ( , )i iu v  and real image points ( , )i iu v′ ′  with k = 2.915 × 10−9 − 2.915 × 10−8 (the 
image distortion is 1–10 pixels at (1400, 0) when 0 700u = ). 
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Figure 6. Calibration error analysis between direct linear translation (DLT) and improved DLT (IDLT)
with noise: (a) error of u0; (b) error of v0; (c) error of tx; (d) error of ty; (e) error of ax; (f) error of tz

based on ax; (g) error of ay; (h) error of tz based on ay.

Figure 7 shows the calibration result with noise and distortion. Gaussian noise with a 0 mean and
a 0.1-pixel standard deviation is added to the projected image points. Image distortion comes from
ideal image points pui, νiq and real image points pu1i, ν1iq with k = 2.915 ˆ 10´9 ´ 2.915 ˆ 10´8 (the
image distortion is 1–10 pixels at (1400, 0) when u0 “ 700).

u1i “ ui ` pui ´ u0qkr2

ν1i “ νi ` pνi ´ ν0qkr2 (45)

Owing to the influence of image distortion, the calibration errors of DLT are relatively large.
However, the calibration errors of IDLT are relatively small. In particular, the errors of u0 and v0 are
less than 0.7 pixels, whereas the maximum error of DLT is 44 pixels. The errors of ax and ay are less
than 3. Because the pixels are square, the errors of ax and ay have the same form. The error in tz is
larger than that in tx, ty. The main reason is that tz is larger than tx, ty.
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4.2. Physical Experiment 

We used a light-emitting diode (LED) as the space point fixed on a coordinate measurement 
machine, as shown in Figure 8. The size of the plane was 0.7 m × 0.7 m, which contained a pattern of 
8 × 8 points. There were 20 planes; the data for three of these planes were used for one DLT 
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Figure 7. Calibration error analysis between DLT and IDLT with noise and distortion: (a) error of u0;
(b) error of v0; (c) error of tx; (d) error of ty; (e) error of ax; (f) error of tz based on ax; (g) error of ay;
(h) error of tz based on ay.

4.2. Physical Experiment

We used a light-emitting diode (LED) as the space point fixed on a coordinate measurement
machine, as shown in Figure 8. The size of the plane was 0.7 m ˆ 0.7 m, which contained a pattern
of 8 ˆ 8 points. There were 20 planes; the data for three of these planes were used for one DLT
calculation. The DLT results are shown in Table 1. The fluctuations in the Euler angle errors are less
than 0.06˝, and they are not very volatile. The most volatile values are ty and v0. The fluctuation in ty is
less than 28.03 mm, and the fluctuation in v0 is less than 2.59 pixels. The results of the IDLT algorithm
are shown in Table 2, where the calibration parameter values are different from those of DLT.
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This shows that the DLT calibration results are optimal for some planes, but not for all planes. The 
calibration errors of IDLT decrease with the number of planes. The reason is because the distance 
between the image point and optical center point of the image is small, and the effect of distortion is 
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Figure 8. Photograph of the physical experiment.

Table 1. DLT results of the physical experiment.

ax ay
u0

(pixel)
v0

(pixel) tx (mm) ty (mm) tz (mm) ψ (˝) θ (˝) φ (˝)

1 1735.90 1735.56 701.09 522.07 ´363.52 ´319.10 1705.86 1.11 ´0.13 1.36
2 1736.97 1736.67 700.97 522.59 ´363.67 ´317.70 1806.84 1.10 ´0.13 1.36
3 1738.26 1737.96 701.66 523.22 ´364.68 ´316.48 1908.12 1.08 ´0.13 1.36
4 1736.34 1736.05 701.59 523.46 ´364.90 ´314.87 2005.89 1.07 ´0.13 1.36
5 1737.88 1737.58 700.65 523.91 ´364.05 ´313.54 2107.60 1.06 ´0.13 1.36
6 1738.41 1738.15 700.71 523.93 ´364.39 ´311.73 2208.32 1.06 ´0.12 1.36
7 1737.42 1737.20 700.71 524.02 ´364.65 ´310.01 2307.00 1.05 ´0.12 1.36
8 1737.75 1737.60 700.58 524.17 ´364.72 ´308.38 2407.47 1.05 ´0.12 1.36
9 1737.21 1737.07 700.71 524.16 ´365.17 ´306.53 2506.68 1.05 ´0.13 1.36
0 1737.17 1737.05 700.54 524.10 ´365.18 ´304.62 2606.64 1.05 ´0.12 1.35
1 1736.76 1736.63 700.66 524.31 ´365.61 ´303.12 2705.92 1.04 ´0.12 1.35
2 1737.09 1737.00 700.74 524.76 ´365.99 ´302.02 2806.35 1.03 ´0.13 1.35
3 1737.19 1737.11 700.97 524.85 ´366.63 ´300.39 2906.44 1.03 ´0.13 1.35
4 1736.94 1736.86 700.96 524.60 ´366.89 ´298.18 3006.04 1.03 ´0.13 1.36
5 1737.05 1736.98 700.83 524.52 ´366.94 ´296.22 3106.31 1.04 ´0.13 1.36
6 1736.63 1736.56 700.75 524.32 ´367.06 ´294.05 3205.58 1.05 ´0.13 1.35
7 1736.33 1736.27 700.88 524.43 ´367.58 ´292.43 3304.94 1.04 ´0.13 1.35
8 1736.79 1736.77 701.40 524.66 ´368.87 ´291.07 3405.76 1.03 ´0.14 1.35

Table 2. IDLT results of the physical experiment.

ax ay u0 (pixel) v0 (pixel) tx (mm) ty (mm) Tz (mm)

1738.11 1738.33 696.27 555.55 ´358.82 ´352.39 1708.23

To compare the calibration accuracy of the two algorithms, the results of IDLT and the first set
of DLT data were used to calculate the re-projection errors of 20 planes. Each plane image error was
described by the mean plus three times the standard deviation of the image point re-projection errors.
The results are shown in Figure 9. The calculation errors of DLT increase with the number of planes.
This shows that the DLT calibration results are optimal for some planes, but not for all planes. The
calibration errors of IDLT decrease with the number of planes. The reason is because the distance
between the image point and optical center point of the image is small, and the effect of distortion
is small.
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Figure 9. Re-projection errors of 20 planes with DLT and IDLT calibration results: (a) u of projection 
image errors; (b) v of projection image errors. 

5. Conclusions  

Based on a camera model, the DLT algorithm uses linear equations to calculate the intrinsic and 
extrinsic camera parameters. Because the camera’s intrinsic and extrinsic parameters are 
simultaneously calibrated, the coupling error of the calibration parameter affects the calibration 
accuracy. In this paper, we analyzed the principles of intrinsic and extrinsic parameter error coupling, 
determined a linear coupling relationship between the intrinsic parameter calibration error and the 
translation vector (extrinsic parameters) calibration error and proposed the IDLT algorithm. The 
IDLT algorithm uses the linear coupling relationship to calculate the calibration parameters of the 
camera. The results of simulations and experiments show that there are significantly fewer calibration 
parameter errors using the IDLT algorithm than there are using DLT with noise and distortion. 
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Figure 9. Re-projection errors of 20 planes with DLT and IDLT calibration results: (a) u of projection
image errors; (b) v of projection image errors.

5. Conclusions

Based on a camera model, the DLT algorithm uses linear equations to calculate the intrinsic
and extrinsic camera parameters. Because the camera’s intrinsic and extrinsic parameters are
simultaneously calibrated, the coupling error of the calibration parameter affects the calibration
accuracy. In this paper, we analyzed the principles of intrinsic and extrinsic parameter error coupling,
determined a linear coupling relationship between the intrinsic parameter calibration error and the
translation vector (extrinsic parameters) calibration error and proposed the IDLT algorithm. The
IDLT algorithm uses the linear coupling relationship to calculate the calibration parameters of the
camera. The results of simulations and experiments show that there are significantly fewer calibration
parameter errors using the IDLT algorithm than there are using DLT with noise and distortion.
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