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Abstract:



Kung-Traub conjecture states that an iterative method without memory for finding the simple zero of a scalar equation could achieve convergence order [image: there is no content], and d is the total number of function evaluations. In an article “Babajee, D.K.R. On the Kung-Traub Conjecture for Iterative Methods for Solving Quadratic Equations, Algorithms 2016, 9, 1, doi:10.3390/a9010001”, the author has shown that Kung-Traub conjecture is not valid for the quadratic equation and proposed an iterative method for the scalar and vector quadratic equations. In this comment, we have shown that we first reported the aforementioned iterative method.
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1. Iterative Methods for Solving Quadratic Equations Presented in [1]


According to Kung-Traub conjecture (KTC) [2], an iterative method without memory for solving nonlinear equations in the case of simple zeros, could achieve a maximum convergence order of [image: there is no content], where d is the number of function evaluations. Recently, an article was published for solving quadratic equations [1] with arbitrary order of convergence by using one function and two derivatives evaluations. The details of the proposed formulation in [1] is given as follows. Let f(x)=κ2x2+κ1x+κ0 be a quadratic function where [image: there is no content] and [image: there is no content], [image: there is no content] are constants. The proposed iteration function [image: there is no content] in [1] is


u(x)=f(x)f′(x)τ=f′x−2/3u(x)f′(x)H(τ,r)=1+∑i=1rai(τ−1)iψ(r+2)thBQIM(x)=x−u(x)H(τ,r)



(1)







The error equation of Equation (1) is given as [image: there is no content] where [image: there is no content] is asymptotic error constant, [image: there is no content] is the simple root of quadratic equation and [image: there is no content]. The error equation clearly shows that KTC is not valid in the case of quadratic equations. By using binomial expansion, the weight function [image: there is no content] can be written as


H(τ,r)=1+∑i=1r∑j=0iaiii−j(−1)(i−j)τjH(τ,r)=1+∑i=0rbiτi



(2)




where [image: there is no content] is constant and can be computed by comparing two expressions of [image: there is no content] in Equation (2). The powers of τ can be computed recursively and hence the iteration function Equation (1) is written as


u(x)=f(x)f′(x)y=x−2/3u(x)τ=f′(y)f′(x)ϕ0=u(x)fori=1,rϕi=τϕi−1endψ(r+2)thBQIM(x)=x−ϕ0−∑i=0rbiϕi.



(3)







The computationally efficient vector version of iteration function Equation (3) is


F′(x)ϕ0=F(x)y=x−2/3ϕ0fori=1,rF′(x)ϕi=F′(y)ϕi−1endψ(r+2)thBQIM(x)=x−ϕ0−∑i=0rbiϕi.



(4)








2. Iterative Methods for Solving Matrix-Vector Quadratic Equations Presented in [3]


In this direction, a manuscript [3] was posted on 4 May 2015 on Researchgate in which the author provided models of three iterative methods, with their respective convergence orders, for computing the solution of matrix-vector quadratic equations. As the proposed iterative methods are valid for solving systems of nonlinear equations with quadratic nonlinearity, they are also valid for scalar quadratic equations. In the article [3] the model of iterative Method II can be written as:


x0=initialguessF′(x0)ϕ1=F(x0)x1=x0+α1,1ϕ1fori=1,mF′(x0)ϕi+1=F′(x1)ϕiendx2=x0+∑j=1mα2,jϕjx2=x0



(5)




where [image: there is no content] is a quadratic equation i.e., [image: there is no content] is a bilinear form and [image: there is no content] (zero tensor) for [image: there is no content] and the convergence order is [image: there is no content]. The scalar version of iterative method Equation (5) can be written as


x0=initialguessf′(x0)ϕ1=f(x0)x1=x0+α1,1ϕ1fori=1,mf′(x0)ϕi+1=f′(x1)ϕiendx2=x0+∑j=1mα2,jϕjx0=x2



(6)




where f(x)=ax2+bx+c with [image: there is no content] and convergence order is [image: there is no content]. The convergence proofs of different iterative methods are established in Figure 1, Figure 2, Figure 3 and Figure 4. We can see that the error equations in all cases are the same. The Figure 4 shows that the iterative method (1) is a particular case of iterative method Equation (6) for [image: there is no content]. Finally we provide the convergence proof of the iterative method Equation (5).


Figure 1. Iterative method Equation (1).



[image: Algorithms 09 00030 g001 1024]





Figure 2. Iterative method Equation (6) for arbitrary finite [image: there is no content].
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Figure 3. Iterative method (6) for [image: there is no content].
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Figure 4. Iterative method (6) for [image: there is no content].
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Theorem 2.1. 

Let [image: there is no content]be a function with all continuous Fréchet derivatives, [image: there is no content]and [image: there is no content]for [image: there is no content], where [image: there is no content]is a bilinear form and [image: there is no content]is convex open subset of [image: there is no content]. If we take [image: there is no content]in the vicinity of a simple root [image: there is no content]of [image: there is no content]then the sequence of successive approximation generated by iterative method Equation (5) for [image: there is no content]and [image: there is no content]converges to [image: there is no content]with convergence order eight.





Proof. 

We denote [image: there is no content], [image: there is no content] and [image: there is no content]. By expanding [image: there is no content] around [image: there is no content] we get


F(x0)=C1e0+C2e02



(7)









The Fréchet derivative of Equation (7) with respective to [image: there is no content] is


F′(x0)=C1I+2C2e0



(8)







The inverse of Equation (8) is


F′(x0)−1=(I−2C2e0+4C22e02−8C23e03+16C24e04−32C25e05+64C26e06−128C27e07+256C28e08)C1−1+Oe09



(9)







We compute [image: there is no content] using Equations (9) and (7)


ϕ1=e0−C2e02+2C22e03−4C23e04+8C24e05−16C25e06+32C26e07−64C27e08+Oe09.



(10)







The expression for [image: there is no content] is


e1=1/3e0+2C2e02−4C22e03+8C23e04−16C24e05+32C25e06+64C26e07+128C27e08+Oe09



(11)







First order Fréchet derivative of [image: there is no content] at [image: there is no content] is


F′(x1)=C1(I+1/3(2C2e0+4C22e02−8C23e03+16C24e04−32C25e05+64C26e06−128C27e07+256C28e08))+Oe09



(12)







Next we compute [image: there is no content]


M=I−4/3C2e0+4C22e02−32/3C23e03+80/3C24e04−64C25e05+448/3C26e06−1024/3C27e07+768C28e08+Oe09



(13)




with help of Equation (13), we obtain the expressions for [image: there is no content] for [image: there is no content]


ϕ2=e0−7/3C2e02+22/3C22e03−64/3C23e04+176/3C24e05−464/3C25e06+1184/3C26e07−2944/3C27e08+Oe09ϕ3=e0−11/3C2e02+130/9C22e03−460/9C23e04+168C24e05−1568/3C25e06+4672/3C26e07−4480C27e08+Oe09ϕ4=e0−5C2e02+70/3C22e03−2584/27C23e04+9712/27C24e05−34208/27C25e06+114496/27C26e07−367616/27C27e08+Oe09ϕ5=e0−19/3C2e02+34C22e03−4252/27C23e04+53512/81C24e05−208624/81C25e06+767968/81C26e07−2697920/81C27e08+Oe09ϕ6=e0−23/3C2e02+418/9C22e03−6448/27C23e04+89168/81C24e05−1137712/243C25e06+4543840/243C26e07−5747840/81C27e08+Oe09ϕ7=e0−9C2e02+182/3C22e03−9236/27C23e04+46264/27C24e05−637376/81C25e06+24618880/729C26e07−100011520/729C27e08+Oe09.



(14)







We obtain expression for [image: there is no content] by using Equation (14)


e2=1+α2,1+α2,2+α2,3+α2,4+α2,5+α2,6+α2,7e0+−α2,1−7/3α2,2−11/3α2,3−5α2,4−19/3α2,5−23/3α2,6−9α2,7C2e02+(2α2,1+22/3α2,2+130/9α2,3+70/3α2,4+34α2,5C22+418/9α2,6+182/3α2,7)C22e03+(−4α2,1−64/3α2,2−460/9α2,3−2584/27α2,4−4252/27α2,5−6448/27α2,6−9236/27α2,7)C23e04+(8α2,1+176/3α2,2+168α2,3+9712/27α2,4+53512/81α2,5+89168/81α2,6+46264/27α2,7)C24e05+(−16α2,1−464/3α2,2−1568/3α2,3−34208/27α2,4−208624/81α2,5−1137712/243α2,6−637376/81α2,7)C25e06+(32α2,1+1184/3α2,2+4672/3α2,3+114496/27α2,4+767968/81α2,5+4543840/243α2,6+24618880/729α2,7)C26e07+(−64α2,1−2944/3α2,2−4480α2,3−367616/27α2,4−2697920/81α2,5−5747840/81α2,6−100011520/729α2,7)C27e08+Oe09.



(15)







By equating the coefficients of powers of [image: there is no content] in Equation (15), we get system of seven equations


eq1:=1+α2,1+α2,2+α2,3+α2,4+α2,5+α2,6+α2,7=0eq2:=−α2,1−7/3α2,2−11/3α2,3−5α2,4−19/3α2,5−23/3α2,6−9α2,7=0eq3:=2α2,1+22/3α2,2+130/9α2,3+70/3α2,4+34α2,5+418/9α2,6+182/3α2,7=0eq4:=−4α2,1−64/3α2,2−460/9α2,3−2584/27α2,4−4252/27α2,5−6448/27α2,6−9236/27α2,7=0eq5:=8α2,1+176/3α2,2+168α2,3+9712/27α2,4+53512/81α2,5+89168/81α2,6+46264/27α2,7=0eq6:=−16α2,1−464/3α2,2−1568/3α2,3−34208/27α2,4−208624/81α2,5−1137712/243α2,6−637376/81α2,7=0eq7:=32α2,1+1184/3α2,2+4672/3α2,3+114496/27α2,4+767968/81α2,5+4543840/243α2,6+24618880/729α2,7=0.



(16)







The solution set of seven equations is


sol={α2,1=−439031024,α2,2=55767256,α2,3=−4977631024,α2,4=3771964,α2,5=−4164211024,α2,6=38637256,α2,7=−240571024}.



(17)







After simplification the error equation we get


e2=429C27e08+Oe09.



(18)




☐



As we have seen, the convergence order of the iterative method Equation (5) is eight for [image: there is no content] and this confirms our claimed order of convergence which is [image: there is no content] for [image: there is no content]. Now we provide the proof of convergence order via mathematical induction.



Theorem 2.2. 

Let [image: there is no content]be a function with all continuous Fréchet derivatives, [image: there is no content]and [image: there is no content]for [image: there is no content], where [image: there is no content]is a bilinear form and [image: there is no content]is a convex open subset of [image: there is no content]. If we take [image: there is no content]in the vicinity of a simple root [image: there is no content]of [image: there is no content]then the sequence of successive approximation generated by the iterative method Equation (5) for [image: there is no content]and [image: there is no content]converges to [image: there is no content]with convergence order [image: there is no content].





Proof. 

We suppose that our claim about the convergence order of the iterative method Equation (5) is true for [image: there is no content], which means we have


e2(s)=HsC2s−1e0s+2+Oe0s+3



(19)




where [image: there is no content] is asymptotic error constant and superscript “[image: there is no content]” means the value of [image: there is no content] when [image: there is no content]. We can write [image: there is no content]


e2(s)=e0−2/3ϕ1+α2,1+α2,2M+⋯+α2,s−1Msϕ1+HsC2s−1e0s+2+Oe0s+3



(20)









It is convenient to express the combination


α2,1+α2,2M+α2,3M2+⋯+α2,s+1Ms








in the powers of I−M [1], we establish the following identity


α2,1+α2,2M+⋯+α2,s−1Ms≡β2,1+β2,2I−M+⋯+β2,s−1I−Ms



(21)







By comparing the same powers of M on both sides we can easily compute the value of [image: there is no content]’s. By using Equation (21), error Equation (20) can be written as


e2(s)=e0−2/3ϕ1+β2,1+β2,2I−M+⋯+β2,s−1I−Msϕ1+HsC2(s+1)e0(s+2)+Oe0(s+3)



(22)







However, according to our assumption we can find the value of unknowns to make the following expression equal to zero


e0−2/3ϕ1+β2,1+β2,2I−M+⋯+β2,s−1I−Msϕ1=0



(23)







We can notice from Equation (13) that I−Ms=34sC2se0s+Oe0(s+1) and [image: there is no content].



Now we consider


e2(s+1)=e2(s)+β2,sI−Ms+1ϕ1=HsC2s+1e0s+2+β2,s34s+1C2s+1e0(s+2)+Oe0(s+3)=Hs+34s+1β2,sC2s+1e0(s+2)+Oe0(s+3)



(24)







As we know the value of [image: there is no content] we can find [image: there is no content] to make the coefficient of [image: there is no content] equals to zero. Hence we get


e2(s+1)=Oe0(s+3)








which completes the proof. ☐




3. Numerical Testing


We adopt the following definition of computational convergence order (COC)


COC=log||F(xk+1)||∞/||F(xk)||∞log||F(xk)||∞/||F(xk−1)||∞



(25)







To verify the claimed convergence order of our proposed iterative method Equation (5), we study the following system of quadratic equations


F(x)=x2x3+x4(x2+x3)=0x1x3+x4(x4+x3)=0x1x2+x4(x1+x4)=0x1x2+x3(x1+x2)=1



(26)







In Table 1, we listed the norm of the residue of [image: there is no content] and COC against the sequence of iterations for different values of parameters [image: there is no content]. The Table 1 confirms the claimed convergence order. For two different values of the parameter [image: there is no content], we obtained the record of the norm of the residue of [image: there is no content] equal to the system of quadratic Equations (26). The possible reason for his could be the same error equation of iterative method for different values of parameter [image: there is no content] in the iterative method Equation (5).



Table 1. Computational convergence order of iterative method Equation (5), initial guess = [image: there is no content].







	
iter

	
[image: there is no content]

	
COC

	
[image: there is no content]

	
COC






	

	
[image: there is no content]

	

	
[image: there is no content]

	




	
0

	
2.50e1

	

	
2.50e1

	




	
1

	
2.71e–6

	

	
2.71e–6

	




	
2

	
7.56e–47

	
8.17

	
7.56e–47

	
8.17




	
3

	
2.80e–371

	
8.00

	
2.80e–371

	
8.00




	
4

	
9.79e–2967

	
8.00

	
9.79e–2967

	
8.00











4. Conclusions


We conclude that the iterative structure of iterative method Equation (1) was first reported in article [3] as a particular case and our proposed iterative method [3] is general because [image: there is no content] is a free parameter.
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