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Abstract: This paper addresses the problem of solving discrete-time H∞ control problems for periodic
systems. The approach for solving such a type of equations is well known in the literature. However,
the focus of our research is set on the numerical computation of the stabilizing solution. In particular,
two effective methods for practical realization of the known iterative processes are described.
Furthermore, a new iterative approach is investigated and applied. On the basis of numerical
experiments, we compare the presented methods. A major conclusion is that the new iterative
approach is faster than rest of the methods and it uses less RAM memory than other methods.
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1. Introduction

Periodic systems are an important sub-class of time-varying systems therefore their investigation
has attracted significant attention during the past years. The theory of stability, optimal control and
applications of periodic systems is available in several recent monographs [1–4] as well as in the
references therein. The so called stabilizing solution of discrete-time periodic systems has a crucial role
in solving a linear linear quadratic optimal control problem on infinite time horizon. There are different
methods to solve the periodic Riccati equations with a definite quadratic part [5,6]. Recently, [7,8] two
iterative procedures have been developed for numerical computation of the stabilizing solution of a
class of periodic discrete-time Riccati equation with an indefinite sign of it’s quadratic term.

Our aim is to find the stabilizing solution of a set of periodic discrete-time Riccati equations with
indefinite sign in the quadratic part:

X(t) = R(t, X) := AT(t)X(t + 1)A(t)−
[
AT(t)X(t + 1)B(t) + CT(t)D(t)

]
+ CT(t)C(t)

×
[
Rγ(t) + BT(t)X(t + 1)B(t)

]−1 [AT(t)X(t + 1)B(t) + CT(t)D(t)
]T (1)

where t ∈ Z , A(t) ∈ Rn×n, B(t) = (B1(t) B2(t)), Bk(t) ∈ Rn×mk , k = 1, 2, C(t) ∈ Rp×n,

D(t) = (D1(t) D2(t)), Dk(t) ∈ Rp×mk , k = 1, 2, Rγ(t) = DT(t)D(t) +

(
−γ2 Im1 0

0 0

)
∈ Rm×m,

m = m1 + m2, γ > 0 is a given scalar. Our investigation is based on the theory of periodic discrete-time
Riccati equations as well as on the iterative methods described in [7]. Dragan et al. [7,8] study
two iterative processes for the computation of the stabilizing solution to Equation (1) and derive their
convergence properties. However, the proposed iterative methods are not investigated numerically.
In this paper we consider two iterative methods (Block Successive Approximations and A Block
Stein Iteration) so as to develop numerical procedures (derived in [7,8]) for computing the stabilizing
solution of a set of periodic discrete-time Riccati equations.
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We further propose a new iterative procedure for the practical realization of the main iterative
processes. The performed numerical experiments are supportive to the fact that the new procedure
is faster than the others, furthermore, it uses less RAM memory. We should note that our study is
based on ideas developed in [9–11], where new iterative procedures for the numerical computation of
a stabilizing solution in the time-invariant case has been proposed.

The main assumption for the existence of such a type set of periodic discrete-time Riccati
equations is:

H1: An integer exits θ ≥ 1 such that A(t+ θ) = A(t), B(t+ θ) = B(t), C(t+ θ) = C(t), D(t+ θ) = D(t)
for t ∈ Z.

In our approach the class of admissible solutions consists of all bounded sequences
{X(t)}t∈Z ⊂ Sn satisfying Equation (1) and the following two sign conditions:

DT
1 (t)D1(t) + BT

1 (t)X(t + 1)B1(t)−
[

BT
1 (t)X(t + 1)B2(t) + DT

1 (t)D2(t)
]

×
[

BT
2 (t)X(t + 1)B2(t) + DT

2 (t)D2(t)
]−1 [

BT
1 (t)X(t + 1)B2(t) + DT

1 (t)D2(t)
]T
− γ2 Im1 < 0 (2)

DT
2 (t)D2(t) + BT

2 (t)X(t + 1)B2(t) > 0 (3)

t ∈ Z. Therefore, we are interested in the global and bounded on Z solutions for which the matrices
Rγ(t) + BT(t)X(t + 1)B(t), t ∈ Z have not defined sign.

Definition 1. [7] An admissible solution {X̃(t)}t∈Z is called stabilizing solution, if the zero state
equilibrium of the discrete-time linear system on Rn:

x(t + 1) = [A(t) + B(t)F̃(t)]x(t) (4)

is exponentially stable, where

F̃(t) = −[Rγ(t) + BT(t)X̃(t + 1)B(t)]−1 [BT(t)X̃(t + 1)A(t) + DT(t)C(t)] (5)

2. Iterative Methods for Stabilizing Solution

2.1. The Iterative Procedure with Two Matrix Sequences

We consider the iterative procedure for numerical computation of the unique stabilizing and
θ-periodic solution X̃(.) of Equation (1), which is described in Section 3.1 of the paper of Dragan and
co-authors [7]. In fact, the iterative procedure is based on the solution to θ -periodic discrete-time
Riccati equation with definite quadratic part:

Z(k)(t) = W(Z(k)) := (Â(t))TZ(k)(t + 1)Â(t)−
[
(Â(t))TZ(k)(t + 1)B2(t)

]
×
[

R(k)
2 (t) + B2(t)Z(k)(t + 1)B2(t)

]−1 [
(Â(t))TZ(k)(t + 1)B2(t)

]T
+ M(k)(t) (6)

with Â(t) = A(t) + B(t)F(k)(t) where

F(k)(t) = −[Rγ(t) + BT(t)X(k)(t + 1)B(t)]−1 [BT(t)X(k)(t + 1)A(t) + DT(t)C(t)]

R(k)
2 (t) = DT

2 (t)D2(t) + BT
2 (t)X(k)(t + 1)B2(t)

M(k)(t) = AT(t)X(k)(t + 1)A(t)− [AT(t)X(k)(t + 1)B(t) + CT(t)D(t)] + CT(t)C(t)

×[Rγ(t) + BT(t)X(k)(t + 1)B(t)]−1 [AT(t)X(k)(t + 1)B(t) + CT(t)D(t)]T − X(k)(t)
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We rewrite the above equations (t = 0, . . . , θ) using a block structure. We denote
Ž = diag(Z(0), Z(1), . . . , Z(θ)) and J is a permutation matrix such that

J−1Ž J = diag(Z(1), Z(2), . . . , Z(θ), Z(0)) , (J−1 = JT)

Introducing the following notations

Ǎ = diag(Â(0), Â(1), . . . , Â(θ)), B̌2 = diag(B2(0), B2(1), . . . , B2(θ))

Ř(k)
2 = diag(R(k)

2 0), R(k)
2 (1), . . . , R(k)

2 (θ))

M̌(k) = diag(M(k)(0), M(k)(1), . . . , M(k)(θ))

F̌Ž(k) = −
[

Ř(k)
2 + B̌T

2 J−1Ž(k) JB̌2

]−1
(ǍT J−1Ž(k) JB̌2)

T

Equation (6) has a form:

Ž(k) = ǍT J−1Ž(k) J Ǎ− (ǍT J−1Ž(k) JB̌2)×
[

Ř(k)
2 + B̌T

2 J−1Ž(k) JB̌2

]−1
(ǍT J−1Ž(k) JB̌2)

T + M̌(k)

or, in the equivalent form

Ž(k) = (J Ǎ + J B̌2 F̌Ž(k))
T Ž(k) (J Ǎ + J B̌2 F̌Ž(k)) + (F̌Ž(k))

T Ř(k)
2 F̌Ž(k)) + M̌(k) (7)

A matter of practical importance is how to solve the last equation. There are several approaches
for this purpose, which are briefly outlined in the text that follows.

1. Block Successive Approximations. The method of Block Successive Approximations solves
Equation (7). It is a modification of the method derived in [12] and applied in [13]. We take
Y̌(0) = diag(2I, . . . , 2I) and use the following recurrence equation:

Y̌(i−1) = W̌(Y̌(i)) := (J Ǎ + JB̌2 F̌Y̌(i−1))
TY̌(i−1) (J Ǎ + JB̌2 F̌Y̌(i−1))

+(F̌Y̌(i−1))
T Ř(k)

2 F̌Y̌(i−1)) + M̌(k) , i = 1, 2, ... (8)

The iteration process stops with ‖Y̌(i0) − W̌(Y̌(i0))‖ ≤ eps.
2. A Block Stein Iteration. The second method for solving Equation (7) is a method of A Block

Stein Iteration. We take Y̌(0) = diag(2I, . . . , 2I) and use the following recurrence equation:

Y̌(i) = W̌(Y̌(i)) := (J Ǎ + JB̌2 F̌Y̌(i−1))
TY̌(i) (J Ǎ + JB̌2 F̌Y̌(i−1))

+(F̌Y̌(i−1))
T Ř(k)

2 F̌Y̌(i−1)) + M̌(k) , i = 1, 2, ... (9)

The iteration process stops with ‖Y̌(i0) − W̌(Y̌(i0))‖ ≤ eps. We use MATLAB command dlyap for
solving Equation (9). This approach is adapted in our investigation [13].

3. Successive Approximations: Equation by Equation. On the basis of performed experimetes
we introduce a new (third) method for solving Equation (6). It belongs to the class of successive
approximations methods and we call it Equation by Equation. We apply this approach to Equation (1)
with Y(0)(0) = 2I. Therefore, the set of new iterative equations is : (i = 1, 2, ...)

Y(i)(θ) = W(Y(i−1)(0)) , Y(i)(θ − 1) = W(Y(i)(θ)) , . . . , Y(i)(0) = W(Y(i)(1)) (10)

The iteration process stops with maxt ‖Ỹ(i0)(t)−W(Ỹ(i0)(t))‖ ≤ eps.

In order to execute the iterative procedure Equation (6), the following algorithm is applied:
Algorithm TMS (Two Matrix Sequences)
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1. We take X(0)(t) = 0, t ∈ Z, as well as small positive numbers ε and eps.
2. We compute Z(0)(·) as θ-periodic and stabilizing solution of the Riccati equation:

Z(0)(t) = AT(t)Z(0)(t + 1)A(t)−
[

AT(t)Z(0)(t + 1)B2(t) + CT(t)D2(t)
]
+ CT(t)C(t)

×
[

DT
2 (t)D2(t) + BT

2 (t)Z(0)(t + 1)B2(t)
]−1 [

AT(t)Z(0)(t + 1)B2(t) + CT(t)D2(t)
]T

3. For k = 1, 2, 3, . . . we carry out the following steps:

3.1. We take X(k)(t) = Z(k−1)(t) + X(k−1)(t) .
3.2. We compute Z(k)(·) as the stabilizing solution of the set of Riccati equations with a defined

sign Equation (6). This step might be executed with one of the following approaches (with the
tolerance eps):

3.2.1. Block Successive Approximations presented via Equation (8).
3.2.2. A Block Stein Iteration presented via Equation (9).
3.2.3. Successive Approximations: Equation by Equation presented via Equation (10).

3.3. The algorithm stops if for some integer k0 > 0, the inequality maxt ‖X(k0)(t) −
R(t, X(k0))‖ ≤ ε holds.

4. The stabilizing solution is X̃(t) = X(k0)(t), t = 0, . . . , θ.

It should be noted that the approaches involved in the algorithm via points in 3.2.1, 3.2.2 and 3.2.3
preserve the convergence properties of the iterative procedure derived in Theorem 3.1 proved in [7].

2.2. The Iterative Procedure with One Matrix Sequences

An alternative globally convergent iterative method for the computation of the unique stabilizing
and θ-periodic solution X̃(.) of Equation (1) is derived in [8]. The method preserves similar desirable
characteristics as global convergence and local quadratic rate of convergence. The main advantage of
this method is that the matrix sequence of approximations of the stabilizing solution are computed
directly without exploiting an additional sequence as it is done in the Algorithm TMS. The procedure
is described in Section III in [8].

Compute X(k)(·) as the stabilizing solution of the discrete-time Riccati equations with a defined
sign [8]:

X(k)(t) = Q(X(k)) := (Ã(t))TX(k)(t + 1)Ã(t)−
[
(Ã(t))TX(k)(t + 1)B2(t) + L(k−1)(t)

]
×
[

DT
2 (t) D2(t) + BT

2 (t)X(k)(t + 1)B2(t)
]−1

×
[
(Ã(t))TX(k)(t + 1)B2(t) + L(k−1)(t)

]T
+ M(k−1)(t) (11)

where

F(k−1)
1 (t) = (Im1 0) F(k)(t) ,

= − (Im1 0) [Rγ(t) + BT(t)X(k−1)(t + 1)B(t)]−1 [BT(t)X(k−1)(t + 1)A(t) + DT(t)C(t)]

Ã(t) = A(t) + B1(t) F(k−1)
1 (t)

L(k−1)(t) = (C(t) + D1(t)F(k−1)
1 (t))T D2(t)

M(k−1) = (C(t) + D1(t)F(k−1)
1 (t))T (C(t) + D1(t)F(k−1)

1 (t))− γ2(F(k−1)
1 (t))T F(k−1)

1 (t)
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We present the above set of Equations (11) as one equation with a block structure. We denote
X̌ = diag(X(0), X(1), . . . , X(θ)) and J is a permutation matrix such that

J−1X̌ J = diag(X(1), X(2), . . . , X(θ), X(0))

and 

Ǎ = diag(Ã(0), Ã(1), . . . , Ã(θ)) , B̌2 = diag(B2(0), B2(1), . . . , B2(θ))

Ď = diag(DT
2 (0) D2(0), DT

2 (1) D2(1), . . . , DT
2 (θ) D2(θ))

Ľ = diag(L(k−1)(0), L(k−1)(1), . . . , L(k−1)(θ))

M̌ = diag(M(k−1)(0), M(k−1)(1), . . . , M(k−1)(θ))

F̌X̌ = −
[
Ď + B̌T

2 J−1X̌ JB̌2
]−1

(ǍT J−1X̌ JB̌2 + Ľ)T

The set of equations X(k)(t) = Q(X(k)) is transformed:

X̌ = ǍT J−1X̌ J Ǎ− (ǍT J−1X̌ JB̌2 + Ľ)
[

Ď + B̌T
2 J−1X̌ JB̌2

]−1
(ǍT J−1X̌ JB̌2 + Ľ)T + M̌

or

X̌ = (J Ǎ + J B̌2 F̌X̌)
TX̌ (J Ǎ + J B̌2 F̌X̌) + (F̌X̌)

T Ď F̌X̌ + M̌ (12)

We present two iterative approaches to implement iteration Equation (12).

1. A Block Stein Iteration. The first method for solving Equation (12) is a method of A Block
Stein Iteration. We take Y̌0 = diag(2I, . . . , 2I) and use the following recurrence equation:

Y̌(i) = (J Ǎ + JB̌2 F̃Y̌(i−1))
TY̌(i) (J Ǎ + JB̌2 F̃Y̌(i−1)) + (F̌Y̌(i−1))

T Ď F̌Y̌(i−1) + M̌(k) (13)

i = 1, 2, .... The iteration process stops with ‖Y̌(i0) −Q(Y̌(i0))‖ ≤ eps. We use the MATLAB command
dlyap for solving Equation (13).

2. Successive Approximations: Equation by Equation. The second method for the solution
of Equation (11) is a method of Successive Approximations: Equation by Equation. We apply this
approach to Equation (11) with Y(0)(0) = I. Our iteration is:(i = 1, 2, ...)

Y(i)(θ) = Q(Y(i−1)(0)) , Y(i)(θ − 1) = Q(Y(i)(θ)) , · · · , Y(i)(0) = Q(Y(i)(1)) (14)

The iteration process stops with maxt ‖Ỹ(i0)(t)−Q(Ỹ(i0)(t))‖ ≤ eps.

The following algorithm is applied so as to execute the iterative procedure described by
Equation (11):

Algorithm OMS (One Matrix Sequence).

1. We take X(0)(t) = 0, t ∈ Z, ε as a small positive number.
2. We compute X(1)(·) as θ-periodic and stabilizing solution of the following Riccati equation:

X(1)(t) = AT(t)X(1)(t + 1)A(t)−
[

AT(t)X(1)(t + 1)B2(t) + CT(t)D2(t)
]
+ CT(t)C(t)

×
[

DT
2 (t)D2(t) + BT

2 (t)X(1)(t + 1)B2(t)
]−1 [

AT(t)X(1)(t + 1)B2(t) + CT(t)D2(t)
]T

3. For k = 2, 3, 4, . . . we compute the stabilizing solution X(k)(·) of the discrete-time Riccati
equations with a defined sign Equation (11). This step might be performed with one of the
following approaches:

3.1. A Block Stein Iteration presented via Equation (13).
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3.2. Successive Approximations: Equation by Equation presented via Equation (14).
3.3. The algorithm stops if for some integer k0 > 0, the inequality maxt ‖X(k0)(t) −

R(t, X(k0))‖ ≤ ε holds.

4. The stabilizing solution is X̃(t) = X(k0)(t), t = 0, . . . , θ.

We should note that the approaches involved in the algorithm via points in 2 and 3 preserve the
convergence properties of the iterative procedure derived in Theorem 3.2 derived in [8].

3. Numerical Experiments

In this section we present the performance of the latter two algorithms when finding the stabilizing
solution to a set of periodic discrete-time Riccati equations with indefinite sign in the quadratic part
Equation (1). Our experiments are executed in MATLAB on a 2.16 GHz Intel(R) Duo CPU computer.
We remark the fact, the computer realization of the block methods and the method of Successive
Approximations: Equation by Equation needs O(n2(θ + 1)2) and O((θ + 1)n2) computer memory
cells, respectively.

3.1. Experiment I

Consider a discrete-time periodic linear system described by

A(0) =

 −1.2 0 0.4
4 2 0

0.12 −8 1.6

 , A(1) =

 −2 2 0
4.2 6.4 0
1.2 −10 2.8

 , A(2) =

 −1.2 0.8 0
8 0.3 0.5

1.2 −8 4.5



B1(0) =

 1.8048 0.5877
−0.3916 −0.0175
1.2778 0.5082

 , B1(1) =

 −0.4959 0.1848
2.4629 −1.4624
−0.9885 1.3702

 , B1(2) =

 −1.0077 −0.1932
−0.4189 1.77
0.4144 −1.1287



B2(0) =

 0.4089 −1.0077
−0.1932 −0.4189
0.4144 −1.1287

 , B2(1) =

 −0.7202 0.5488
0.5385 0.1610
−0.4652 −1.0513

 , B2(2) =

 −2.107 −0.604
−0.4065 −0.075
−0.109 −0.807



C(0) =

(
0.233 1.5 0.3

0.2 1.5 0.28

)
, C(1) =

(
0.72 2.0 1.5
0.3 1.5 0.3

)
, C(2) =

(
1.5 0.06 2.5
1.5 1.2 0.85

)

D1(0) =

(
0.35 −0.45
0.28 −0.13

)
, D1(1) =

(
0.1 0.4

0.95 0.48

)
, D1(2) =

(
7.07 2.2
1.22 −0.95

)

D2(0) =

(
0.15 0.75
−0.18 −0.25

)
, D2(1) =

(
2 −1.85

1.46 −0.98

)
, D2(2) =

(
3.4 4.82

3.28 −0.35

)

with θ = 2, t = 0, 1, 2, γ = 6.5, n = 3. For all of the discussed methods are executed consequently 100
and 200 runs with the same matrix coefficients. We use tol = 10−5 (the number tol is the computational
tolerance for the first sequence {X(k)(t)}∞

k=0, see [7]) and eps = 10−6 for all executions. The results
could be summarized as follows.

Algorithm TMS with Block Successive Approximations Equation (8) requires 3 main iterations and
it computes the stabilizing solution with maxt ‖X̃(3)(t)−R(t, X̃(3))‖ = 8.1904× 10−8 < tol. CPU time
for execution of the algorithm is 0.4 s for 100 runs and 0.97 s for 200 runs.
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Algorithm TMS with Block Stein Iteration Equation (9) requires 3 main iterations and it computes
the stabilizing solution with maxt ‖X̃(3)(t)−R(t, X̃(3))‖ = 1.0794× 10−9 < tol. CPU time for execution
of the algorithm is 0.78 s for 100 runs and 1.57 s for 200 runs.

Algorithm TMS with Successive Approximations Equation by Equation (10) requires 3 main
iterations and it computes the stabilizing solution with maxt ‖X̃(3)(t)−R(t, X̃(3))‖ = 4.0976× 10−6

< tol. CPU time for execution of iteration Equation (10) is 0.3750 s for 100 runs and 0.75 s for 200 runs.
Algorithm OMS with Block Stein Iteration Equation (13) requires 3 main iterations and it computes

the stabilizing solution with ‖X̃(3) −Q(X̃(3))‖ = 5.8077× 10−8. CPU time for execution of iteration
Equation (13) is 1.15 s for 100 runs and 2.41 s for 200 runs.

Algorithm OMS with Method of Successive Approximations Equation by Equation (14) requires
3 main iterations and it computes the stabilizing solution with ‖X̃(3) −Q(X̃(3))‖ = 2.5060× 10−8.
CPU time for execution of iteration Equation (14) is 0.5150 s for 100 runs and 1.14 s for 200 runs.

3.2. Experiment II

We take θ = 2, t = 0, 1, 2, and n = 5, m1 = m2 = 2, γ = 7.5. The matrix coefficients are
described below:

A(0) = 1.8×


−0.799 −0.01 −0.0326 0.1441 −0.3071
−0.1931 −0.419 −0.4564 −0.2086 −0.1385
−0.1015 0.3199 −0.37 −0.1572 −0.1701
−0.1383 0.0281 −0.1879 0.0640 0.18
−0.3382 0.1764 −0.1084 −0.14 0.0555



A(1) = 1.9×



0.182 −0.4412 −0.5427 0.4532 0.1874
−0.1532 0.0329 0.475 0.097 −0.0548
0.7056 −0.1355 0.6479 −0.7397 0.3912
0.0364 −0.4506 0.2467 0.0482 −0.4428
−0.3066 −0.1566 −0.1077 0.0262 0.82



A(2) = 1.7×


0.8507 0.0254 −0.0743 −0.2159 0.009
−0.0823 0.5286 −0.9114 −0.4291 −0.3859
0.0960 0.3086 0.20 −0.1370 0.3882
−0.2909 0.7105 0.0487 0.7335 0.2621
−0.3103 −0.1086 0.0126 −0.3097 0.034



B1(0) = f ull(sprand(5, 2, 0.6))/7; B2(0) =
1
3


0.4089 −1.0077
−0.1932 −0.4189
0.4144 −1.1287

0.19 −0.41
1.24 0.86



B1(1) = f ull(sprand(5, 2, 0.6))/7; B2(1) =
1
3


−0.7202 0.5488
0.5385 0.1610
−0.4652 −1.0513
2.4629 −1.4624
−0.9885 1.37
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B1(2) = f ull(sprand(5, 2, 0.6))/7; B2(2) =
1
3


−2.107 −0.604
−0.4065 −0.075
−0.109 −0.807
0.5877 −0.3916
−0.0175 1.2778



C(0) = 0.9

(
0.233 1.5 0.3 1.5 0.3

1.5 0.2 1.5 0.28 0.15

)
, C(1) = 0.9

(
0.72 2.0 1.5 0.3 1.25
0.3 0.06 2.5 1.04 1.15

)

C(2) = 0.9

(
1.5 0.06 2.5 1.04 1.15
1.2 0.85 0.06 2.5 1.04

)

D1(0) = randn(2, 2); D1(1) = randn(2, 2); D1(2) = randn(2, 2);

D2(0) =

(
0.7615 0.4508
−0.6894 −1.565

)
, D2(1) =

(
−0.0630 −0.5223
−0.7534 0.226

)
, D2(2) =

(
−1.0126 −1.3643
−0.8901 −2.0057

)

Two experimental trials are carried out. These are Test 1 and Test 2, where Test 1 consists
of 100 examples and Test 2 of 200 examples. The matrix coefficients B1(0), B1(1), B1(2) and
D1(0), D1(1), D1(2) differ for all of the examples as the random Matlab functions sprand and randn
are used to define them. We execute Tests 1 and 2 successively.

Our results might be summarized as follows.
Block Successive Approximations Equation (8) with tol = 10−7 and eps = 10−7 requires 2 main

iterations and it computes the stabilizing solution with ‖X̃(2) −W(X̃(2))‖ = 5.2147× 10−8. CPU time
for execution of iteration Equation (8) is 2.5 s for Test 1 and 5.1 s for Test 2.

Block Stein Iteration Equation (9) with tol = 10−6 and eps = 10−6 requires 2 main iterations and it
computes the stabilizing solution with ‖X̃(2) −W(X̃(2))‖ = 1.8306× 10−10. CPU time for execution of
iteration Equation (9) is 1.8 s for Test 1 and 3.7 s for Test 2.

Method of Successive Approximations Equation by Equation (10) with tol = 10−7 and
eps = 10−7 requires 2 main iterations and it computes the stabilizing solution with ‖X̃(2)−W(X̃(2))‖ =
5.7561× 10−9. CPU time for execution of iteration Equation (10) is 1.5 s for Test 1 and 3.1 s for Test 2.

Block Stein Iteration Equation (13) with tol = 10−6 and eps = 10−7 requires 2 main iterations and
it computes the stabilizing solution with ‖X̃(2) −Q(X̃(2))‖ = 1.2059× 10−8. CPU time for execution
of iteration Equation (13) is 2.9 s for Test 1 and 5.1 s for Test 2.

Method of Successive Approximations Equation by Equation (14) with tol = 10−7 and
eps = 10−7 requires 2 main iterations and it computes the stabilizing solution with ‖X̃(2) −Q(X̃(2))‖ =
5.2861× 10−8. CPU time for execution of iteration Equation (14) is 2.1 s for Test 1 and 4.2 s for Test 2.

4. Conclusions

On basis of the performed computational experiments the following conclusions might be outlined.
First of all, Block Stein iterations Equations (9) and (13) achieve highest accuracy. Nevertheless, this
method uses block “equation” structure, i.e., it works with block matrix coefficients, hence, the utilized
RAM memory is greater than that required by the method of the Successive Approximations: Equation
by Equation. Secondly, the method of Successive Approximations: Equation by Equation is faster than
rest of the methods and at the same time it uses less RAM memory.
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