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Abstract:

 Hyperspectral images are widely used in several real-life applications. In this paper, we investigate on the compression of hyperspectral images by considering different aspects, including the optimization of the computational complexity in order to allow implementations on limited hardware (i.e., hyperspectral sensors, etc.). We present an approach that relies on a three-dimensional predictive structure. Our predictive structure, 3D-MBLP, uses one or more previous bands as references to exploit the redundancies among the third dimension. The achieved results are comparable, and often better, with respect to the other state-of-art lossless compression techniques for hyperspectral images.




Keywords:


hyperspectral images; lossless compression; low complexity; 3-D data








1. Introduction


Hyperspectral imaging instruments collect information by exploring the electromagnetic spectrum of a specific geographical area. In contrast to the human eye and traditional camera sensors, which can only perceive visible light (i.e., the wavelengths between 360 to 760 nanometers (nm)), spectral imaging techniques allow to cover a significant portion of wavelengths (i.e., the frequencies of ultraviolet and infrared rays). It is important to note that the spectrum is subdivided into different spectral bands. Therefore, hyperspectral images can be viewed as three-dimensional data (often referred as datacubes).



For instance, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [1] hyperspectral sensor (NASA Jet Propulsion Laboratory (JPL) [2]) measures from 380 to 2500 nm of the electromagnetic spectrum. In particular, the spectrum is subdivided into 224 spectral bands.



From the analysis of hyperspectral data, it is possible to identify and/or classify materials, objects, etc. Such capabilities are related to the fact that some objects and materials have a unique signature (a sort of fingerprint) in the electromagnetic spectrum, therefore this fingerprint can be used for identification purposes.



Hyperspectral data are widely used in real-life applications including agriculture, mineralogy, physics, surveillance, etc. For instance, in geological applications the capabilities of hyperspectral remote sensing are exploited to identify various types of minerals or to search for minerals and oil.



One of the most important parameters to evaluate the precision of a sensor is the spectral resolution, which is the width between two adjacent bands. For instance, by considering the AVIRIS hyperspectral images, the spectral resolution is 10 nm. The spatial resolution is a relevant aspect too. Informally, the spatial resolution denotes how extensive is the geographical area mapped by the sensor into a pixel. It could be difficult to recognize materials and/or objects from a pixel, if a too wide area is mapped into it.



Many hundreds of gigabytes can be produced every day by a single hyperspectral sensor. Therefore, it is necessary to compress these data, in order to transmit and to store them efficiently. Since such data are often used in delicate tasks and there are high costs involved in the acquisitions, lossless compression is generally required.



This paper focuses on a novel technique for the lossless compression of hyperspectral images. The proposed algorithm is based on the predictive coding model and the proposed predictive structure uses a configurable multiband three-dimensional structure. It is possible to customize our predictor by individuating the number of the previous bands which will be used as references and the wideness of the prediction context. Through appropriate configurations of such parameters, the computational complexity and the memory usage can be optimized depending on the hardware available.



Because of its high configurability, our algorithm is suitable for “on board” implementations on hardware with limited capabilities, as for example on an airplane or on a satellite.



The experimental results we have achieved are comparable and often better, with respect to other state of the art approaches. Our scheme provides a good trade-off between computational complexity/memory usage and compression performances.



The rest of the paper is organized as follows: Section 2 briefly reviews previous work on lossless and lossy compression of hyperspectral images, Section 3 outlines the proposed lossless compression approach and Section 4 focuses on the description of experimental results. Finally, Section 5 highlights our conclusion and future work directions.




2. Related Works


Lossless compression of hyperspectral images is generally based on the predictive coding model. The predictive-based approaches have different advantages: they use limited resources in terms of computational power and memory usage and achieve good compression performances. Often, these models are suitable for on board implementations.



Spectral-oriented Least SQuares (SLSQ) [3], Linear Predictor (LP) [3], Fast Lossless (FL) [4], CALIC-3D [5], M-CALIC [5], and RLS [6] are among the state-of-art predictive-based techniques.



The Consultative Committee for Space Data Systems (CCSDS) has specified the CCSDS 123 standard, which outlines a method for lossless compression of multispectral and hyperspectral image data and a format for storing the compressed data [7,8]. The main objective is to establish a Recommended Standard for a multispectral and hyperspectral images, and to specify the compressed data format. In literature, many proposed approaches implement the recommendations of the CCSDS 123 standard for the lossless compression of hyperspectral images, as for instance, the ones described in [9,10,11].



Other approaches are designed for offline compression, since they use more sophisticated techniques and/or they require the complete availability of the hyperspectral image. These approaches are not suitable for an on board implementation but can achieve better compression performances. Mielikainen, in [12], proposed an approach for the compression of hyperspectral image through Look-Up Table (LUT). LUT predicts each pixel by using all the pixels in the current and in the previous band, by searching the nearest neighbor, in the previous band, which has the same pixel value as the pixel located in the same spatial coordinates as the current pixel. LUT has high compression performances, but it uses more resources in terms of memory and CPU usage.



Other lossless techniques are based on dimensionality reduction through principal component transform [13] or they are based on the clustered differential pulse code modulation [14]. An error-resilient lossless compression technique is proposed in [15].



For the lossy compression of hyperspectral images, the compression algorithms are generally based on 3D frequency transforms: as for examples 3-D Discrete Wavelet Transform (3D-DWT) [16], 3-D Discrete Cosine Transform (3D-DCT) [17], Karhunen–Loève transform (KLT) [18], etc. These approaches are easily scalable. On the other hand, they must maintain the entire hyperspectral image at the same time in memory. Locally optimal Partitioned Vector Quantization (LPVQ) [19,20] applies a Partitioned Vector Quantization (PVQ) scheme independently to each pixel of the hyperspectral image.



The variable sizes of the partitions are chosen adaptively and the indices are entropy coded. The codebook is included as part of the coded output. This technique can be used also in lossless mode, but the high costs required in terms of CPU and memory do not allow an on board implementation.




3. Lossless Multiband Compression for Hyperspectral Images (LMBHI)


Hyperspectral images present two typologies of correlations:

	
inter-band correlation;



	
intra-band correlation.








In particular, contiguous bands are strongly correlated (inter-band correlation) and the pixels are generally correlated, since, for instance, two adjacent pixels map adjacent areas, possibly composed of the same material, etc. (intra-band correlation). Such characterizations are exploited by the compression strategies, in order to optimize the redundancy among the third dimension. The main aim of our approach, which we denoted as Lossless MultiBand compression for Hyperspectral Images (LMBHI), is to exploit the correlation with a predictive coding model.



In detail, for each pixel, [image: there is no content], of the input hyperspectral image, LMBHI performs the prediction of the current pixel, [image: there is no content], by selecting the appropriate prediction context of X (three-dimensional or a bi-dimensional contexts).



All the pixels that belong to the first band are predicted by using a bi-dimensional predictive structure: the 2-D Linearized Median Predictor (2-D LMP) [21], which exploits only the intra-band correlation, since the first band has no reference bands. The other pixels are predicted by using a new three-dimensional predictive approach, which uses a prediction context composed of the neighboring pixels of [image: there is no content] and its reference pixels in the previous bands.



Once the prediction step is computed, the prediction error [image: there is no content] (defined in Equation (1)) is modeled and coded.


[image: there is no content]



(1)







3.1. Review of the 2-D Linearized Median Predictor (2D-LMP)


The 2-D Linearized Median Predictor (2D-LMP) [21] uses a prediction context that is composed by three neighboring pixels of [image: there is no content], namely, [image: there is no content], [image: there is no content], and [image: there is no content], as shown in Figure 1. In particular, the predictive structure is derived from the well-established 2-D Median Predictor, which is used in JPEG-LS [22]. The 2-D Median Predictor has the following predictive structure outlined in the Equation (2).


[image: there is no content]



(2)






Figure 1. The prediction context of the 2D-LMP predictive structure. The gray part is already coded and the white part is not coded yet.
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Basically, Median Predictor is in charge of selecting one of the above three options, depending on the context. By combining all the three options, it is possible to obtain the predictive structure of 2D-LMP, defined as in the Equation (3).


[image: there is no content]



(3)








3.2. 3-D MultiBand Linear Predictor (3D-MBLP)


The Multiband Linear Predictor (3D-MBLP) uses a prediction context by considering two parameters:

	
[image: there is no content]: number of the previous bands, that are considered for the prediction;



	
[image: there is no content]: number of the samples for the current and each previous band, which will be used for the creation of the prediction context.








First of all, we define a bi-dimensional enumeration [image: there is no content], graphically represented in Figure 2. The main aim of such an enumeration, is to permit the relative indexing of the pixels with respect to the pixel which is currently under analysis (which has [image: there is no content] as index in Figure 2).


Figure 2. The enumeration [image: there is no content] we used for the relative indexing with respect to the current pixel, identified with 0 as index.
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In order to define the prediction context of 3D-MBLP, we use the following notations:

	
[image: there is no content]: indicates the [image: there is no content]-th pixel of the [image: there is no content]-th band, according to the enumeration [image: there is no content];



	
[image: there is no content]: denotes the pixel that has the same spatial coordinates of [image: there is no content], of the j-th band, according to the enumeration [image: there is no content].








In the following, we suppose that the current band is the [image: there is no content]-th band. In particular, by using our notations, it is possible to observe that [image: there is no content] can be also addressed as [image: there is no content] In detail, the 3D-MBLP predictor is based on the least squares optimization technique and the prediction is computed by means of the Equation (4).


[image: there is no content]



(4)







The coefficients: [image: there is no content] are chosen to minimize the energy of the prediction error described by the Equation (5).


[image: there is no content]



(5)







[image: there is no content] can be rewritten in matrix notation by means of the following equation:


[image: there is no content]








where


[image: there is no content]








and [image: there is no content].



Subsequently, by taking the derivate of [image: there is no content] and by setting it to zero, we obtain the optimal coefficients by means of the Equation (6).


[image: there is no content]



(6)







Once the coefficients [image: there is no content], which solve the linear system Equation (6), are computed, the prediction, [image: there is no content], of the current pixel [image: there is no content], can be calculated.




3.3. Modeling and Coding of Prediction Errors


Starting from the consideration that a prediction error can assume positive or negative values. Similarly to [23], we use an invertible mapping function (highlighted in the Equation (7)), in order to have only non-negative values. It is important to note that the mapping function does not alter the redundancy among the errors. For the coding of the mapped prediction errors we use the Arithmetic Coder (AC) scheme.


[image: there is no content]



(7)








3.4. Computational Complexity


The main computational costs of our approach are due to the resolution of the linear system Equation (6), used to generate the optimal coefficients, which need the computation of the predicted pixel. By using the normal equation method, the linear system can be solved with [image: there is no content] floating-point operations [24]. Figure 3 shows the trend of the computational complexity of our predictive model, in terms of number of operations ([image: there is no content]-axis) that are required for the solving of the linear system, by using configurations with different parameters ([image: there is no content]-axis).


Figure 3. The number of operations ([image: there is no content]-axis) required to solve the linear system Equation (6), by using different parameters ([image: there is no content]-axis).



[image: Algorithms 09 00016 g003 1024]






If we use only the previous band as a reference ([image: there is no content]), only about 20 operations are needed to solve the system. Instead, four or nine times more operations are required if we use two previous bands ([image: there is no content]) or three previous bands ([image: there is no content]). A linear system can have three kinds of solutions: no solutions, one solution, and infinity solutions. In the first and the third scenarios, the proposed predictive structure cannot perform the prediction. In these scenarios, it is desirable to use another low-complexity predictive structure and we have used the 3-D Distances-based Linearized Median Predictor (3D-DLMP) [21].





4. Experimental Results


We performed experiments on two datasets of AVIRIS hyperspectral images: the 1997 AVIRIS Dataset (Section 4.1) and the CCSDS Dataset (Section 4.2).



In our experiments we considered also the PAQ8 algorithm (described in [25]) for the coding of the prediction error. PAQ8 is a state-of-the-art lossless compression algorithm that belongs to the PAQ family of compression algorithm. It is important to note that the PAQ8 family is strictly related to the well-established Prediction by Partial Matching scheme (PPM) [26]. In general, the PAQ8 algorithm achieve a high degree of compression performances, but the PAQ8 scheme has significant computational complexity. Therefore, such scheme is not fully adequate to be used for on board applications.



The experiments are performed by using a non-optimized Java-based proof-of-concept of our approach, which employs few minutes on a medium-end laptop (equipped with an Intel Core i5 4200 M processor and 8 GB of RAM).



4.1. 1997 AVIRIS Dataset


Each one of AVIRIS hyperspectral image of the AVIRIS ’97 dataset is subdivided into scenes (the number of scenes is highlighted in Table 1). It is important to note that each scene has 614 columns, 512 lines, and 224 spectral bands. In addition, each pixel is stored by using 16 bits.


Table 1. Description of the dataset used.


	Images
	Number of Scenes





	Lunar Lake
	3



	Moffett Field
	4



	Jasper Ridge
	6



	Cuprite
	5



	Low Altitude
	8









In Table 2 and Table 3, we report the results achieved by using [image: there is no content] with [image: there is no content] and [image: there is no content], respectively. Subsequently, in Table 4 and Table 5, we report the results achieved, by using B = 2. Finally, Table 6 and Table 7 report the results achieved by using [image: there is no content] and the [image: there is no content] parameter equal to 8 and equal to 16, respectively. All the results are reported in terms of Bits Per Sample (BPS). In each table we report the results achieved by using both the AC and the PAQ8 schemes for the coding of the prediction errors.



Table 2. Achieved results by using the following parameters: [image: there is no content], [image: there is no content]. (N.P. indicates that the scene is not present).



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
5.0560

	
4.9985

	
5.1463

	
5.0649

	
5.0602

	
4.9801

	
4.9699

	
4.9124

	
5.3784

	
5.3101




	
Scene 02

	
5.0099

	
4.9532

	
5.1023

	
4.9918

	
5.0524

	
4.9707

	
5.0457

	
4.9916

	
5.4015

	
5.3320




	
Scene 03

	
4.9963

	
4.9381

	
4.9672

	
4.8426

	
5.0987

	
5.0150

	
4.9930

	
4.9369

	
5.3066

	
5.2429




	
Scene 04

	
N.P.

	
5.1888

	
5.0984

	
5.1160

	
5.0353

	
5.0380

	
4.9838

	
5.3341

	
5.2687




	
Scene 05

	
N.P.

	
N.P.

	
5.0532

	
4.9746

	
5.0358

	
4.9821

	
5.3810

	
5.3151




	
Scene 06

	
N.P.

	
N.P.

	
5.0525

	
4.9726

	
N.P.

	
5.3145

	
5.2536




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.3110

	
5.2511




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.3268

	
5.2712




	
Average

	
5.0207

	
4.9633

	
5.1012

	
4.9994

	
5.0722

	
4.9914

	
5.0165

	
4.9614

	
5.3442

	
5.2806










Table 3. Achieved results by using the following parameters: [image: there is no content], [image: there is no content].



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
5.0212

	
4.9665

	
5.1407

	
5.0504

	
5.0547

	
4.9667

	
4.9334

	
4.8791

	
5.3658

	
5.2917




	
Scene 02

	
4.9767

	
4.9228

	
5.1083

	
4.9796

	
5.0485

	
4.9576

	
5.0194

	
4.9663

	
5.3906

	
5.3151




	
Scene 03

	
4.9645

	
4.9094

	
4.9654

	
4.8221

	
5.0952

	
5.0020

	
4.9579

	
4.9049

	
5.2892

	
5.2206




	
Scene 04

	
N.P.

	
5.1843

	
5.0837

	
5.1158

	
5.0255

	
5.0064

	
4.9540

	
5.3158

	
5.2456




	
Scene 05

	
N.P.

	
N.P.

	
5.0488

	
4.9622

	
5.0002

	
4.9491

	
5.3701

	
5.2981




	
Scene 06

	
N.P.

	
N.P.

	
5.0463

	
4.9604

	
N.P.

	
5.2963

	
5.2321




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.2936

	
5.2303




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.3131

	
5.2544




	
Average

	
4.9875

	
4.9329

	
5.0997

	
4.9840

	
5.0682

	
4.9791

	
4.9835

	
4.9307

	
5.3293

	
5.2610










Table 4. Achieved results by using the following parameters: [image: there is no content], [image: there is no content].



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
5.0141

	
4.9707

	
5.0934

	
5.0462

	
5.0140

	
4.9658

	
4.9364

	
4.8929

	
5.3295

	
5.2879




	
Scene 02

	
4.9689

	
4.9259

	
5.0172

	
4.9525

	
5.0072

	
4.9583

	
5.0326

	
4.9918

	
5.3491

	
5.3065




	
Scene 03

	
4.9558

	
4.9111

	
4.8890

	
4.8064

	
5.0501

	
5.0005

	
4.9625

	
4.9204

	
5.2648

	
5.2221




	
Scene 04

	
N.P.

	
5.1254

	
5.0715

	
5.0654

	
5.0200

	
5.0105

	
4.9693

	
5.2881

	
5.2451




	
Scene 05

	
N.P.

	
N.P.

	
5.0095

	
4.9624

	
5.0012

	
4.9608

	
5.3281

	
5.2866




	
Scene 06

	
N.P.

	
N.P.

	
5.0162

	
4.9639

	
N.P.

	
5.2707

	
5.2297




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.2732

	
5.2326




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.2927

	
5.2552




	
Average

	
4.9796

	
4.9359

	
5.0313

	
4.9692

	
5.0271

	
4.9785

	
4.9886

	
4.9470

	
5.2995

	
5.2582










Table 5. Achieved results by using the following parameters: [image: there is no content], [image: there is no content].



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
4.9175

	
4.8732

	
5.0206

	
4.9703

	
4.9397

	
4.8884

	
4.8387

	
4.7945

	
5.2482

	
5.2058




	
Scene 02

	
4.8743

	
4.8303

	
4.9513

	
4.8806

	
4.9341

	
4.8817

	
4.9483

	
4.9061

	
5.2689

	
5.2254




	
Scene 03

	
4.8632

	
4.8174

	
4.8160

	
4.7244

	
4.9755

	
4.9227

	
4.8679

	
4.8250

	
5.1799

	
5.1359




	
Scene 04

	
N.P.

	
5.0496

	
4.9929

	
4.9940

	
4.9458

	
4.9194

	
4.8771

	
5.2017

	
5.1572




	
Scene 05

	
N.P.

	
N.P.

	
4.9358

	
4.8859

	
4.9047

	
4.8638

	
5.2491

	
5.2066




	
Scene 06

	
N.P.

	
N.P.

	
4.9418

	
4.8863

	
N.P.

	
5.1859

	
5.1444




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.1883

	
5.1470




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.2108

	
5.1728




	
Average

	
4.8850

	
4.8403

	
4.9594

	
4.8921

	
4.9535

	
4.9018

	
4.8958

	
4.8533

	
5.2166

	
5.1744










Table 6. Achieved results by using the following parameters: [image: there is no content], [image: there is no content].



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
5.1060

	
5.0699

	
5.1815

	
5.1415

	
5.1037

	
5.0640

	
5.0324

	
4.9965

	
5.4238

	
5.3862




	
Scene 02

	
5.0621

	
5.0265

	
5.0919

	
5.0362

	
5.0968

	
5.0563

	
5.1363

	
5.1018

	
5.4414

	
5.4026




	
Scene 03

	
5.0479

	
5.0112

	
4.9649

	
4.8932

	
5.1374

	
5.0962

	
5.0618

	
5.0269

	
5.3610

	
5.3221




	
Scene 04

	
N.P.

	
5.2085

	
5.1614

	
5.1523

	
5.1148

	
5.1084

	
5.0737

	
5.3831

	
5.3446




	
Scene 05

	
N.P.

	
N.P.

	
5.0999

	
5.0611

	
5.0963

	
5.0631

	
5.4202

	
5.3825




	
Scene 06

	
N.P.

	
N.P.

	
5.1138

	
5.0697

	
N.P.

	
5.3656

	
5.3285




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.3707

	
5.3341




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.3918

	
5.3581




	
Average

	
5.1117

	
5.0359

	
5.1173

	
5.0581

	
5.0870

	
5.0770

	
5.3947

	
5.0524

	
5.3947

	
5.3573










Table 7. Achieved results by using the following parameters: [image: there is no content], [image: there is no content].



	
Scenes

	
Lunar Lake

	
Moffett Field

	
Jasper Ridge

	
Cuprite

	
Low Altitude




	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Scene 01

	
4.9243

	
4.8842

	
5.0206

	
4.9758

	
4.9413

	
4.8968

	
4.8494

	
4.8094

	
5.2546

	
5.2153




	
Scene 02

	
4.8822

	
4.8422

	
4.9383

	
4.8754

	
4.9353

	
4.8898

	
4.9667

	
4.9282

	
5.2731

	
5.2327




	
Scene 03

	
4.8704

	
4.8291

	
4.8052

	
4.7226

	
4.9739

	
4.9279

	
4.8823

	
4.8434

	
5.1887

	
5.1476




	
Scene 04

	
N.P.

	
5.0445

	
4.9931

	
4.9919

	
4.9501

	
4.9320

	
4.8932

	
5.2093

	
5.1681




	
Scene 05

	
N.P.

	
N.P.

	
4.9379

	
4.8944

	
4.9149

	
4.8776

	
5.2528

	
5.2133




	
Scene 06

	
N.P.

	
N.P.

	
4.9510

	
4.9012

	
N.P.

	
5.1935

	
5.1545




	
Scene 07

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.1980

	
5.1594




	
Scene 08

	
N.P.

	
N.P.

	
N.P.

	
N.P.

	
5.2214

	
5.1854




	
Average

	
4.8923

	
4.8518

	
4.9522

	
4.8917

	
4.9552

	
4.9100

	
4.9091

	
4.8704

	
5.2239

	
5.1845










In Table 8 and Table 9, the average results on all the tested hyperspectral images are reported. In detail, the first column indicates the [image: there is no content] parameter and from the second to the fourth columns the average results for [image: there is no content], [image: there is no content], and[image: there is no content], respectively.


Table 8. Average Results on the 1997 AVIRIS Images (AC).


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	8
	5.1110
	5.0652
	5.2211



	16
	5.0936
	4.9821
	4.9865








Table 9. Average Results on the 1997 AVIRIS Images (PAQ8).


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	8
	5.0392
	5.0178
	5.1161



	16
	5.0175
	4.9324
	4.9417









As it is possible to observe from Figure 4 and Figure 5, which graphically represent the average results, the best results are achieved when the following parameters are used: [image: there is no content] and [image: there is no content] (Figure 4b and Figure 5b). The worst results are obtained by using the following parameters: [image: there is no content] and [image: there is no content].


Figure 4. Graphical representation of the average results by using the AC scheme for the coding of the prediction errors. [image: there is no content] (a) and [image: there is no content] (b).
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Figure 5. Graphical representation of the average results by using the PAQ8 scheme for the coding of the prediction errors. [image: there is no content] (a) and [image: there is no content] (b).
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Comparison with other Approaches


In order to compare the experimental results achieved by our approach, we consider the Compression Ratio (C.R.) as a measure for the compression performances. In detail, Table 10 reports the results achieved by considering several parameters on all the hyperspectral images of the used dataset. More precisely, the results are reported in terms of C.R. and they are compared with other state of the art lossless compression schemes.


Table 10. Compression results, in terms of compression ratio (C.R.) achieved by LMBHI (by using various parameter configurations), compared to other lossless compression methods.


	Methods/Images
	Lunar Lake
	Moffett Field
	Jasper Ridge
	Cuprite
	Low Altitude
	Average





	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	3.31
	3.27
	3.26
	3.30
	3.09
	3.25



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	3.24
	3.22
	3.21
	3.23
	3.04
	3.19



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	3.22
	3.20
	3.21
	3.23
	3.03
	3.18



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	3.27
	3.23
	3.23
	3.27
	3.07
	3.21



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	3.21
	3.18
	3.18
	3.21
	3.02
	3.16



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	3.18
	3.14
	3.16
	3.19
	2.99
	3.13



	LPVQ
	3.31
	3.01
	3.12
	3.27
	2.97
	3.14



	SLSQ
	3.15
	3.14
	3.15
	3.15
	2.98
	3.11



	JPEG-2000
	2.98
	2.99
	2.96
	2.98
	2.82
	2.95



	LP
	3.05
	2.88
	2.94
	3.03
	2.76
	2.93



	JPEG-LS
	2.87
	2.90
	2.87
	2.87
	2.74
	2.85



	Diff. JPEG2000
	2.94
	2.83
	2.82
	2.92
	2.69
	2.84



	Diff. JPEG-LS
	2.93
	2.84
	2.81
	2.91
	2.7
	2.84



	M-CALIC
	3.19
	3.27
	3.06
	3.14
	N.D.
	N.D.



	CALIC-3D
	3.06
	3.08
	3.09
	3.25
	N.D.
	N.D.



	LUT
	3.44
	3.23
	3.40
	3.17
	N.D.
	N.D.









From the experimental results, it should be observed that LMBHI gets its best results by using two previous bands as references (i.e. when the following parameter is used: [image: there is no content]), LMBHI outperforms, in average, all the other state of the art approaches.



On the other hand, when only the previous band is used (i.e., when [image: there is no content]), LMBHI outperforms all the compared state of the art techniques, with the exception of LPVQ. But, LPVQ is not suited for on board implementation.



In this latter case, our approach achieves better results with respect to LPVQ on three of the five hyperspectral images: Moffett Field, Jasper Ridge, and Low Altitude, but LPVQ gains on Cuprite and especially on Lunar Lake. In addition, LUT obtains better results of our approach on two of four compared hyperspectral images: Lunar Lake and Jasper Ridge.



The high flexibility and adaptability of our approach makes it considerable for on board implementations. In fact, the coding parameters can be customized depending on the hardware available.





4.2. CCSDS Dataset


In this section we focus on the experimental results we have achieved by considering the CCSDS Dataset, which is composed by five calibrated and seven uncalibrated hyperspectral images. This dataset is provided by Consultative Committee for Space Data Systems (CCSDS) Multispectral and Hyperspectral Data Compression [27].



In Table 11, we shortly describe the dataset by reporting the number of scenes (second column) and the number of samples per line (third column) for the calibrated and the uncalibrated images (first column). The samples of the calibrated and the uncalibrated images are stored by using 16 bits (16-bit signed integer for the calibrated and 16-bit unsigned for the uncalibrated), except for the Hawaii and Maine images in which the samples are stored by using 12 bits (unsigned) [27]. Each image is composed by 512 lines.



Table 11. Description of the CCSDS dataset.



	
Images

	
Num. of Scenes (Denotation of the Scenes)

	
Samples






	
Calibrated




	
Yellowstone

	
5 scenes (3, 10, 11, 18)

	
677




	
Uncalibrated




	
Yellowstone

	
5 scenes (3, 10, 11, 18)

	
680




	
Hawaii

	
1 scene (1)

	
614




	
Maine

	
1 scene (10)

	
680










In Table 12, we report our results in terms of bits-per sample (BPS). The results refer to the calibrated hyperspectral images (first column), by using several configurations for our approach (columns from the second to the fourth). Analogously to Table 12, in Table 13 we report our experimental results for the uncalibrated images. In each table, we report the results by using the AC and the PAQ8 schemes.



Table 12. Achieved results for the calibrated images of the CCSDS dataset.



	
Images/Configurations

	
[image: there is no content], [image: there is no content]

	
[image: there is no content], [image: there is no content]

	
[image: there is no content], [image: there is no content]




	

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8






	
Yellowstone 0

	
4.1881

	
4.0898

	
4.0435

	
3.9917

	
3.9783

	
3.9198




	
Yellowstone 3

	
4.0831

	
3.9658

	
3.9449

	
3.8701

	
3.8795

	
3.7972




	
Yellowstone 10

	
3.5470

	
3.3974

	
3.4712

	
3.3488

	
3.3925

	
3.2592




	
Yellowstone 11

	
3.7878

	
3.7128

	
3.7035

	
3.6554

	
3.6311

	
3.5751




	
Yellowstone 18

	
4.1495

	
4.0350

	
3.9773

	
3.9154

	
3.9082

	
3.8403




	
Average

	
3.9511

	
3.8401

	
3.8280

	
3.7563

	
3.7579

	
3.6783










Table 13. Achieved results for the uncalibrated images of the CCSDS dataset.



	
Images/Configurations

	
[image: there is no content], [image: there is no content]

	
[image: there is no content], [image: there is no content]

	
[image: there is no content], [image: there is no content]






	
Calibrated (16-bit)




	

	
AC

	
PAQ8

	
AC

	
PAQ8

	
AC

	
PAQ8




	
Yellowstone 0

	
6.7889

	
6.6034

	
6.4564

	
6.4012

	
6.4085

	
6.3411




	
Yellowstone 3

	
6.6854

	
6.4961

	
6.3553

	
6.2757

	
6.3106

	
6.2183




	
Yellowstone 10

	
6.0635

	
5.8620

	
5.8397

	
5.7096

	
5.7754

	
5.6309




	
Yellowstone 11

	
6.3023

	
6.1701

	
6.0889

	
6.0418

	
6.0329

	
5.9723




	
Yellowstone 18

	
6.7909

	
6.5840

	
6.4235

	
6.3504

	
6.3715

	
6.2865




	
Average

	
6.5262

	
6.3431

	
6.2328

	
6.1557

	
6.1798

	
6.0898




	
Calibrated (12-bit)




	
Hawaii

	
2.9533

	
2.9041

	
2.8748

	
2.8434

	
2.7965

	
2.7616




	
Maine

	
3.0746

	
2.9835

	
2.9528

	
2.9030

	
2.9005

	
2.8413




	
Average

	
3.0140

	
2.9438

	
2.9138

	
2.8732

	
2.8485

	
2.8015










The best results are achieved when the following configuration is used: [image: there is no content] and [image: there is no content].



Comparison with Other Approaches


We have compared our results on the CCSDS dataset with other state-of-art approaches. Table 14 reports the results achieved by considering several values for the [image: there is no content] and [image: there is no content] parameters on the calibrated hyperspectral images of the CCSDS dataset, by using the AC scheme as well as the PAQ8 scheme for the coding of the prediction errors.


Table 14. Comparison with other lossless compression methods (calibrated images). The results are reported in bits-per-sample (BPS).


	Methods/Scenes (Yellowstone Calibrated)
	0
	3
	10
	11
	18
	Average





	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	3.92
	3.80
	3.26
	3.58
	3.84
	3.68



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	3.99
	3.87
	3.35
	3.66
	3.92
	3.76



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	4.09
	3.97
	3.40
	3.71
	4.04
	3.84



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	3.98
	3.88
	3.39
	3.63
	3.91
	3.76



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	4.04
	3.95
	3.47
	3.70
	3.98
	3.83



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	4.18
	4.08
	3.55
	3.79
	4.15
	3.95



	FL
	3.96
	3.83
	3.40
	3.63
	3.94
	3.75



	FL#
	3.91
	3.79
	3.37
	3.59
	3.90
	3.71



	LUT#
	4.82
	4.62
	3.96
	4.34
	4.84
	4.52



	LAIS-LUT#
	4.48
	4.31
	3.71
	4.02
	4.48
	4.20



	TSP-W1
	3.94
	3.81
	3.37
	3.60
	3.92
	3.73



	TSP-W2
	3.99
	3.86
	3.42
	3.67
	3.97
	3.78









Table 15 and Table 16 report the comparison between the proposed approach and other approaches for the 16-bit uncalibrated and 12-bit uncalibrated hyperspectral images of the CCSDS dataset.


Table 15. Comparison with other lossless compression methods (16-bit uncalibrated images). The results are reported in bits-per-sample (BPS).


	Methods/Scenes (Yellowstone Uncalibrated)
	0
	3
	10
	11
	18
	Average





	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	6.34
	6.22
	5.63
	5.97
	6.29
	6.09



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	6.40
	6.28
	5.71
	6.04
	6.35
	6.16



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	6.60
	6.50
	5.86
	6.17
	6.58
	6.34



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	6.41
	6.31
	5.78
	6.03
	6.37
	6.18



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	6.46
	6.36
	5.84
	6.09
	6.42
	6.23



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	6.79
	6.69
	6.06
	6.30
	6.79
	6.53



	FL
	6.23
	6.10
	5.65
	5.86
	6.32
	6.03



	FL#
	6.20
	6.07
	5.60
	5.81
	6.26
	5.99



	LUT#
	7.14
	6.91
	6.26
	6.69
	7.20
	6.84



	LAIS-LUT#
	6.78
	6.60
	6.00
	6.30
	6.82
	6.50



	TSP-W1
	6.23
	6.09
	5.59
	5.83
	6.28
	6.01



	TSP-W2
	6.27
	6.13
	5.64
	5.88
	6.32
	6.05








Table 16. Comparison with other lossless compression methods (12-bit uncalibrated images). The results are reported in bits-per-sample (BPS).


	Methods/Scenes (Yellowstone Uncalibrated)
	Hawaii
	Maine
	Average





	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	2.76
	2.84
	2.80



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	2.84
	2.90
	2.87



	3D-MBLP + PAQ8 ([image: there is no content], [image: there is no content])
	2.90
	2.98
	2.94



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	2.80
	2.90
	2.85



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	2.87
	2.95
	2.91



	3D-MBLP + AC ([image: there is no content], [image: there is no content])
	2.95
	3.07
	3.01



	FL
	2.64
	2.72
	2.68



	FL#
	2.58
	2.68
	2.63



	LUT#
	3.26
	3.45
	3.35



	LAIS-LUT#
	3.05
	3.19
	3.12



	TSP-W1
	2.61
	2.71
	2.66



	TSP-W2
	2.62
	2.74
	2.68









From Table 12 and Table 13, it comes clear that the best results are achieved when the value of [image: there is no content] is equal to [image: there is no content] and [image: there is no content] is equal to [image: there is no content].



By looking at Table 14, it should be observed that our approach, when the following configuration is used: [image: there is no content] and [image: there is no content], achieves results that are comparable but slightly worse with respect to FL and FL# [27]. Our approach outperforms all the other techniques when the PAQ8 scheme is used for the coding of prediction errors with [image: there is no content] and [image: there is no content]. However, in such configuration the computational complexity of our approach is not suitable for on board implementations.






5. Conclusions and Future Works


In this paper, we have investigated on the lossless compression of hyperspectral images by introducing a multiband three-dimensional predictive structure, we named as 3D-MBLP.



Because of its configurability, it is possible to implement the algorithm on different typologies of sensors, by using appropriate configuration for each type of sensors. Moreover, the proposed approach can be also easily scaled for future generation sensors which will have better hardware capabilities. The experimental results we achieved are comparable and often outperform the other state of the art lossless compression techniques.



In future works, we will include a pre-processing stage before the compression of the hyperspectral image, which substantially reorders the bands by considering their correlation. This will possibly improve the compression performance as in [28,29].
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