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Abstract:

 In this work, we have developed a fourth order Newton-like method based on harmonic mean and its multi-step version for solving system of nonlinear equations. The new fourth order method requires evaluation of one function and two first order Fréchet derivatives for each iteration. The multi-step version requires one more function evaluation for each iteration. The proposed new scheme does not require the evaluation of second or higher order Fréchet derivatives and still reaches fourth order convergence. The multi-step version converges with order [image: there is no content], where r is a positive integer and [image: there is no content]. We have proved that the root α is a point of attraction for a general iterative function, whereas the proposed new schemes also satisfy this result. Numerical experiments including an application to 1-D Bratu problem are given to illustrate the efficiency of the new methods. Also, the new methods are compared with some existing methods.
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1. Introduction

An often discussed problem in many applications of science and technology is to find a real zero of a system of nonlinear equations [image: there is no content], where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] is a smooth map and D is an open and convex set, where we assume that [image: there is no content] is a zero of the system and [image: there is no content] is an initial guess sufficiently close to α. For example, problems of the above type arise while solving boundary value problems for differential equations. The differential equations are reduced to system of nonlinear equations, which are in turn solved by the familiar Newton’s iteration method having convergence order two [1]. The Newton method (2ndNM) is given by



x[image: there is no content]=G[image: there is no content](x(k))=x(k)-u(x(k)),u(x(k))=[F′(x(k))]-1F(x(k))



(1)




Homeier [2] has proposed a third order iterative method called Harmonic Mean Newton’s method for solving a single nonlinear equation. Analogous to this method [2], we consider the following extension to solve a system of nonlinear equation [image: there is no content], henceforth called as [image: there is no content]:



x[image: there is no content]=G[image: there is no content](x(k))=x(k)-12[F′(x(k))]-1+[F′(x(k)-u(x(k)))]-1F(x(k))



(2)




We note that [image: there is no content] is the average of the inverses of two Jacobians. In general, such third order methods free of second derivatives like Equation (2) can be used for solving system of nonlinear equations. These methods require one function evaluation and two first order Fréchet derivative evaluations. The convergence analysis of a few such methods using point of attraction theory can be found in [3]. This [image: there is no content] method is more efficient than Halley’s method because it does not require the evaluation of a third order tensor of [image: there is no content] values while finding the number of function evaluations.

Furthermore, the [image: there is no content] methods are less efficient than two-step fourth order Newton’s method ([image: there is no content])



x[image: there is no content]=G[image: there is no content](x(k))=G[image: there is no content](x(k))-F′(G[image: there is no content](x(k)))-1F(G[image: there is no content](x(k)))



(3)




which was recently rediscovered by Noor et al. [4] using the variational iteration technique. Recently Sharma et al. [5] developed the fourth order method, which is given by


[image: there is no content]



(4)




Cordero et al. [6] presented a sixth order method, which is given by



[image: there is no content]



(5)




Recently, an improved fourth order version from a third order method for solving a single nonlinear equation is found in [7]. In the current paper, similar to the method found in [7], a multivariate version having fourth order convergence is proposed. The rest of this paper is organized as follows. In Section 2, we present a new algorithm (optimal) that has fourth order convergence by using only three function evaluations and a multi-step version with order [image: there is no content], where r is a positive integer and [image: there is no content] for solving systems of nonlinear equations. In Section 3, we study the convergence analysis of the new methods using the point of attraction theory. Section 4 presents numerical examples and comparison with some existing methods. Furthermore, we also study an application problem, i.e., the 1-D Bratu problem [8]. A brief conclusion is given in Section 5.



2. Development of the Methods

Babajee [7] has recently improved the [image: there is no content] method to get a fourth order method for single equation



yk=xk-23f(xk)f′(xk)xk+1=xk-12f(xk)f′(xk)+f(xk)f′(yk)1-14f′(yk)f′(xk)-1+12f′(yk)f′(xk)-12








This method is one of the member in the family of higher order multi-point iterative methods based on power mean for solving single nonlinear equation by Babajee et al. [9].

We next extend the above idea to the multivariate case. For the method given in Equation (2), we propose an improved fourth order Harmonic Mean Newton’s method ([image: there is no content]) for solving systems of nonlinear equations as follows:



x[image: there is no content]=G[image: there is no content](x(k))=x(k)-H1(x(k))A(x(k))F(x(k))H1(x(k))=I-14(τ(x(k))-I)+12(τ(x(k))-I)2,τ(x(k))=[F′(x(k))]-1F′(y(x(k)))A(x(k))=12[F′(x(k))]-1+[F′(y(x(k)))]-1,y(x(k))=x(k)-23u(x(k))



(6)




where I is the [image: there is no content] identity matrix. We further improve the [image: there is no content] method by additional function evaluations to get a multi-step version called [image: there is no content]HM method given by


x[image: there is no content]=G[image: there is no content]HM(x(k))=μr(x(k))μj(x(k))=μj-1(x(k))-H2(x(k))A(x(k))F(μj-1(x(k)))H2(x(k))=2I-τ(x(k)),j=1,2,...,r,r≥1μ0(x(k))=G[image: there is no content](x(k))



(7)




Note that this multi-step version has order [image: there is no content], where r is a positive integer and [image: there is no content]. The case [image: there is no content] is the [image: there is no content] method.



3. Convergence Analysis

The main theorem is going to be demonstrated by means of the n-dimensional Taylor expansion of the functions involved. In the following, we use certain notations and results found in [10]:

Let [image: there is no content] be sufficiently Fréchet differentiable in D. Suppose the qth derivative of F at u∈Rn, [image: there is no content], is the q-linear function [image: there is no content] such that F(q)(u)(v1,…,vq)∈Rn. Given [image: there is no content], which lies in a neighborhood of a solution α of the nonlinear system [image: there is no content], Taylor’s expansion can be applied (assuming Jacobian matrix [image: there is no content] is nonsingular) to obtain



[image: there is no content]



(8)




where [image: there is no content], [image: there is no content]. It is noted that [image: there is no content] since [image: there is no content] and [image: there is no content]. Also, we can expand [image: there is no content] in Taylor series


[image: there is no content]



(9)




where I is the identity matrix. It is also noted that [image: there is no content]. Denote [image: there is no content], so the error at the [image: there is no content]th iteration is e[image: there is no content]=L[image: there is no content]+O(e(k)p+1), where L is a p-linear function [image: there is no content] is called the error equation and p is the order of convergence. Observe that [image: there is no content] is [image: there is no content].
In order to prove the convergence order for the Equation (6), we need to recall some important definitions and results from the theory of point of attraction.

Definition (Point of Attraction). [11] Let [image: there is no content]. Then α is a point of attraction of the iteration



x[image: there is no content]=G(x(k)),k=0,1,...



(10)




if there is an open neighborhood S of α defined by


S(α)={x∈Rn|∥x-α∥<δ},δ>0,








such that [image: there is no content]and, for any [image: there is no content], the iterating [image: there is no content]defined by Equation (10) all lie in D and converge to α.
Theorem 1 (Ostrowski Theorem). [11] Assume that [image: there is no content]has a fixed point [image: there is no content]and [image: there is no content]is Fréchet differentiable on α. If



[image: there is no content]



(11)




then α is a point of attraction for x[image: there is no content]=G(x(k)).
We now prove a general result that shows α is a point of attraction of a general iteration function [image: there is no content].

Theorem 2. Let [image: there is no content]be sufficiently Fréchet differentiable at each point of an open convex neighborhood D of [image: there is no content], which is a solution of the system [image: there is no content]. Suppose that [image: there is no content]are sufficiently Fréchet differentiable functionals (depending on F) at each point in D with [image: there is no content], [image: there is no content]and [image: there is no content]. Then, there exists a ball



S=S¯(α,δ)=∥α-x∥≤δ⊂S0,δ>0,








on which the mapping


G:S→Rn,G(x)=P(x)-Q(x)R(x),forall x∈S








is well-defined; moreover, G is Fréchet differentiable at α, thus


[image: there is no content]








Proof: Clearly, [image: there is no content].



∥G(x)-G(α)-G′(α)(x-α)∥=∥P(x)-Q(x)R(x)-α-(P′(α)-Q(α)[image: there is no content](α))(x-α)∥≤∥P(x)-α-P′(α)(x-α)∥+∥-Q(x)R(x)+Q(α)[image: there is no content](α)(x-α)∥,usingtriangleinequality.








Since [image: there is no content] is differentiable in α and [image: there is no content], we can assume that δ was chosen sufficiently small such that



[image: there is no content]








for all [image: there is no content] with [image: there is no content] depending on δ and [image: there is no content] in case [image: there is no content].
Since P, Q and R are continuously differentiable functions, then [image: there is no content], [image: there is no content] and [image: there is no content] are bounded:



∥[image: there is no content](x)∥≤[image: there is no content],∥[image: there is no content](x)∥≤[image: there is no content],∥R′′(x)∥≤[image: there is no content].








Now by mean value theorem for integrals



Q(x)=Q(α)+∫01[image: there is no content](α+t(x-α))dt(x-α)








and


R(x)=∫01[image: there is no content](α+s(x-α))ds(x-α),








so that


∥Q(x)R(x)-Q(α)[image: there is no content](α)(x-α)∥=∥Q(α)∫01[image: there is no content](α+s(x-α))-[image: there is no content](α)ds(x-α)2+∫01∫01[image: there is no content](α+t(x-α))[image: there is no content](α+s(x-α))dtds(x-α)2∥≤∥Q(α)∫01∫01R′′(α+sλ(x-α))dsdλs(x-α)2+∫01∫01[image: there is no content](α+t(x-α))[image: there is no content](α+s(x-α))dtds(x-α)2∥,usingtriangleinequality,










≤∥Q(α)∥∫01∫01∥[image: there is no content](α+sλ(x-α))∥dsdλ|s|∥x-α∥2+∫01∫01∥[image: there is no content](α+t(x-α))∥∥[image: there is no content](α+s(x-α))∥dtds∥x-α∥2,usingSchwartzinequality,≤[image: there is no content]2∥Q(α)∥+[image: there is no content][image: there is no content]∥x-α∥2,since[image: there is no content],[image: there is no content]and[image: there is no content]arebounded,≤δ[image: there is no content]2∥Q(α)∥+[image: there is no content][image: there is no content]∥x-α∥,since∥x-α∥≤δ.








Combining, we have



[image: there is no content]








which shows that [image: there is no content] is differentiable in α since δ and ϵ are arbitrary and [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are constants. Thus G′(α)=P′(α)-Q(α)[image: there is no content](α).
Theorem 3. Let [image: there is no content]be sufficiently Fréchet differentiable at each point of an open convex neighborhood D of [image: there is no content]that is a solution of the system [image: there is no content]. Let us suppose that [image: there is no content]and [image: there is no content]is continuous and nonsingular in α, and [image: there is no content]is close enough to α. Then α is a point of attraction of the sequence [image: there is no content]obtained using the iterative expression Equation (6). Furthermore, the sequence converges to α with order 4, where the error equation obtained is



e[image: there is no content]=G[image: there is no content](x(k))-α=L1e(k)4+O(e(k)5),L1=7927C23-89C2C3-19C3C2+19C4



(12)




Proof: We first show that α is a point of attraction using Theorem 2. In this case,



P(x)=x,Q(x)=H1(x)A(x),R(x)=F(x).








Now, since [image: there is no content], we have



y(α)=α-23[F′(α)]-1F(α)=α,τ(α)=F′(α)-1F′(y(α))=[F′(α)]-1F′(y(α))=I,H1(α)=I,A(α)=12[F′(α)]-1+[F′(y(α))]-1=[F′(α)]-1,Q(α)=H1(α)A(α)=I[F′(α)]-1=[F′(α)]-1≠0,R(α)=F(α)=0,[image: there is no content](α)=F′(α),P(α)=α,P′(α)=I,










G′(α)=P′(α)-Q(α)[image: there is no content](α)=I-[F′(α)]-1F′(α)=0,








so that [image: there is no content] and by Ostrowski’s theorem, α is a point of attraction of Equation (6).
We next establish the fourth order convergence of this method. From Equation (8) and Equation (9) we obtain



[image: there is no content]



(13)




and


[image: there is no content]








where [image: there is no content].
We have



[image: there is no content]



(14)




where [image: there is no content], [image: there is no content] and [image: there is no content].
Then



[image: there is no content]








and the expression for [image: there is no content] is


[image: there is no content]=α+13e(k)+23C2e(k)2-43(C22-C3)e(k)3+(2C4-83C2C3-2C3C2+8C23)e(k)4+O(e(k)5).








The Taylor expansion of the Jacobian matrix [image: there is no content] is



[image: there is no content]=F′(α)[I+2C2(y(x(k))-α)+3C3(y(x(k))-α)2+4C4(y(x(k))-α)3+5C5(y(x(k))-α)4]+O(e(k)5)=F′(α)I+N1e(k)+N2e(k)2+N3e(k)3+O(e(k)4),N1=23C2,N2=43C22+13C3,N3=-83C23+83C2C3+43C3C2+427C4.








Therefore,



τ(x(k))=[F′(x(k))]-1F′(y(x(k)))=I+(N1+X1)e(k)+(N2+X1N1+X2)e(k)2+(N3+X1N2+X2N1+X3)e(k)3+O(e(k)4)=I-43C2e(k)+(4C22-83C3)e(k)2+-323C23+8C2C3+163C3C2-10427C4e(k)3+O(e(k)4)








and then


H1(x(k))=I-14τ(x(k))-I+12τ(x(k))-I2=I+13C2e(k)+-19C22+23C3e(k)2+-83C23+149C2C3-43C3C2+2627C4e(k)3+O(e(k)4)



(15)




Also,



[image: there is no content]



(16)




where Y1=-23C2,Y2=-89C22-13C3,Y3=11227C23-229C2C3-109C3C2-427C4

On the other hand, using Equation (14) and Equation (16), the harmonic mean can be expressed as



A(x(k))=[I-43C2e(k)+149C22-53C3e(k)2+-5227C23+169C2C3+229C3C2-5627C4e(k)3][F′(α)]-1+O(e(k)4)



(17)




Using Equation (15) and Equation (17), we have



H1(x(k))A(x(k))=I-C2e(k)+(C22-C3)e(k)2+-10627C23+179C2C3+109C3C2-109C4e(k)3[F′(α)]-1+O(e(k)4)



(18)




Finally, by using Equation (13) and Equation (18) in Equation (6) with some simplifications, the error equation can be expressed as:



e[image: there is no content]=x(k)-α-H1(x(k))A(x(k))F(x(k))=7927C23-89C2C3-19C3C2+19C4e(k)4+O(e(k)5)



(19)




Thus from Equation (19), it can be concluded that the order of convergence of the [image: there is no content] method is four.   ☐

For the case [image: there is no content] we state and prove the following theorem.

Theorem 4. Let [image: there is no content]be sufficiently Fréchet differentiable at each point of an open convex neighborhood D of [image: there is no content]that is a solution of the system [image: there is no content]. Let us suppose that [image: there is no content]and [image: there is no content]is continuous and nonsingular in α, and [image: there is no content]is close enough to α. Then α is a point of attraction of the sequence [image: there is no content]obtained using the iterative expression Equation (7). Furthermore the sequence converges to α with order [image: there is no content], wherer is a positive integer and [image: there is no content].

Proof: In this case,



P(x)=μj-1(x),Q(x)=H2(x)A(x),R(x)=F(μj-1(x)),j=1,...,r.








We can show by induction that



μj-1(α)=α,μj-1′(α)=0,∀j=1,...,r








so that


P(α)=μj-1(α)=α,H2(α)=I,Q(α)=H2(α)A(α)=I[F′(α)]-1=[F′(α)]-1≠0,R(α)=F(μj-1(α))=F(α)=0,P′(α)=μj-1′(α)=0,[image: there is no content](α)=F′(μj-1(α))μj-1′(α)=0,G′(α)=P′(α)-Q(α)[image: there is no content](α)=0.








So [image: there is no content] and by Ostrowski’s theorem, α is a point of attraction of Equation (7). A Taylor expansion of [image: there is no content] about α yields



[image: there is no content]



(20)




Also, let



[image: there is no content]



(21)




Using Equation (17) and Equation (21), we have



H2(x(k))A(x(k))=I+L2e(k)2+...[F′(α)]-1,L2=-389C22+C3



(22)




Using Equation (20) and Equation (22), we obtain



μj(x(k))-α=μj-1(x(k))-α-H2(x(k))A(x(k))F(μj-1(x(k)))=μj-1(x(k))-α-I+L2e(k)2+...(μj-1(x(k))-α)+C2(μj-1(x(k))-α)2+...=L2e(k)2(μj-1(x(k))-α)+...



(23)




Proceeding by induction of Equation (23) and using Equation (12), we have



μr(x(k))-α=L1L2re(k)(2r+4)+O(e(k)(2r+5)),r≥1








        ☐


4. Numerical Examples

In this section, we compare the performance of the contributed Equation (6) and Equation (7) with different methods given in Equations (1)–(5). The numerical experiments have been carried out using MATLAB 7.6 software for the test problems given below. The approximate solutions are calculated correct to 1000 digits by using variable precision arithmetic. We use the following stopping criterion for the iterations:



errmin=∥x[image: there is no content]-x(k)∥2<10-100



(24)




We have used the approximated computational order of convergence [image: there is no content] given by (see [12])



[image: there is no content]≈log(∥x[image: there is no content]-x(k)∥2/∥x(k)-x(k-1)∥2)log(∥x(k)-x(k-1)∥2/∥x(k-1)-x(k-2)∥2)



(25)




Let M be the number of iterations required for reaching the minimum residual [image: there is no content].


4.1. Test Problems

Test Problem 1 (TP1) We consider the following system given in [13]: [image: there is no content], where [image: there is no content] and



F(x1,x2)=(x12-x2-19,x23/6-x12+x2-17).








The Jacobian matrix is given by [image: there is no content] The starting vector is [image: there is no content]=(5.1,6.1)T and the exact solution is [image: there is no content].

Test Problem 2 (TP2) We consider the following system given in [3]:



[image: there is no content]








The solution is [image: there is no content]. We choose the starting vector [image: there is no content]=(1,0.5,1.5)T. The Jacobian matrix has 7 non-zero elements and it is given by



[image: there is no content]








Test Problem 3 (TP3) We consider the following system given in [3]:



[image: there is no content]








We solve this system using the initial approximation [image: there is no content]=(0.5,0.5,0.5,-0.2)T. The solution of this system is [image: there is no content] The Jacobian matrix that has 12 non-zero elements is given by



[image: there is no content]










Table 1 shows the results for the test problems (TP1, TP2, TP3), from which we conclude that the [image: there is no content] method is the most efficient method with least number of iterations and residual error.


Table 1. Comparison of different methods for system of nonlinear equations.



	
Methods

	
TP1

	
TP2

	
TP3






	

	
M

	
[image: there is no content]

	
[image: there is no content]

	
M

	
[image: there is no content]

	
[image: there is no content]

	
M

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content] Equation (1)

	
7

	
4.6e−114

	
2.00

	
9

	
1.7e−107

	
2.00

	
8

	
3.9e−145

	
2.02




	
[image: there is no content] Equation (2)

	
5

	
1.4e−174

	
2.99

	
6

	
4.5e−139

	
3.00

	
5

	
2.9e−291

	
4.10




	
[image: there is no content] Equation (3)

	
4

	
4.6e−114

	
4.02

	
5

	
1.7e−107

	
4.00

	
5

	
2.9e−291

	
4.11




	
[image: there is no content] Equation (4)

	
4

	
7.1−108

	
3.99

	
6

	
0

	
3.99

	
5

	
8.8e−257

	
4.03




	
[image: there is no content] Equation (6)

	
4

	
1.4e−105

	
3.99

	
6

	
0

	
4.00

	
5

	
5.5e−247

	
4.12




	
[image: there is no content] Equation (5)

	
4

	
0

	
5.91

	
5

	
0

	
5.98

	
4

	
4.6e−199

	
6.12




	
[image: there is no content] Equation (7)

	
4

	
0

	
5.90

	
5

	
0

	
5.98

	
4

	
6.1e−194

	
6.13




	
[image: there is no content] Equation (7)

	
4

	
0

	
7.90

	
4

	
1.9e−133

	
7.99

	
4

	
0

	
8.64




	
[image: there is no content] Equation (7)

	
3

	
1.1e−154

	
9.90

	
4

	
2.2e−248

	
9.99

	
4

	
0

	
10.76











In Table 2, we have given CPU time for the proposed methods and some existing methods.

Table 2. Comparison of CPU time (s).


	Methods
	TP1
	TP2
	TP3





	[image: there is no content]
	1.161405
	1.734549
	1.758380



	[image: there is no content]
	0.950678
	2.445676
	1.969176



	[image: there is no content]
	0.808851
	1.569021
	1.452089



	[image: there is no content]
	1.052950
	2.649530
	2.571427



	[image: there is no content]
	1.001148
	2.170088
	2.456138



	[image: there is no content]
	1.132364
	2.117847
	2.405149



	[image: there is no content]
	0.944062
	2.137319
	2.528262



	[image: there is no content]
	0.986300
	2.328460
	2.071641



	[image: there is no content]
	1.029707
	2.482167
	2.213744








Next, we consider the [image: there is no content]HM family of methods for finding the least value of r and thus the value of p in order to get the number of iteration [image: there is no content] and [image: there is no content]. To achieve this, TP1 requires [image: there is no content] ([image: there is no content]), TP2 requires [image: there is no content] ([image: there is no content]) and TP3 requires [image: there is no content] ([image: there is no content]). Furthermore, it is observed that the order of convergence p depends on the test problem and its starting vector.



4.2. 1-D Bratu Problem

The 1-D Bratu problem [8] is given by



d2Udx2+λexpU(x)=0,λ>0,0<x<1,



(26)




with the boundary conditions [image: there is no content]. The 1-D planar Bratu problem has two known, bifurcated, exact solutions for values of [image: there is no content], one solution for [image: there is no content] and no solution for [image: there is no content].
The critical value of [image: there is no content] is simply [image: there is no content], where η is the fixed point of the hyperbolic cotangent function [image: there is no content]. The exact solution to Equation (26) is known and can be presented here as



[image: there is no content]



(27)




where θ is a constant to be determined, which satisfies the boundary conditions and is carefully chosen and assumed to be the solution of the differential Equation (26). Using a similar procedure as in [14], we show how to obtain the critical value of λ. Substitute Equation (27) in Equation (26), simplify and collocate at the point [image: there is no content] because it is the midpoint of the interval. Another point could be chosen, but low order approximations are likely to be better if the collocation points are distributed somewhat evenly throughout the region. Then, we have


[image: there is no content]



(28)




Differentiating Equation (28) with respect to θ and setting [image: there is no content], the critical value [image: there is no content] satisfies



θ=12[image: there is no content]coshθ4sinhθ4.



(29)




By eliminating λ from Equation (28) and Equation (29), we have the value of [image: there is no content] for the critical [image: there is no content] satisfying



[image: there is no content]4=coth[image: there is no content]4



(30)




for which [image: there is no content]=4.798714560 can be obtained using an iterative method. We then get [image: there is no content]=3.513830720 from Equation (28). Figure 1 illustrates this critical value of λ.


The finite dimensional problem using standard finite difference scheme is given by



Fj(Uj)=Uj+1-2Uj+Uj-1h2+λexpUj=0,j=1..N-1



(31)




with discrete boundary conditions [image: there is no content] and the step size [image: there is no content]. There are [image: there is no content] unknowns ([image: there is no content]). The Jacobian is a sparse matrix and its typical number of nonzero per row is three. It is known that the finite difference scheme converges to the lower solution of the 1-D Bratu using the starting vector [image: there is no content].
We use [image: there is no content] ([image: there is no content]) and test for 350 λ’s in the interval [image: there is no content] (interval width = 0.01). For each λ, we let [image: there is no content] be the minimum number of iterations for which ∥Uj[image: there is no content]-[image: there is no content]∥2<1e-13, where the approximation [image: there is no content] is calculated correct to 14 decimal places. Let [image: there is no content]¯ be the mean of iteration number for the 350 λ’s.



Figure 2 and Table 3 give the results for the 1-D Bratu problem, where M represents number of iterations for convergence. It can be observed from the six methods considered in Table 3 that as λ increases to its critical value, the number of iterations required for convergence increase. However, as the order of method increases, the mean of iteration number decreases. The [image: there is no content] is the most efficient method among the six methods because it has the lowest mean iteration number and the highest number of λ converging in 2 iterations.

Figure 2. Variation of number of iteration with λ for the [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] methods.
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Table 3. Comparison of number of λ’s in different methods for 1-D Bratu problem.


	Method
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]¯





	[image: there is no content]
	0
	12
	114
	143
	81
	4.92



	[image: there is no content]
	0
	140
	206
	2
	2
	3.62



	[image: there is no content]
	4
	237
	100
	8
	1
	3.33



	[image: there is no content]
	4
	234
	103
	7
	2
	3.35



	[image: there is no content]
	3
	213
	124
	8
	2
	3.42



	[image: there is no content]
	35
	281
	32
	1
	1
	3.00










For each λ, we find the minimum order of the [image: there is no content]HM family so that we reach convergence in 2 iterations and the results are shown in Figure 3. It can be observed that as the value of λ increases, the value of p required for convergence in 2 iterations also increases. For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]). For [image: there is no content], we require [image: there is no content] ([image: there is no content]) and so on. We notice that the width of the interval decrease and the order of the family is very high as λ tends to its critical value. Finally, for [image: there is no content], we require [image: there is no content] to reach convergence in 2 iterations.

Figure 3. Order of the [image: there is no content]HM family for each λ.
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Figure 1. Variation of θ for different values of λ.
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5. Conclusion

In this work, we have proposed a fourth order method and its multi-step version having higher order convergence using weight functions to solve systems of nonlinear equations. The proposed schemes do not require the evaluation of second or higher order Fréchet derivatives to reach fourth order or higher order of convergence. We have tested a few examples using the proposed schemes and compared them with some known schemes, which illustrate the superiority of the new schemes. Finally, the proposed new methods have been applied on a practical problem called the 1-D Bratu problem. The results obtained are interesting and encouraging for the new methods. Hence, the proposed methods can be considered competent enough to some of the existing methods.
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