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Abstract: In this paper, a general family of n-point Newton type iterative methods for
solving nonlinear equations is constructed by using direct Hermite interpolation. The order
of convergence of the new n-point iterative methods without memory is 2" requiring the
evaluations of n functions and one first-order derivative in per full iteration, which implies
that this family is optimal according to Kung and Traub’s conjecture (1974). Its error
equations and asymptotic convergence constants are obtained. The n-point iterative methods
with memory are obtained by using a self-accelerating parameter, which achieve much faster
convergence than the corresponding n-point methods without memory. The increase of
convergence order is attained without any additional calculations so that the n-point Newton
type iterative methods with memory possess a very high computational efficiency. Numerical
examples are demonstrated to confirm theoretical results.
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1. Introduction

Solving nonlinear equations by iterative methods have been of great interest to numerical
analysts.  The most famous one-point iterative method is probably Newton’s Equation [1]:
1 = xx — f(zr)/f'(xg), which converges quadratically. However, the condition f'(x) # 0 in a
neighborhood of the required root is severe indeed for convergence of Newton method, which restricts
its applications in practical. For resolving this problem, Wu in [2] proposed the following one-point
iterative method

f(xg)
Tyl = T — 1
S S ) + ) v
where A € R, 0 < Al < +oo and A is chosen such that the
corresponding  function values Af(x;) and f’(z;) have the same signs. This

method converges quadratically under the condition Af(xy) + f'(xk) # 0,
while f’(x)) = 0 in some points is permitted. Wang and Zhang in [3] obtained the error equation of the
Equation (1) as follows

ers1 = (2 + Nep + O(e}) (2)

where e, = 7 — a, ¢, = (1/k!)f®(a)/f'(a), k = 2,3,--- and a is the root of the nonlinear equation
f(x) =0.

The convergence order and computational efficiency of the one-point iterative methods are lower
than multipoint iterative methods. Multipoint iterative methods can overcome theoretical limits of
one-point methods concerning the convergence order and computational efficiency. In recent years,
many multipoint iterative methods have been proposed for solving nonlinear equations, see [4—18].
Wang and Liu in [4] developed the following eighth-order iterative method without memory by Hermite

interpolation methods

S J{’((S;k))
o f (k)
O 2f Yk, o] — f'(x) )
o T
T N (@ v )

where N (g, Yk, 21) = [k, Ul +2f 21, Te] — 2 [k, x|+ fUr, Tk, r](yx — 2& ) - Using the same strategy,
Kou in [5] presented a family of eighth-order iterative method without memory. The Equation (3) is a
special case of the Kou’s method. Petkovi¢ in [6] claimed a general class of optimal n-point methods
without memory by Hermite interpolation methods, which have the order of convergence 2" and require
evaluations of n functions and one first-order derivative. The Equation (3) is a special case of the
Petkovi¢’s n-point Method for n = 3. But, the Petkovi¢’s n-point method gives no specific iterative
scheme and error relation for n > 4. In this paper, we construct a class of n-point iterative methods with
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and without memory by Hermite interpolation methods and give the specific iterative scheme and error
relation for all n > 2.

This paper is organized as follows. In Section 2, based on Wu’s Equation [2] and Petkovic’s n-point
Equation [6], we derive a family of n-point iterative methods without memory for solving nonlinear
equations. We prove that the order of convergence of the n-point methods without memory is 2"
requiring the evaluations of n functions and one first-order derivative in per full iteration. Kung and
Traub in [7] conjectured that a multipoint iteration without memory based on n functional evaluations
could achieve an optimal convergence of order 2"~ *. The new methods without memory agree with the
conjecture. Further accelerations of convergence speed are attained in Section 3. A family of n-point
iterative methods with memory is obtained by using a self-accelerating parameter in per full iteration.
This self-accelerating parameter is calculated using information available from the current and previous

iterations. Numerical examples are given in Section 4 to confirm theoretical results.

2. The Optimal Fourth-, Eighth- and 2" th Order Iterative Methods

Based on Wu’s Equation [2] and Petkovi¢’s n-point methods [6], we derive a general optimal 2"th

order family and write it in the following form:

( Yk, =Yrko — f(geo)
ST A (ko) + (ko)
Yk2 =Yk1 — f 1)
’ " Yk Yrol + FlIYk Ukos Ykol (Ykt — Yko) 4)
f(yk,n71>

Yen =Ykn—1 — N(

\ Ykn—1,Ykn—2" " s Yk,1, yk,(])

where N (Y1, Ykn—2:" " > Yk1s Y,0) = fWk—1: Ukn—2] + - + fUkn—1, Yem—2, "+ Uk,1, Yk,05 Yk,0)
(k-1 — Ykn—2) - (Ykm—1 — ko), Yko = Tr, A € R is a constant and k being the iteration index. The
entries y o, - - - i are approximations with the associated error ey, ; =y ; —a (j =0,1,--- ,n).
Using the Taylor series and symbolic computation in the programming package Mathematica, we
can find the order of convergence and the asymptotic error constant (AEC) of the n-point methods
Equation (4) forn = 1,n = 2 and n = 3, respectively. For simplicity, we sometimes omit the iteration
index n and write e instead of e;. The approximation z;_ to the root a will be denoted by . Regarding
Equation (4), let us define © = Y0,y = Yx,1,2 = Yp2,6 = —a,d=y —a,p =2 —a,el =T —a.
The following abbreviations are used in the program.

ck=f®(a)/(kf(a), e=z—a,d=y—a, p=z—a, el =i —a, fx = f(yro), Ty = f(Yr1)

dfx = f'(yko), £XXy = f[Uk0, Yk0, Ye1), fla= f'(a), fyz = flye1, uk2l, X2 = fyro, Yr.2),
fz = f(yr2), L = A\ fzxX = flyr2, Yk0, Yol XY = flYr0, Ukal, f2XXy = fUk.2: Yk,0, Yk,05 Yk 1]-

Program (written in Mathematica)
fx=fla*(e+c2*e"2+c3*e"3+c4*e"4+c5*%e 5+co*e”6+c7*e T+c8*%e™8);
dfx=D[fx,e];
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t=Series[fx/(L*fx+dfx),{e,0,8}];
d=Series[e-t,{e,0,8}]/Simplify
fy=Series[fla*(d+c2*d"2+c3*d"3+c4*d"4),{e,0,8}];
fxy=Series[(fy-fx)/(d-e),{e,0,8}];
z=Series[d-fy/(2*fxy-dfx),{e,0,8}]//Simplify
fz=Series[fla*(z+c2*%2"2),{e,0,8}];
fyz=Series[(fy-fz)/(d-z),{e,0,8}];
fxz=Series[(fx-fz)/(e-z),{e,0,8}];
fxxy=Series[(dfx-fxy)/(e-d),{e,0,8}];
fzxx=Series[(dfx-fxz)/(e-z),{e,0,8}];
fzxxy=Series|[(fzxx-fxxy)/(z-d),{e,0,8}];
fzxy=Series[(fxz-fyz)/(e-d),{e,0,8}];
el=Series|z-fz/(fyz+fzxy*(z-d)+fzxxy*(z-e)*(z-d)),{e,0,8 } |//Simplify

Out[d] = (c2 + L)e* + Ole)? (5)

Out[z] = (cy + L)(c — c3 + coL)e* 4 Ole]’ (6)

Out[el] = (co + L)?*(c5 — 3+ coL)(c3 — cacs + ¢4 + c3L)e® + Ole]’ (7)

We obtain the asymptotic error constants of n-point methods Equation (4) with n = 1,2, 3.

Altogether, we can state the following theorem.

Theorem 1. Let / be an open interval and a € I a simple zero point of a sufficiently differentiable
function f : I — R. Then the new method defined by Equation (4) (n = 2)is fourth order, and satisfies
the error equation

eer1 = (c2 + Ndaey 4 O(e}) 3)
the Equation (4) (n = 3) is eighth-order and satisfies the error equation
ert1 = (ca + N)2dsef + O(e}) )

where € = X — a, do = 1, d1 = 1, dg = C% + CQ)\ — C3 and d3 = dQ(CQdQ + C4d1d0).
The order of the convergence of the Equation (4) is analyzed in the following theorem.

Theorem 2. Let [ be an open interval and a € [ a simple zero point of a sufficiently differentiable
function f : I — R. Then the n-point family Equation (4) converges with at least 2"th order and
satisfies the error relation

€kl = €hn = Yk — @ = (C2 + )\)Qn%dnein + O(ei”“) (10)

where €k = €ko = Yko — A and dn = dnfl(Canfl + (—1)n_10n+1dn,2 s dldo), n Z 3

Proof. We prove the theorem by induction. For n = 3, the theorem is valid by Theorem 1. Let us
assume that Equation (10) is true for the intermediate error relations, then the intermediate error relations
are of the form

ek = Yry — a = (ca+ N dje¥ + 02 ) (11)
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where €k = UYk; — Q, dj = j—1<c2dj—1 + (—1)j_10j+1dj_2"'d1d0), j = 3,71 — 1. Using
Equations (4) and (11) and noting that ey g€y o€k 1682 Chn1 = O(e}jl“*“"'“%z) = 0",

we have

Ck+1 :ek,n—l(f/(a) + O(€k>>_1(f[yk,n—l7 Ykn—2, yn—?)}ek,n—l R (_1)n—1

n—1
X FlYkmets Ukm—2," " s Ykl Uk0s Yk.0, A)€km—2 - €k oho + Olez 1))

=€k -1 <026k,n71 + (—1)" ensr€rn—2 - - - €roro + O(einﬂ*l))

=(ca + N2 1€ (calea + NP a2+ (1) e
X (a4 N dp_oed (e + Ndoel(co + N dreddoed)

—(ea+ N dyfeadn_1 + (—1)" ensrdn_s - - - dodydoled”

Hence, by induction, we conclude that the error relations can be written in the following form

(12)

2n—1

kst = €hm = Yk — @ = (3 + V)" " dped" 4+ O(e2" 1) (13)
3. New Famiilies of Iterative Methods with Memory

In this section we will improve the convergence order of the family Equation (4). We observe from
Equation (13) that the order of convergence of the family Equation (4) is 2" when A # —cy. With
the choice A = —co = —f"(a)/(2f'(a)), it can be proved that the order of the family Equation (4)
would exceed 2". However, the exact values of f’(a) and f”(a) are not available in practice and such
acceleration of convergence can not be realized. But we could approximate the parameter A by \;. The
parameter \; can be computed by using information available from the current and previous iterations
and satisfies limy_,oo Ax = —co = —f"(a)/(2f'(a)), such that the 2"th order asymptotic convergence

constant to be zero in Equation (13). We consider the following three methods for \:

Ae = —H3 (y0)/(2f (Yr0)) (14)

where Hy () = f(yYr0) + f[Yk,0, 0] (T — Yr0) + FYk,0s Ukos Yr—1,0-1](Z — Yr0)?, and HY (yp0) =
2 [Yk,05 Yk,0 Yb—1,n—1)-
A = _H:’a/(yk,o)/@f/(yk,o)) (15)

where Hs(x) = Ho(x) + f[Yk.0s Yk.0s Ys—10-15 Yk—1.n—2) (T — Yk0)?(® — Yr—1.-1), and HY (yx0) =
Hé'(yk,o) + 2f[yk,07 Yk,0s Yk—1,n—1, Z/kq,n—z}(yk,o - yk71,n71)-

Ne = —H} (Yr0)/(2f (yr0)) (16)

where Hy() = H3(x) + f[Yr.0, Yr,0> Yo—1,0—15 Yh—1,n—2> Yh—1,0—3) (T = Y1,0) (& = Yr—1,0—1) (T — Yb—1,n—2)
and Hj (yr.0) = H5 (Yr,0) + 2f[Yr,05 Yr,05 Ye—1n—1> Yo—1,n—2> Yk—1,0-3] (Uk,0 — Yr—1,n—1) (Yr,0 — Yk—1,n—2)-

The parameter )\, is recursively calculated as the iteration proceeds using Equations (14)—(16) in
Equation (4). Substituting )\, instead of A in Equation (4), we can obtain the following iterative method
with memory
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( Yk =Yko — f (ko)
T NS (ko) + ' (yko)
Yk2 =Yk — S (i)
< " flyrns vkol + flYrts Yoy Yo Ykt — Yko) (17)
Yk =Ykyn—1 — f(Gnr)
L 7 N (Ykn—15 Ykin—25 """ 5 Yk, 15 Uk,0)

where N (Yrn—1,Yem—2:" " s Yk15 Yr0) = flUkin—1, Ybm—2) T+ f[Ykn—15 Yrm—2: " 5 Yr,1> Yk0, Yk,0)
X (Ykm-1 — Ykm—2) " (Ykm—1 — Yro), and the parameter), is calculated by using one of the
Equations (14)—(16) and depends on the data available from the current and the previous iterations.

Lemma 1. Let [, be the Hermite interpolating polynomial of the degree m that interpolates a
function f at m distinct interpolation nodes v o, Yk—1.n—1, " * * Yk—1.n—m+1 contained in an interval Jand
the derivative f(™*1 is continuous in I and the Hermite interpolating polynomial H,,(x) satisfied the

condition H,,,(yx0) = f(Yr0)s Hy (ko) = ' (Uko)s Hn(Yk-10-5) = fUr-1n-3) = 1,---m —1).
Define the errors e;_1,,—; = Yp—1,n—j — a(i = 1---m — 1) and assume that

1. all nodes Yk 0, Yk—1,n—1, " * - Yk—1,n—m+1 are sufficiently close to the zero a;

2. the condition e = O(€g_1,-1 " €k—1n—m-+1) holds.

Then
m—1
Hy, (Yro) ~ 2f'(a) (02 = (=)™ e H ek—lm—y’) (18)
j=1
and )
H, (Yko) U
e~ e — (1) e, Ch1.n—i (19)
2F (geo) 2 —(=1) +1 31;[1 h—Lin—j
Proof. The error of the Hermite interpolation can be expressed as follows
AP §
f(a:)—Hm(:c)— m 1) ( — Yro) Jl:[l T — Yp—10—j) € 1) (20)

Differentiating Equation (20) at the point x = y;, ¢, we obtain

(m+1) m—1

[ (ko) — H), (Yro) = QW jl—I1 Yko — Yh—1n—j) (€ € 1) (21)
(m+1)§ m—1

H) (yro) = f”(yk,(])—z( P H Yo = Yr-1n—j) (€ € T) (22)

—_

.

Taylor’s series of derivatives of fat the point y; o € I and { € [ about the zero a of fgive

F'(yro) = (@) (1 + 2caer0 + 3esei o + O(e ) (23)
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F" (ko) = f'(a)(2c2 + 6esero + O(ef ) (24)
FIE) = F(a)((m + Dlegr + (m+ 2)lenree + O(e})) (25)

where e, = £ — a.
Substituting Equations (24) and (25) into Equation (22), we have

m—1

H! (yro) = 2f'(a)(ca — (=)™ e H €k—1n—7) (26)

j=1
and

H (y.0) ==,
2o~ |7 U e e

The concept of the R-order of convergence [1] and the following assertion (see [8]) will be applied to
estimate the convergence order of the iterative method with memory Equation (17). Now we can state

the following convergence theorem for iterative method with memory Equation (17).

Theorem 3. Let the varying parameter )\, in the iterative Equation (17) be calculated by
Equation (14). If an initial approximation x, is sufficiently close to a simple zero a of f(z), then the
R-order of convergence of the n-point Equation (17) with memory is at least 2" 4 2"~3 for n > 3 and at
least (5 + \/17)/2 ~ 4.5616 for n = 2.

Proof. First, let us consider the case n > 3 and assume that the iterative sequences {y,} and

{Yk.n—1} have the R-order r and ¢, respectively, we have
2
€k+1 = €y ~ D€l ~ Dy (Di1€, )" = Dy Dy p5, (28)
ekn—1~ Dyge ~ Dig(Dy—1e,_1)" = Dk7qDZ71,r6;qf1 (29)

where Dy, ; (j € R) tends to the asymptotic error constant D; when k& — oo.

From Equation (13), we obtain the following error relations

Chn1 = Ypm1 —a~ (ca+ N dyyed (30)
€rst = Yom — a ~ (c2 + N2 " dped (31)

Using the Lemma 1 for m = 2, we obtain
Ak~ = (c2 + c3€k-1n-1) (32)

Substituting Equation (32) into Equations (30) and (31) instead of A\, we have
n—3 n—3 n—3 r n—1
€kn—1 = Ykn—1 — Q@ ~ (—03)2 Dl?:—l,qezal dn—1<Dk—1J‘€k—1)2
~ (=) DY DY e (33)

277,72 n
€ht1 = Y — @~ (—C3ek_10-1)" dpej

on—2 ,on—2 on T'2n+q2n_2
~ (—c3) Dkfl,qufl,rdn—lek—l (34)
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By comparing exponents of e;_; appearing in two pairs of relations Equations (29)-(33) and
Equations (28)—(34), we get the following system of equations

2n—1 2n—3 —
{ r —+ q rq (35)

r2n 4+ g2 2 =12

The solution of the system Equation (35) is given by r = 2" + 2773 and ¢ = 2"~! + 2"~*, Therefore,
the R-order of the methods with memory Equation (17) is at least r = 2" 42773 for n > 3. For example,
the R-order of the three-point family Equation (17) is at least 9, the four-point family has the R-order at
least 18, assuming that )\, is calculated by Equation (14).

The case n = 2 differs from the previous analysis; Hermit’s interpolating polynomial is constructed
at the nodes Y, Yr—1,1. Substituting Equation (32) into Equation (2) and Equation (8) instead of A,
we have

_ 2 q r 2
€1 =Yk —a <_C36k—1,1)d1€k ~ —CsDk—l,qek_lch(Dk—1,r€k,1) (36)
2 2r+q
~ —c3Dy1,qdi Dy €574
_ _ 4 q r 4
€k+1 —Ck2 = Y2 —a (_03€k—1,1)d26k ~ —C3Dk—1,q€k_1d2(Dk—Lr@k,l)

4 4r+q
~ =3 Dy 1 gdi Dy pe)

(37)

By comparing exponents of e;_; appearing in two pairs of relations Equations (29)-(36) and
Equations (28)—(37), we get the following system of equations

2r+q=rq (38)
4r 4 q = r?

Positive solution of the system Equation (38) is given by » = (5 + +/17)/2 and ¢ = (1 + v/17)/2.
Therefore, the R-order of the methods with memory Equations (17) with (14) is at least (5 + v/17)/2 ~
4.5616 for n = 2.

Theorem 4. Let the varying parameter )\, in the iterative Equation (17) be calculated by
Equation (15). If an initial approximation z, is sufficiently close to a simple zero a of f(x), then the
R-order of convergence of the n-point methods Equation (17) with memory is at least 2" + 23 + 274
for n > 4, at least 5 + /21 ~ 9.5826 for n = 3 and at least (5 + 1/21)/2 ~ 4.7913 for n = 2.

Proof. The proof is similar to the Theorem 3.

Theorem 5. Let the varying parameter )\, in the iterative Equation (17) be calculated by
Equation (16). If an initial approximation z is sufficiently close to a simple zero a of f(z), then the
R-order of convergence of the n-point Equation (17) with memory is at least 2" + 2773 4 274 4 2n=5
for n > 5, at least 10 + /92 ~ 19.5917 for n = 4 and at least 5 + /23 &~ 9.7958 for n = 3.

Proof. The proof is similar to the Theorem 3.



Algorithms 2015, 8 794

4. Numerical Results

Now, the new family Equation (4) without memory and the corresponding family Equation (17)
with memory are employed to solve some nonlinear equations and compared with several known
iterative methods. All algorithms are implemented using Symbolic Math Toolbox of MATLAB 7.0.
For demonstration, we have selected three methods displayed below.

King’s methods without memory ( KM4, see [9] ):

_ f(zn)
Yn =Ty — f’( n), o
oy @) B ) =
T ) + (B = 2)f(yn) ()
where J € R.
Bi-Wu-Ren method without memory ( BRMS, see [10] ):
( L f(zn)
Yn =Tn f/<l'n)
Yn) \ S (yn)
( ))f’(:cn) (40)
R ( n) + (1 +2)f(2) f(zn)
T F@n) +7F(zn)  Flzns Ul + o0 Ty 20) (20 — )

where h(t)is a real-valued function satisfying the conditionsh(0) = 1,A/(0) = 2,A"(0) = 10,
|R""(0)] < o0 and vy € R.
Petkovi¢-Ili¢-DZuni¢ method with memory ( PD, see [12] )

Y =y — f(@n)
" " f[xmzn]’ (41)
oy = — f(n) (1 L L) f(yn)>
" " flZn, 2] flzn)  f(2n)
where z, = x, — v, f(z,). The parametery, can be calculated by the following three formulas:
o = (@n = Yn-1)/(f(@n) = f(Yn-1)) (42)
Yn = 1/(f[$n>ynfl] + f[wml'nfl] - f[xnflvynfl]) (43)

The absolute errors|z), — alin the first four iterations are given in Tables 1-4, where a is the exact root
computed with 2400 significant digits. The computational order of convergence p is defined by [19]:

(|71 — 20| /|70 — 2na|)
In(|zn — zp-| / |Tn-1 = Tp-2|)

(44)

The iterative processes of the Equations (4) and (17) are given in Figure 1, where Equation (4) (n=1)
is one-point method. The parameters of the Equations (4) and (17) are A = Ay = 1.0. The initial value
is 2o = —1.3. The stopping criterium is |f(z)| < 107'°°. We will call f(x) the nonlinear residual or
residual. The Figure 1 is a semilog plot of residual history, the norm of the nonlinear residual against the
iteration number.
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fi(z)

Following test functions are used:

fo(z) = 2° + 2* 4+ 42® — 15, a ~ 1.3474280989683050, 2¢ = 1.6.

Table 1. Numerical results for f;(x) by the methods without memory.

ze” —sin®(z) + 3cos(z) + 5, a ~ —1.2076478271309189, 2o = —1.3.

795

Methods |x1 — al |xe — al |xs — al p
Equation (4) n =2, A =0.5 0.32719E—4 0.57076E—18 0.52848E—73  4.0000005
Equation 4)n =2, =1 0.58111E—4 0.71445E—17 0.16328E—68  3.9999938
KM4,8=2 0.24269E—3 0.13078E—13 0.11033E—54  3.9999864
BRMS8,h(t) =1+2t+5t2,v=1 040513E—6 0.32351E—48 0.53484E—385 8.0000001
Equation (4)n =3, A =1 0.22673E—8 0.83510E—70 0.28282E—561 8.0000000
Equation (4)n =3, A= 1.5 0.18012E—9 0.75259E—83 0.69916E—670 8.0000000
Table 2. Numerical results for f»(x) by the methods without memory.
Methods |x1 — al |xo — al |xs — al p
Equation (4)n =2,A = —1.5 0.29673E—2 0.37452E—10 0.94752E—42  4.0001713
Equation (4)n = 2, A = —0.5 0.27276E—4 0.11867E—19 0.42516E—81  4.0000025
KM4,83=0.5 0.37189E—2 0.32631E—9  0.19533E—37  3.9993916
BRMS8,h(t) =1+ 2t + 5t2,y =1 0.84179E—4 0.62964E—31 0.61512E—248 8.0000456
Equation (4)n =3, A = —1 0.34838E—7 0.19030E—62 0.15080E—504 8.0000000
Equation (4)n = 3,\ = —0.5 0.11873E—7 0.80149E—66 0.34562E—531 8.0000000
Table 3. Numerical results for f;(z) by the methods with memory.
Methods |x1 — al |xo — al |x3 — al p
Equation (42) — PD,~y = —0.01 0.10690E—2 0.10554E—12 0.24668E—58  4.5605896
Equation (43) — PD,~y = —0.01 0.10690E—2 0.58225E—14 0.18875E—67  4.7487424
Equation (14) — (17),n = 2, A = 0.5 0.32719E—4 0.42649E—19 0.26035E—87  4.5827899
Equation (15) — (17),n =2, 0 = 0.5 0.32719E—4 0.47493E—20 0.16676E—96  4.8272294
Equation (14) — (17),n =2, 0 =1 0.58111E—4 0.25364E—18 0.61743E—84  4.5691828
Equation (15) — (17),n =2, 0 =1 0.58111E—4 0.28197E—19 0.69228E—93  4.8066915
Equation (14) — (17),n =3, =1 0.22673E—8 0.14247E—76 0.38886E—690 8.9963034
Equation (15) — (17),n =3, o =1 0.22673E—8 0.53419E—81 0.96778E—777 9.5795515
Equation (16) — (17),n =3, A =1  0.22673E—8 0.45910E—83 0.96092E—815 9.7957408
Equation (14) — (17),n =3, o = 1.5 0.18012E—9 0.49194E—86 0.27126E—775 9.0024260
Equation (15) — (17),n =3, A0 = 1.5 0.18012E—9 0.13193E—91 0.20518E—878 9.5794268
Equation (16) — (17),n =3, 0 = 1.5 0.18012E—9 0.11706E—93 0.17692E—918 9.7974669
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Table 4. Numerical results for f>(z)by the methods with memory.
Methods |z1 — al |xe — al |z — al p
Equation (42) — PD,~y = —0.01 0.14930E—1 0.54292E—8  0.20342E—37  4.5697804
Equation (43) — PD,~y = —0.01 0.14930E—1 0.32753E—9  0.16659E—45  4.7387964
Equation (14) — (17),n =2, A0 = —1.5  0.29673E—2 0.10381E—11 0.90169E—55  4.5538013
Equation (15) — (17),n =2, g = —1.5  0.29673E—2 0.13370E—13 0.29875E—67  4.7285160
Equation (14) — (17),n =2, o = —0.5 0.27276E—4 0.76276E—20 0.21310E—91  4.6005252
Equation (15) — (17),n = 2,0 = —0.5 0.27276E—4 0.62055E—21 0.70672E—102 4.8635157
Equation (14) — (17),n =3, = —1  0.34838E—7 0.12841E—67 0.15487E—611 9.0002878
Equation (15) — (17),n =3, = —1  0.34838E—7 0.34679E—73 0.10151E—705 9.5835521
Equation (16) — (17),n =3, g = —1 0.34838E—7 0.41211E-75 0.11560E—741 9.8127640
Equation (14) — (17),n =3, o = —0.5 0.11873E—7 0.35119E—73 0.13260E—661 8.9795793
Equation (15) — (17),n =3, o = —0.5 0.11873E—7 0.43166E—77 0.67183E—743 9.5883270
Equation (16) — (17),n =3, = —0.5 0.11873E—7 0.45981E—83 0.29759E—820 9.7754885
1050 T T T T T T T T T
Method(4) (n=1)
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Figure 1. Iterative processes of different methods for the function f; ().

5. Conclusions

Figure 1 shows that the convergence speed of the multipoint iterative method is faster than the

one-point iterative method. As shown in Tables 1 and 2, the results obtained with our methods

without memory are better than the other methods without memory. From the results displayed in
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Tables 3 and 4, it can be concluded that the convergence of the tested multipoint Equation (17) with
memory is remarkably fast. The R-order of convergence of the family Equation (17) with memory is
increased by applying a self-accelerating parameter given by Equations (14)—(16). In addition, above
all, the increase of convergence order is obtained without any additional function evaluations, which

indicates a very high computational efficiency of our methods with memory.
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