Algorithms 2015, 8, 774-785; doi:10.3390/a8030774

algorithms

ISSN 1999-4893
www.mdpi.com/journal/algorithms

Article
Parallel Variants of Broyden’s Method

Ioan Bistran, Stefan Maruster * and Liviu Octavian Mafteiu-Scai

West University of Timisoara, B-dul V. Parvan No.4, Timisoara 300223, Romania;
E-Mails: ioan.bistran @info.uvt.ro (I.B.); Iscai@info.uvt.ro (L.O.M.-S.)

* Author to whom correspondence should be addressed; E-mail: maruster@info.uvt.ro;
Tel.: +40-748-585-220.

Academic Editors: Alicia Cordero, Juan R. Torregrosa and Francisco 1. Chicharro

Received: 23 June 2015 / Accepted: 1 September 2015 / Published: 15 September 2015

Abstract: In this paper we investigate some parallel variants of Broyden’s method and,
for the basic variant, we present its convergence properties. The main result is that the
behavior of the considered parallel Broyden’s variants is comparable with the classical
parallel Newton method, and significantly better than the parallel Cimmino method, both
for linear and nonlinear cases. The considered variants are also compared with two more
recently proposed parallel Broyden’s method. Some numerical experiments are presented to
illustrate the advantages and limits of the proposed algorithms.

Keywords: systems of equations; Broyden’s method; parallel algorithms

1. Introduction

Let FF : R™ — R™ be a (nonlinear) mapping and let F'(z) = 0 be the corresponding system
of equations. In [1], Xu proposed the following partially asynchronous block quasi-Newton method
for such a nonlinear system. Let P be a partition of F' and z in p partitions, F' = (F}, ..., F},),
x = (1,...,7,), where F; and z; are block functions and block variables, respectively, of the same
dimensions m,;. The variable x is the common memory of the multiprocessor system, every processor i
can read the content of = and can write its new update of z;. Let B;, 7 = 1, ..., p, be square matrices of
dimension m;. The main steps of the process 7 are :

Algorithms 2015, 8 775

Algorithm 1.

Input: x, B;
Output: =
1. Compute 7} := x; — B; ' Fy(x);
2. Get z* from x by replacing x; with z;';
3. Compute s =z — z; andy := F;(z") — Fy(z);
(y—B;s)sT
T

I

4. Update B;, B; := B;+

ot et
S.xji=x, xi=aT;

S-S

Applying the Sherman—Morrison lemma (Step 4, Algorithm 1) to inverse the matrix B;, the
polynomial complexity of order three is reduced to polynomial complexity of order two.

More recently, in [2,3] Jiang and Yang proposed several preconditioners for the block Broyden’s
method and discussed the implementation process. The main steps of parallel variant of Broyden’s
method considered in [2,3] (Algorithm 2 below) are (B is a block diagonal matrix, B,i is the i'" diagonal
block of By,):

Algorithm 2.

Input: zy, By, kmax

Output: z;
1. For £ =0, 1, .. Until convergence Or k > kmaz Do
2. Ty =) — Bk_lF(xk);

3. S=Tpp — Tk
4. Fori=1,....p

. - Fi(x st
5. Bi= B,@+%.
6. End
7. End

In the case of a linear system, the sequential Broyden’s method has global convergence provided
that the system matrix is invertible [4], i.e., the sequence generated by this method converges to the
solution of the system for any starting point z and for any starting matrix By (or Hy). Moreover, in this
case the convergence is finite [5], and the solution is obtained in at most 2n steps; conditions in which
this method requires a full 2n steps to converge are also given. In the same paper [5], it is shown that
Broyden’s method has 2n-step Q-quadratic local convergence for the nonlinear case (the initial starting
point x(and the initial starting matrix B, must be close to the solution point of the system and to the
Jacobian matrix in the solution point, respectively). Note that 2n-step Q-quadratic convergence means

that the subsequence { s, } of {z,} has Q-quadratic convergence.

Algorithms 2015, 8 776

In this paper we propose some new variants of parallel Broyden’s method that are suitable both
for linear and nonlinear systems. We prove the convergence of our basic algorithm in the linear
case. Numerical experiments are presented for linear and nonlinear cases, and some remarks are made

concerning the behavior of the generated sequence.

2. The Parallel Variants and Preliminaries

In the case of a linear mapping, F(z) = Az — b, the Broyden’s “good formula” [6,7], Bt = B +
O(y— Bs)sT /sTs (B and B* are the current and the next iterates, respectively, and € is a positive number
chosen such that B is invertible [4]) can be written in the following form: B* = B—0(B— A)ss’ /sTs.
Using the notation £ = B — A, the Broyden’s method becomes " = =z — (E + A)"'F(z), Et =
E —0FEss™ /sTs. The main idea of the proposed variants is to use instead of A the block diagonal matrix
of A, denoted by D throughout the paper, partitioned according to . The computer routine dg(A) will
produce such a block diagonal matrix, i.e., D := dg(A).

Based on this idea we can consider several parallel variants of Broyden’s algorithm. The first
variant is just the above mentioned algorithm, to which we added a supplementary step to successively
block-diagonalize the matrix £ (the Step 5, Algorithm 3 below). We consider also the following slight

modification of update formula
Et —F— QW_
a2
By adding D to both sides of this formula, the algorithm becomes more homogeneous (the same
matrix is used in both Steps 2 and 4, Algorithm 3 below). Moreover (and not in the least) for this
variant, a simple and elegant proof can be given for the convergence of the generated sequence (Theorem
1). Therefore the first our variant, which will be considered as the basic algorithm, is (£ is a block

diagonal matrix):

Algorithm 3.

Input: zy, £y, nmazx

Output: z,,
1: For n = 0,1, .. Until convergence Or n > nmax Do
2: Xpy1 =T, — (B, + D) E(2,);
3 Sy =Tyl — Ty

~ En+D)spslt
b By e By — g Bt Dsnsn
sl

5: En+1 = dg(En+1)
6. End

A variant of Algorithm 3 can be obtained by applying the Sherman—Morrison lemma to avoid the
inversion of a matrix in Step 2. It results the following Algorithm 4 (B, is a block diagonal matrix):

Algorithms 2015, 8 777

Algorithm 4.

Input: xy, By, nmazx
Output: z,
1: For n = 0, 1, .. Until convergence Or n > nmax Do
2. wpyi=x, — BoF(xy);
31 Sy = Tpa1 — Ty
~ 0 Snsh
4: Bpy = (‘H_lTHW)B”:
50 Bpii= dg(énJrl)'
6. End

The simplest way to design a similar parallel algorithm for the nonlinear case is to replace D in the
basic algorithm with the diagonal block of the Jacobian of F', D = D(z) = dg(J(x)). It results the
following Algorithm 5 for the nonlinear case:

Algorithm 5.

Input: xy, £y, nmazx
Output: z,
I: For n = 0,1, .. Until convergence Or n > nmax Do
20y i=ay — (Ey+ D(xy)) L E (2);
31 Sy = Tpal — Ty
En—f-D(l’n))SnS%)
Isn 2 ’

4: Epq:i=FE, — Al

5: En+1 = dg(En+1).
6. End

Remark 1. The formal replacement of D with D(z,) is based on the mean value theorem
F(2p41) = F(x,) + J(x0) (Tni1 — xn). However, the convergence properties of Algorithm 5, including
its specific conditions, rate of convergence, etc., must be further analyzed as well. The numerical
experiments (Section 5) performed so far for certain nonlinear systems show a comparable behavior

of the two Algorithms (3 and 5) for the linear and nonlinear case.

L or the solution

The main processing of the Algorithms 3, 5, is the computation of (£, + D)~
of a corresponding linear system. Taking into account that E,, + D is a block diagonal matrix,
E,+D = diag((E,+ D)1, ..., (E,+ D),), where (E,,+ D);, i = 1, ..., p, are matrices of dimension m;,
we have to perform p subtasks, whose main processing is (E, + D); '. It is obvious that these subtasks
can be done in parallel. The successive updates of the matrix £, Steps 4 and 5, can also be executed in
parallel. The concrete parallel implementation of this algorithm is an interesting problem and is left for

a future research.

Algorithms 2015, 8 778

As usual R™*™ denotes the set of square m x m real matrices. We use || - || and || - || to denote the
spectral and Frobenius norm respectively. The properties of Algorithm 3 are based on the following two

lemmas.

Lemma 1. Let D € R™ ™ be a block diagonal matrix (conforming with P). Then, for any matrix
E € R™*™, there holds
ldg(E) + Dllp < [E+ Dllp,

where || - ||, is the spectral or Frobenius norm. If 0 € |0,2] then the sequence {||E, |} as defined in
Algorithm 3 is bounded, || E,|| < a.

Proof. Using the inequality ||dg(A)|, < ||4ll,, A € R™ ™ (which is true for both spectral and
Frobenius norm), we have

ldg(E) + Dllp = [|dg(E + D), < [E + Dlfp-

T
To prove the second part of Lemma 1, observe that if 6§ € [0,2] then || — 0 |‘|95||2 | = 1 for any
s € R™. Therefore

(E, + D)s,st Spst

I = £, + DI
Thus ||E, + D|| < ||Eo + DJ|, Vn and {||E,||} is bounded. [

Lemma 2. For any matrix M € R™ ™, anys € R™, any 6 € R, and M := M —60Mss”/||s||> we have

—~ Msl|?
VT = M2 — 62— e)%. 1)

(The Formula (1) appears also in [4]; a short proof is given here for completeness).

Proof. By trivial computation we obtain

—~ Mssl
HMH%’ = ||M_9 HSHQ ||%
0 62
= || M|)% — 2”5||2<M> MSST>F+HSH4||M35T||%-

Use (M, Mxx™)p = || Mz|]?, || Mxz"||r = |Mx||||z|, and the desired equality results. [

3. The Convergence of Algorithm 3 in the Linear Case

In the following, we suppose that the sequence {z,} given by Algorithm 3, with starting point x,
starting matrix F, and certain 6, satisfies the condition:

[Znt1 — zal < B, VR €N (2)

Algorithm 3 defines the next iteration as a function of the current iteration, x,,.; = G(z,), G being the
iteration function or generation function. It is clear that the condition (2) is weaker than the condition of

asymptotic regularity of G or asymptotic regularity of x, under G, (

|G" 2y — G| — 0, n — o).

Algorithms 2015, 8 779

The fulfillment of condition (2) depends not only on the characteristics of A (like the condition number)
but also on zg, Fyy and . Note also that usually, the sequence { F, } is bounded, and if F is also bounded
on R then the condition (2) is satisfied; in Section 5 an example of mapping is given which is bounded
on R™ and || D(z,) ||| E.|| < 1.

Theorem 1. Let A € R™*™ be a nonsingular matrix, D = dg(A), and let 0 be a real number,) < 6 < 2.
Suppose that D is invertible and that a||D™|| < 1, where a is defined in Lemma 1. Suppose also that
condition (2) is satisfied and that Ey + D is invertible. Then the parallel variant of Broyden method
(Algorithm 3) converges to the solution of the equation Ax — b = (.

Proof. Since || E,||||D7!|| < ||D7!|la < 1, from perturbation Lemma, it results that (F, + D)~! exists
for all n and the sequence {z,} is well defined by Algorithm 3. By taking M = Ej + D, s = s, and
applying Lemmas 1 and 2, we obtain

[(Bx + D) sl

1EBr1 + DIl < |1k + DIl — 0(2 - 0) e

By summing on k, k = 0,1, ..., n, we have

(Ex + D)sil|?
0 < ||Eny1+ D% < ||Eo+ D|% —6(2— 6 ZH e+ D)sel®

sk ll?
This implies that
E,+ D)s,
—“< + D)snll — 0, n — oo.
[[nl
Now, because (E,, + D)s,, = —F(z,), we have
IF@)l o WEE_ 1B+ D)sall
B [[nl 5n
and
AT e — 2"l < [A(z — 2)]| = [F(@a)]| — 0.
[]

4. Remarks on the Parallel Implementation

The parallelization of the product (E, + D) 'F(z,) (Step 2 in Algorithm 3) is obvious, because
E, + D is block diagonal. Concerning the product (E,, + D)s,s!, observe first that the element p;; of
the product ss” is p;; = s;s; and s,s’ can be computed by a very simple algorithm. Then, because
E, + D is block diagonal E, + D = diag((E, + D)4, ..., (E, + D),) with dimensions my, ..., m,, the
product (E,, + D);s,st gives the m; lines of (E,, + D)s,s.. These products are independent from each
other and therefore can be computed in parallel. The same observations can be made for Algorithms 4
and 5.

In order to implement this method, let us suppose that the multiprocessor system has p processors.

A simple idea is to set the system into p partitions and assign a partition to every processor. In this

Algorithms 2015, 8 780

case the following issue arises: How large should the partitions m;, ¢ = 1, ..., p be in order to obtain a
low cumulative computation cost per iteration? In the case of Algorithms 3 and 5, the main processing
of processor 7 is to inverse a matrix of dimension m;. Therefore every processor has to perform a
computation that has a polynomial complexity of order m?. The cumulative computation cost for all p
processors is m3 + m3 + ... + m , and, if there is not overlapping, m; + mg + ... + m, = m. Further,
we use the following elementary inequality

Zx? <(p—1pu?+ (Z z; — (p—)Y,

where x; are positive numbers and ¢ = min{xy, ..., z,}. If ¢ = 3 and x; = m;, then

Zm < (p =1’ + (m— (p—).

We will prove now that if
m

(P —p+)3 +p-—1

then
(p— 1)+ (m — (p— p)* < %

Because pu < m, it is sufficient to show that (p — 1)p® + (m — (p — 1)u)® < p?u®, and this is
equivalent with the first part of (3). We obtain the following

Propositon 1. Suppose that the smallest size of partitions, @ = min{ms,...,m,}, satisfies the

condition (3). Then the cumulative computation cost in Algorithms 3 and 5 is less than m? /p.

A similar result can be established for Algorithm 4. The condition (3) becomes

m < <m
G+ +p-1-"=

and the cumulative computation cost satisfies »_, m? < 2m?/p.

5. Numerical Experiments and Conclusions

The main purpose of this section is to highlight the convergence properties of the proposed parallel
Broyden’s algorithms in the case of a synchronous model. The communication costs between processors,
scheduling and loads balancing, optimal processors assignment, and so on, both for synchronous and
asynchronous models, are important issues in themselves. However they are not the subject of the
present study.

The behavior of the sequence {x,} obtained by the proposed algorithms and for various linear or
nonlinear cases is shown in our experiments by the graph of Ine,, where ¢, is the error at step n,
en = || F(zy)]| ore, = ||z, —2*|| (n on horizontal axis and [ne,, on vertical axis). The convergence of the
process entails a decreasing graph until negative values (for example, Ine, = —30 means €, ~ 10717).

If the convergence is linear (r = 1) then Ine,, = ning + Iney; Ine,, depends linearly on n and the graph

Algorithms 2015, 8 781

of Ing, is close to a straight line. For comparison reasons, the proposed parallel Broyden’s method is
compared with the parallel Newton method and the parallel Cimmino method. We consider the following
parallel Newton method [8]:

Tpt1 = Ty — D(xn)_lF(xn), D(xn) = dg(J(.rn))7

where J(x,) is the Jacobian of F'. Note that in the case of a linear system, by applying this form of
Newton method, the direct computation of x* (in one iteration) is lost and the convergence is linear.
Consequently, the graph of in(e,,) is a straight line.

The block Cimmino method is considered only for the linear case, F'(z) = Az + b, and it can be
described as follows (see, for example, [9]). The system is partitioned into p strips of rows, A* and b’,
1 < i < p. Supposing that A* has full row rank, the Moore—Penrose pseudo inverse of A’ is defined by
At = A" (A7AT)~1, The block Cimmino algorithm is

Step 1: Compute in parallel Q% = A" (Aix, + b');
Step 2: Tptl = Tp + W Z?:l Q:w
where w is a relaxation parameter.

Experiment 1.

We applied Algorithm 3 to linear systems of medium dimensions, m = 20, 50, 100, 500, 600, with
different values of condition numbers. A program “genA” generates a square, sparse matrix A of
dimension m with random elements a;; € (—1,1), ¢ # j and a;; € (d1,d2), where d1,d2 are given
(positive) numbers. The percent of nonzero elements is an entry data of “genA” and in this experiment
we considered it to be about 50%. The free term b and the starting point xy were also randomly generated
with elements between some limits. Thus the function F' is randomly defined by F'(z) = Ax — b.

—apt

(a) (b) (©
= Parallel Broyden method
=+ Parallel Newton method
“““ Parallel Cimmino method

Figure 1. The graphs of In(e,) generated by Algorithm 3, parallel Newton method and
parallel Cimmino method in the linear case; (a) system well conditioned; (b) system medium
conditioned; (¢) system poorly conditioned.

For every considered system, we applied Algorithm 3, the parallel Newton method and the parallel
Cimmino method, and we drew the resulting graphs in the same plot; for the graph of Algorithm 3 we

used a continuous line, for the parallel Newton method a dashed line, and for the parallel Cimmino

Algorithms 2015, 8 782

method a dotted line. The number of partitions and the dimensions of every partition are entry data
of the routine “diag(A)”. The test systems were automatically generated by routine “genA"; the three
graphs of Figure 1 are examples from a large number of cases, corresponding to certain systems of
dimensions 50, 100, 200 respectively; other parameters like ¢ (the condition number), 6 (the factor in
Step 4), p(n4, ..., n,) (the number of partitions and their dimensions), were chosen as follows:

(a) m = 50, ¢ = 3.569, 6 = 0.02, p(...) = 5(11,9,13,11,6), Ey = I,
(b) m = 100, ¢ = 71.69, 6 = 0.02, p(...) = 5(21, 19, 23,21, 16), E, = I,
(c)m = 200, ¢ = 785, 6 = 0.02, p(...) = 5(41,39,43,41,36), Eo = I.

The following conclusions can be drawn. (1) The proposed parallel Broyden’s algorithm works well
if the system is relatively well conditioned (the condition number should be around ten), and in this
case the behavior of Algorithm 3 is very similar to the parallel Newton method and significantly better
than the parallel Cimmino method. (Figure 1a); (2) For medium conditioned systems, the behavior of
Algorithm 3 is unpredictable, sometimes it works better than the Newton method (Figure 1b); (3) If the
system is poorly conditioned (the condition number is greater than 300) the proposed parallel Broyden’s
algorithm fails to converge (the Newton method has the same behavior) (Figure 1c).

Figure 2a presents the behavior of the sequence generated by the Algorithm 3 for a linear system
of dimension m = 500, ¢ = 4.366, p(...) = 5(101,51,151,101,96), & = 0.2, Ey = I. The
condition (2) of Theorem 1 is not satisfied and the sequence generated by this algorithm (in this case)
does not converge. However, the behavior is interesting, the generated sequence becomes very close to
the solution, the error decreases until a very small value (in our example until 10~'2), and then the good
behavior is broken. The graph corresponding to the sequence generated by Algorithm 4 for a system of
dimension m = 600 and ¢ = 3.942, p(...) = 6(101,51,151,101,101,95), § = 0.03, Ey = (I + D) 'is
presented in Figure 2b. We can observe the similarities between this sequence and the sequence obtained

by the parallel Newton method.

== Paralle] Brovden method
-- Parallel Newton method
“““ Parallel Cimmino method

(@) (®)

Figure 2. The behavior of the sequence generated by Algorithm 3, Parallel Newton method
and Parallel Cimmino method (the graphs (a)) and by Algorithm 4, Parallel Newton method
and Parallel Cimmino method (the graphs (b)); (a) system which does not satisfy the

condition (2); (b) system well conditioned.

Algorithms 2015, 8 783

Remark 2. The numerical experiments presented here, for the most part, have been performed with
the basic Algorithm 3; for Algorithm 4 similar conclusions can be drawn. A special characteristics of

Algorithm 4, in comparison with Algorithm 3, is that Algorithm 4 is less sensitive to 0; this parameter
can take its values on a much larger interval, 6 € (0, 2).

Experiment 2.

This experiment is devoted to show the behavior of the sequences generated by Algorithm 5 in the
case of nonlinear systems. We considered several nonlinear systems of low dimensions and of certain

sparsity (every nonlinear equation depends on a few numbers of unknowns). Figure 3 presents the results
for the following three nonlinear systems:

4a3 — zowg — 3 =0, (32, + 2223 = 0,
T1 — 5xy + 22 + 17 = 0, 229 + 13 — 202 =0, .
—y + By — a3 —3 =0, 2y — 0.22914 + 325 = 0, Sernt — 8 =0,
(1) T —4zy +2E+2=0, (2) 3xy — 22 =0, (3) 4%—2: ,
T4 — D5 + 224 = 0, To + 225 = 0, éi;xﬁl:().
x1 — 6z +4 =0, r3x7 + oxg = 0,
\ Ty + 22— 4, +2=0. \ T2 4 19 + x5 + 47 = 0.

50 30

207 ol
-4

-3+

-3pd

R
p—————

—apd

(a) (b) (©

=== DParallel Broyden method
===+ Parallel Newton method

Figure 3. The graphs of [n(e,) generated by Algorithm 5 and parallel Newton method,;
(a) the graph corresponding to systems (1); (b) the graph corresponding to systems (2) given
by Algorithm 5 modified in accordance with Sherman-Morrison lemma; (¢) example of a
system verifying the condition || D(z,,) ||| E,| < 1.

The proposed parallel Broyden’s method is compared with the parallel Newton method described
above. The conclusion is that, generally, the parallel Broyden’s method has similar characteristics with
the considered parallel Newton method, convergence properties, attraction basin, efc. This similarity can

Algorithms 2015, 8 784

be seen in the case of the first system (Figure 3a). The third system is an example for which F' is bounded
on R3, as it is required in Section 3. Note that the condition || D(z,,) ||| E,|| < 1 is also satisfied.

Experiment 3.

This experiment is devoted to compare Algorithm 3 with the parallel variants proposed in [1]
and [2,3]. Three linear systems of low dimensions (m = 5) with condition numbers equal to
8.598, 4.624, 3.701 were considered as test systems. Every system was set into two partitions of

dimensions 3 and 2 respectively.

(@) (b) - (©

Figure 4. The comparison of Algorithms 3, 1 and 2 in the care of linear systems of
low dimensions (m = 5); (a) condition number = 8.598; (b) condition number=4.624;

(¢) condition number = 3.624.

The results are presented in Figure 4. We can conclude that the behavior of Algorithm 3 is satisfactory,
as in all cases the generated sequence converges to the solution of the system and the convergence is
linear. It is worthwhile to note the very good behavior of Algorithm 3 in comparison with the other two
variants for cases (b) and (¢): in case (b) the Algorithms 1 and 2 appear to have a very slow convergence,

and in case (c) these algorithms fail to converge.

Acknowledgment

The authors are very grateful to the anonymous referees for valuable remarks and comments, which

significantly contributed to the quality of the paper.
This research was supported of West University of Timisoara, Romania, Agreement of Academic and

Research Activities, No. 12910/21.05.2015.

Author Contributions

Stefan Maruster theoretical approach; Ioan Bistran and Liviu Octavian Mafteiu-Scai designed and

performed the experiments.

Algorithms 2015, 8 785

Conflicts of Interest
The authors declare no conflict of interest.
References

1. Xu, J.J. Convergence of partially asynchronous block quasi-Newton methods for nonlinear systems
of equations. J. Comput. Appl. Math. 1999, 103, 307-321.

2. Jiang, P.; Yang, G. Performance analysis of preconditioners based on Broyden method. Appl. Math.
Comput. 2006, 178, 295-308.

3. Yang, G.; Jiang, P. SSOR and ASSOR preconditioners for block Broyden method. Appl. Math.
Comput. 2007, 188, 194-205.

4. More, J.J.; Trangenstein, J.A. On the global convergence of Broyden’s method. Math. Comput.
1976, 30, 523-540.

5. Gay, D.M. Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 1979, 16,
623-630.

6. Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1983.

7. Martinez, J.M. Algorithms for Solving Nonlinear Systems of Equations; Springer: Heidelberg,
Germany, 1994.

8. Lazar, 1. On the convergence of asynchronous block Newton method for nonlinear systems of
equations. Informatica 2002, 47, 75-84.

9. Balsa, C.; Guiverch, R.; Raimundo, J.; Ruiz, D. MUMPS Based Approach to Parallelize the
Block Cimmino Algorithm. In Proceedings of the 8th International Meeting High Performance
Computing for Computational Science, Toulouse, France, 1 Junuary 2008.

(© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	The Parallel Variants and Preliminaries
	The Convergence of Algorithm 3 in the Linear Case
	Remarks on the Parallel Implementation
	Numerical Experiments and Conclusions

