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Abstract: We study the local convergence of an eighth order Newton-like method to
approximate a locally-unique solution of a nonlinear equation. Earlier studies, such as Chen
et al. (2015) show convergence under hypotheses on the seventh derivative or even higher,
although only the first derivative and the divided difference appear in these methods. The
convergence in this study is shown under hypotheses only on the first derivative. Hence, the
applicability of the method is expanded. Finally, numerical examples are also provided to
show that our results apply to solve equations in cases where earlier studies cannot apply.
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1. Introduction

In this study, we are concerned with the problem of approximating a locally-unique solution x∗

of equation:
F (x) = 0 (1)

where F is a differentiable function defined on a convex subset D of S with values in S, where S is R
or C.
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Many problems from applied sciences, including engineering, can be solved by means of finding
the solutions of equations in a form like Equation (1) using mathematical modeling [2–7]. Except in
special cases, the solutions of these equations can be found in closed form. This is the main reason
why the most commonly-used solution methods are usually iterative. The convergence analysis of
iterative methods is usually divided into two categories: semi-local and local convergence analysis.
The semi-local convergence matter is, based on the information around an initial point, to give criteria
ensuring the convergence of iteration procedures. A very important problem in the study of iterative
procedures is the radius of convergence. In general, the radius of convergence is small. Therefore, it is
important to enlarge the radius of convergence. Another important problem is to find more precise error
estimates on the distances ‖xn − x∗‖.

The most popular method for approximating a simple solution x∗ of Equation (1) is undoubtedly
Newton’s method, which is given by:

xn+1 = xn − F ′(xn)−1F (xn), for each n = 0, 1, 2 . . . . (2)

provided that F ′ does not vanish in D [2,13]. To obtain a higher order of convergence, many methods
have been proposed [1–41]. We study the local convergence of the three-step method defined for each
n = 0, 1, 2, . . . by:

yn = xn − F ′(xn)−1F (xn),

zn = yn − F (xn)+βF (yn)
F (xn)+(β−2)F (yn)

F ′(xn)−1F (xn),

xn+1 = xn − F (zn)
An

,

(3)

where x0 is an initial point, β ∈ S and:

An = 2[xn, zn; F ]− 2[xn, yn; F ] + [zn, yn; F ] + (yn − zn)[yn, xn, xn; F ],

[xn, yn; F ] =
F (xn)− F (yn)

xn − yn
, and

[yn, xn, xn; F ] =
[xn, yn; F ]− F ′(xn)

yn − xn
.

The eighth order of convergence for Method (3) was established in [1], when β ∈ S, using Taylor
expansions and hypotheses reaching up to the eighth derivative of F , although only the first derivatives
and the divided difference appear in these methods. This method is also an optimal in the sense of
Traub with efficiency index 8

1
4 [4]. The advantages of Method (3) over other competing methods were

also shown in [1]. However, the hypotheses of higher order derivatives limit the applicability of these
methods. As a motivational example, define function F on X = Y = R, D = [−5

2
, 1
2
] by:

F (x) =

{
x3lnx2 + x5 − x4, x 6= 0

0, x = 0
.

Then, we have that:
F ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 12xlnx2 + 20x3 − 12x2 + 10x

and:
F ′′′(x) = 12lnx2 + 60x2 − 12x+ 22.
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Then, obviously, function F ′′′(x) is unbounded on D. Hence, the results in [1], cannot apply to show
the convergence of Method (3) or its special cases requiring hypotheses on the third derivative of function
F or higher. Notice that, in particular, there is a plethora of iterative methods for approximating solutions
of nonlinear equations [1–41]. These results show that if the initial point x0 is sufficiently close to the
solution x∗, then the sequence {xn} converges to x∗. However, how close to the solution x∗ should the
initial guess x0 be? These local results give no information on the radius of the convergence ball for the
corresponding method. The same technique can be used for other methods.

In the present study, we study the local convergence of Method (3) using hypotheses only on the first
derivative of function F. We also provide the radius of the convergence ball, computable error bounds on
the distances involved and the uniqueness of the solution result using Lipschitz constants. Such results
were not given in [1] or the earlier related studies [8–12]. This way, we expand the applicability of
Method (3).

The rest of the paper is organized as follows: We present the local convergence analysis of Method (3)
in Section 2. Numerical examples are given in the concluding Section 3.

2. Local Convergence

In this section, we present the local convergence analysis of Method (3). Let L0 > 0, L > 0, M ≥ 1,
L1 > 0, β ∈ S and L2 > 0. It is convenient for the local convergence analysis that follows to introduce
some functions and parameters. Define functions g1, p and hp on the interval [0, 1

L0
) by:

g1(t) =
Lt

2(1− L0t)
,

p(t) =
1

2
(L0t+ 2M |β − 2|g1(t)) ,

hp(t) = p(t)− 1,

and parameter r1 by:

r1 =
2

2L0 + L
.

We have that hp(0) = −1 < 0 and hp(t) → ∞ as t → 1−

L0

. It follows from the intermediate

value theorem that function hp has zeros in the interval
(

0,
1

L0

)
. Denote by rp the smallest such zero.

Moreover, define functions g2 and h2 on the interval [0, rp) by:

g2(t) =

(
1 +

M2(1 + |β|g1(t))
(1− p(t))(1− L0t)

)
g1(t)

and:
h2(t) = g2(t)− 1.

Then, we get h2(0) = −1 < 0 and h2(t)→∞ as t→ r−p . Denote by r2 the smallest zero of function
h2 on the interval (0, rp). Furthermore, define functions q and hq on the interval [0, rp] by:

q(t) = [4L1 + (3L1 + L2)
(
g1(t) + g2(t)

)
]t,



Algorithms 2015, 8 648

and:
hq(t) = q(t)− 1.

We have that hq(0) = −1 < 0 and hq(t)→∞ as t→ r−p . Denote by rq the smallest zero of function
hq on the interval (0, rq). Finally, define functions g3 and h3 on the interval [0, rq) by:

g3(t) =

(
1 +

M

1− q(t)

)
g2(t),

and:
h3(t) = g3(t)− 1.

We get that h3(0) = −1 < 0 and h3(t) → ∞ as t → r−q . Denote by r3 the smallest zero of function
h3 on the interval (0, rq). Set:

r = min{r1, r3}. (4)

Then, we have that:
0 < r ≤ r1, (5)

and for each t ∈ [0, r):
0 ≤ g1(t) < 1, (6)

0 ≤ p(t) < 1, (7)

0 ≤ g2(t) < 1, (8)

0 ≤ q(t) < 1 (9)

and:
0 ≤ g3(t) < 1. (10)

Let U(γ, ρ), Ū(γ, ρ) stand, respectively, for the open and closed balls in S, with center γ ∈ S
and of radius ρ > 0. Next, we present the local convergence analysis of Method (3) using the
preceding notation.

Theorem 1. Let F : D ⊂ S→ S be a differentiable function. Let [., .; F ] : D×D→ L(S) be a divided
difference of order one. Suppose that there exist x∗ ∈ D, L0 > 0, L > 0, M ≥ 1, L1 ≥ 0, L2 ≥ 0,
β ∈ S, such that for all x, y ∈ D:

F (x∗) = 0, F ′(x∗) 6= 0 (11)

|F ′(x∗)−1(F ′(x)− F ′(x∗)| ≤ L0|x− x∗|, (12)

|F ′(x∗)−1(F ′(x)− F ′(y)| ≤ L|x− y|, (13)

|F ′(x∗)−1F ′(x)| ≤M, (14)

|F ′(x∗)−1
(
[x, y; F ]− F ′(x∗)

)
| ≤ L1

(
|x− x∗|+ |y − x∗|

)
, (15)

|F ′(x∗)−1
(
[x, y; F ]− F ′(x)

)
| ≤ L2|x− y| (16)

and:
Ū(x∗, r) ⊆ D, (17)
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where the radius r is defined by Equation (4). Then, the sequence {xn} generated for
x0 ∈ U(x∗, r) − {x∗} by Method (3) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, . . .

and converges to x∗. Moreover, the following estimates hold:

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| ≤ |xn − x∗| < r, (18)

|zn − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗| (19)

and:
|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗| < |xn − x∗|, (20)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

), the limit point x∗ is the
only solution of equation F (x) = 0 in Ū(x∗, T ) ∩ D.

Proof. We shall show estimate Equations (18)–(20) using mathematical induction. By hypothesis
x0 ∈ U(x∗, r)− {x∗}, Equations (4) and (12), we get:

|F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (21)

It follows from the Equation (21) and the Banach lemma on invertible operators [2,3,14] that
F ′(x0) 6= 0 and:

|F ′(x0)−1F ′(x∗)| ≤
1

1− L0|x0 − x∗|
. (22)

Hence, y0 is well defined by the first sub-step of Method (3) for n = 0. Then, we have by
Equations (4), (5), (11), (13) and (22) that:

|y0 − x∗| = |x0 − x∗ − F ′(x0)−1F (x0)|

≤ |F ′(x0)−1F ′(x∗)||
∫ 1

0
F ′(x∗)−1 [F ′(x∗ + θ(x0 − x∗))− F ′(x0)] (x0 − x∗)dθ|

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

(23)

which shows Equation (18) for n = 0 and y0 ∈ U(x∗, r). We can write by Equation (11) that:

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (24)

Notice that |x∗ + θ(x0 − x∗)− x∗0| = θ|x0 − x∗| < r; hence, x∗ + θ(xo − x∗) ∈ U(x∗, r). Then, by
Equations (14) and (24), we obtain that:

|F ′(x∗)−1F (x0)| =
∣∣∣∣∫ 1

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ
∣∣∣∣ ≤M |x0 − x∗|. (25)

We also get that:
|F ′(x∗)−1F (y0)| ≤M |y0 − x∗|

≤Mg1(|x0 − x∗|)|x0 − x∗|.
(26)
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Next, we shall show that F (x0) + (β − 2)F (y0) 6= 0. We have by Equations (4), (6), (11), (12), (22)
and (26) that:

|(F ′(x∗)(x0 − x∗))−1
(
F (x0)− F (x∗)− F ′(x∗)(x0 − x∗) + (β − 2)F (y0)

)
|

≤ |x0 − x∗|−1
[
|F ′(x∗)−1(F (x0)− F (x∗)− F ′(x∗)(x0 − x∗))|+ |β − 2||F ′(x∗)−1F (y0)|

]
≤ |x0 − x∗|−1

[
L0

2
|x0 − x∗|2 +M |β − 2||y0 − x∗|

]
≤ 1

2

(
L0|x0 − x∗|+ 2M |β − 2|g1

(
|x0 − x∗|

))
= p(|x0 − x∗|) < p(r) < 1.

(27)

Hence, we have that:

|(F (x0) + (β − 2)F (y0))
−1F ′(x∗)| ≤ 1

|x0 − x∗|(1− p(|x0 − x∗|))
. (28)

Hence, z0 is well defined by the second sub-step of Method (3) for n = 0. Then, using Equations (4),
(7), (17), (23)–(26) and (28), we get in turn that:

|z0 − x∗| ≤ |y0 − x∗|+ |
(
F (x0) + (β − 2)F (y0)

)−1
F ′(x∗)||F ′(x∗)−1F (x0) + βF ′(x∗)−1F (y0)|

× |F ′(x0)−1F ′(x∗)||F ′(x∗)−1F (y0)|

≤ |y0 − x∗|+
M2
(
|x0 − x∗|+ |β||y0 − x∗|

)
|y0 − x∗|

|x0 − x∗|
(
1− p(|x0 − x∗|)

)
(1− L0|x0 − x∗|)

≤

(
1 +

M2
(
1 + |β|g1(|x0 − x∗)

)(
1− p(|x0 − x∗|)

)
(1− L0|x0 − x∗|)

)
|y0 − x∗|

≤ g2
(
|x0 − x∗|

)
|x0 − x∗| < |x0 − x∗| < r,

(29)

which shows Equation (19) for n = 0 and z0 ∈ U(x∗, r). We must show that A0 6= 0. Notice that, we
can write:

A0 =2
(
[x0, z0; F ]− F ′(x∗)

)
− 2
(
F ′(x∗)− [x0, y0; F ]

)
+
(
[z0, y0; F ]− F ′(x∗)

)
+
(
(y0 − x∗) + (x∗ − z0)

) [x0, y0; F ]− F ′(x0)
y0 − x0

.
(30)

Using equations, namely, Equations (4), (9), (15), (16), (23), (29) and (30), we get:

|F ′(x∗)−1(A0 − F ′(x∗))| ≤ 2L1(|x0 − x∗|+ |z0 − x∗|) + 2L1(|x0 − x∗|+ |y0 − x∗|)

+ L1(|z0 − x∗|+ |y0 − x∗|) + L2(|y0 − x∗|+ |z0 − x∗|)

≤ 4L1|x0 − x∗|+ (3L1 + L2)|y0 − x∗|+ (3L1 + L2)|z0 − x∗|

≤
[(
4L1 + (3L1 + L2)

)
g1(|x0 − x∗|) + (3L1 + L2)g2(|x0 − x∗|)

]
|x0 − x∗|

≤ q(|x0 − x∗|) < q(r) < 1.

(31)

Hence, we get:

|A−10 F ′(x∗)| ≤ 1

1− q(|x0 − x∗|)
. (32)
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It follows that x1 is well defined by the third sub-step of Method (2) for n = 0. Then, it follows from
Equations (4), (10), (22), (25) (for x0 = z0), (29) and (32) that:

|x1 − x∗| ≤ |z0 − x∗|+ |A−10 F ′(x∗)||F ′(x∗)−1F (z0)|

≤ |z0 − x∗|+
M |z0 − x∗|

1− q(|x0 − x∗|)

≤
(

1 +
M

1− q(|x0 − x∗|)

)
|z0 − x∗|

≤
(

1 +
M

1− q(|x0 − x∗|)

)
g2(|x0 − x∗|)|x0 − x∗|

≤ g3(|x0 − x∗|)|x0 − x∗|
< |x0 − x∗| < r,

(33)

which shows Equation (20) for n = 0 and x1 ∈ U(x∗, r). By simply replacing
x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates, we arrive at Equations (18)–(20). Using
the estimates ‖xk+1−x∗‖ < ‖xk−x∗‖ < r, we deduce that lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r). Finally,

to show the uniqueness part, let Q =
∫ 1

0
F ′(y∗+ θ(x∗− y∗))dθ for some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0.

Using Equation (12), we get that:

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ ‖
∫ 1

0
L0|y∗ + θ(x∗ − y∗)− x∗‖dθ

≤
∫ 1

0
(1− t)‖y∗ − x∗‖dθ ≤ L0

2
T < 1.

(34)

It follows from Equation (34) that Q is invertible. Then, in view of the identity 0 = F (x∗)−F (y∗) =

Q(x∗ − y∗), we conclude that x∗ = y∗.

Remark 1. (a) In view of Equation (12) and the estimate:

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x)− F ′(x∗)) + I|

≤ 1 + |F ′(x∗)−1(F ′(x)− F ′(x∗))|

≤ 1 + L0|x0 − x∗|

condition Equation (14) can be dropped, and M can be replaced by:

M(t) = 1 + L0t

or by M(t) = M = 2, since t ∈ [0, 1
L0

).

(b) The results obtained here can be used for operators F satisfying the autonomous differential
equation [2,3] of the form:

F ′(x) = P (F (x)),

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0), we can apply the
results without actually knowing the solution x∗. Let, as an example, F (x) = ex− 1. Then, we can
choose P (x) = x+ 1.
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(c) The radius r1 was shown in [2,3] to be the convergence radius for Newton’s method Equation (2)
under conditions Equations (11) and (13). It follows from Equation (4) and the definition of r1
that the convergence radius r of Method (3) cannot be larger than the convergence radius r1 of
the second order Newton’s method (2). As already noted that r1 is at least as the convergence ball
given by Rheinboldt [15]:

rR =
2

3L
.

In particular, for L0 < L, we have that:
rR < r1

and:
rR
r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball r1 that is at most three times larger than Rheinboldt’s. The same
value for rR is given by Traub [4].

(d) It is worth noticing that Method (3) is not changing if we use the conditions of Theorem 2.1 instead
of the stronger conditions given in [1]. Moreover, for the error bounds, in practice, we can use the
computational order of convergence (COC) [16]:

ξ =
ln |xn+2−x∗|
|xn+1−x∗|

ln |xn+1−x∗|
|xn−x∗|

, for each n = 0, 1, 2, . . .

or the approximate computational order of convergence (ACOC) [16]:

ξ∗ =
ln |xn+2−xn+1|
|xn+1−xn|

ln |xn+1−xn|
|xn−xn−1|

, for each n = 1, 2, . . .

This way, we obtain, in practice, the order of convergence in a way that avoids the bounds involving
estimates higher than the first Fréchet derivative.

3. Numerical Example and Applications

We present numerical examples in this section.

Example 1. Let S = R, D = [−1, 1], x∗ = 0, and define function F on D by:

F (x) = sinx. (35)

Then, we get L0 = L = M = 1 and L1 = L2 = 1
2
. Then, by the definition of the r1 and r3, we obtain:

r1 = 0.666667, r3 = 0.186589,

and as a consequence:
r = 0.186589.
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Example 2. Let S = R, D = [−1, 1], x∗ = 0, and define function F on D by:

F (x) = ex − 1. (36)

Then, we get L0 = e− 1, L = e, L1 = e−1
2
, L2 = e

2
and M = 2.

Then, we get L0 = L = M = 1 and L1 = L2 = 1
2
. Then, by the definition of the r1 and r3, we obtain:

r1 = 0.324947, r3 = 0.032978,

and as a consequence:
r = 0.032978.

Example 3. Returning back to the motivation example in the Introduction, we have
L = L0 = 146.6629073, L1 = L2 = L0

2
and M = 2.

r1 = 0.0045456, r3 = 0.000553,

and as a consequence:
r = 0.000553.
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