
Algorithms 2014, 7, 608-620; doi:10.3390/a7040608
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

High-Order Entropy Compressed Bit Vectors with Rank/Select
Kai Beskers 1 and Johannes Fischer 2,*

1 Institut für Theoretische Informatik, Karlsruhe Institute of Technology, Kaiserstraße 12,
76131 Karlsruhe, Germany; E-Mail: kai.beskers@gmx.de

2 Fakultät für Informatik, Technical University of Dortmund, Otto-Hahn-Straße 14,
44227 Dortmund, Germany

* Author to whom correspondence should be addressed; E-Mail: johannes.fischer@cs.tu-dortmund.de;
Tel.: +49-231-755-7711; Fax: +49-231-755-7740.

External Editor: Tak-Wah Lam

Received: 21 August 2014; in revised form: 8 October 2014 / Accepted: 28 October 2014 /
Published: 3 November 2014

Abstract: We design practical implementations of data structures for compressing
bit-vectors to support efficient rank-queries (counting the number of ones up to a given
point). Unlike previous approaches, which either store the bit vectors plainly, or focus on
compressing bit-vectors with low densities of ones or zeros, we aim at low entropies of higher
order, for example 101010 . . . 10. Our implementations achieve very good compression
ratios, while showing only a modest increase in query time.

Keywords: design and analysis of algorithms; data compression; implementation and testing
of algorithms

1. Introduction

Bit vectors are ubiquitous in data structures. This is even more true for succinct data structures, where
the aim is to store objects from a universe of size u in asymptotically optimal (1 + o(1)) log u bits. The
best example are succinct trees on n nodes, which can be represented by parentheses in optimal 2n+o(n)

bits, while allowing many navigational operations in optimal time [1].
Bit vectors often need to be augmented with data structures for supporting rank, which counts the

number of 1’s up to a given position, and select, which finds the position of a given 1 [2–6]. Often,
the bit-vectors are compressible, and ideally this compressibility should be exploited. To the best of our

Algorithms 2014, 7 609

knowledge this has so far been done mostly for sparse bit-vectors [4,5]. For other kinds of regularities,
we are only aware of two recent implementations [7,8], which are, however, tailored towards bit vectors
arising in specific applications (FM-indices [8] and wavelet trees on document arrays [7]), though they
may also be effective in general.

1.1. Our Contribution

We design practical implementations for compressing bit-vectors for rank- and select-queries that are
compressible under a different measure of compressibility, namely bit-vectors having a low empirical
entropy of order k > 0 (see Section 2 for formal definitions). Our algorithmic approach is to encode
fixed-length blocks of the bit-vector with different kinds of codes (Section 3.1). While this approach has
been theoretically proposed before [9], we are not aware of any practical evaluations of this scheme in
the context of bit-vectors and rank-/select-queries. An interesting finding (Section 3.2) is that we can
show that the block sizes can be chosen rather large (basically only limited by the CPU’s word size),
which automatically lowers the redundancy of the (otherwise incompressible) rank-information. We
focus on data structures for rank, noting that select-queries can either be answered by binary searching
over rank-information, or by storing select-samples in nearly the same way as we do for rank [10].

We envision at least two possible application scenarios for our new data structures: (1) compressible
trees [11], where the bit-vectors are always dense (same number of opening and closing parentheses), but
there exist other kinds of regularities. Easy examples are stars and paths, having balanced parentheses
representations (()() . . . ()) and (((. . .))), respectively. (2) wavelet trees on repetitive collections of
strings that are otherwise incompressible, like individual copies of DNA of the same species [7].

2. Preliminaries

2.1. Empirical Entropy

Let T be a text of size n over an alphabet Σ. The empirical entropy of order zero [12] is defined as:

H0(T) :=
∑

c∈Σ,nc>0

nc
n

log
n

nc
,

where nc is the number of occurrences of the symbol c in T . H0 is a lower bound for any compression
scheme that encodes each occurrence of a symbol c ∈ Σ within T into the same code regardless of its
context. Using such compression schemes any symbol of the original text can be decoded individually,
allowing random access to the text with little overhead. However, H0 only takes into account the relative
frequency of each symbol, and so ignores frequent combinations. Much better compression is often
possible by taking the context into account.

The empirical entropy of order k is defined as:

Hk(T) =
1

n

∑
s∈Σk,T s 6=ε

|T s| ·H0(T s),

where T s is the concatenation of all symbols in T directly following an occurrence of s.

Algorithms 2014, 7 610

The empirical entropy of order k is a lower bound for any compressor that requires at most k preceding
symbols in addition to the code in order to decode a symbol. We have log |Σ| ≥ H0 ≥ H1 ≥ . . . ≥ 0.
For texts derived from a natural source Hk is often significantly smaller than H0 even for a quite small
k. Thus, Hk is the measure of choice for any context based random access compression scheme.

2.2. Empirical Predictability

Recently, Gagie [13] defined a new complexity measure called empirical predictability. If we are
asked to guess a symbol chosen uniformly at random without any context given, our best chance is to
guess the most frequent symbol. The probability of a correct prediction P0(T) := maxc∈Σ

nc

n
is called

the empirical predictability of order 0. Now we consider being asked the same question, but we are
allowed to read the preceding k bits of context or, if there are not enough preceding bits, the exact
symbol. We then call the chance to predict correctly the empirical predictability of order k. It is defined
as Pk(T) = 1

n

∑
s∈Σk,T s 6=ε |T s| ·P0(T s). (Actually, Gagie [13] adds a summand of k

n
for the first k bits of

the text. In contrast, we consider k to be a small constant. Considering limn→∞
k
n

= 0 we can omit this
summand for both empirical entropy and empirical predictability.) Note that 1 ≥ Pk(T) ≥ 1

|Σ| . If Pk(S)

is high we intuitively expect a compressed version of the text to be small. This is inverse to the other
complexity measures, where we need a low value to get a small compressed text. In fact, we prove:

Lemma 1. For binary texts (Σ = {0, 1}) the empirical entropy Hk(T) is an upper bound for 1−Pk(T).

Proof. Let k be fixed. For s ∈ Σ∗ let ps := |T s| · P0(T s) be the number of correct predictions after
reading s and ms := |T s| − ps the number of incorrect predictions after reading s.

To simplify notation we assume |T sx| 6= 0 ∀s ∈ {0,1}k, x ∈ {0,1}. Then:

Hk =
∑

s∈{0,1}k

|T s|
n

∑
x∈{0,1}

|T sx|
|T s|

log
|T s|
|T sx|

=
∑

s∈{0,1}k

(
|T s0|
n

log
|T s|
|T s0|

+
|T s1|
n

log
|T s|
|T s1|

)

=
∑

s∈{0,1}k

ms

n
log

≥2︷︸︸︷
|T s|
ms︸ ︷︷ ︸
≥1

+
∑

s∈{0,1}k

ps
n

log

≥1︷︸︸︷
|T s|
ps︸ ︷︷ ︸

≥0

≥
∑

s∈{0,1}k

ms

n

= 1− Pk,

which proves the claim.

Note that we omitted some significant terms; the actual 1 − Pk should be even lower. This
relation between the empirical entropy and the empirical predictability had not been established before.
Lemma 1 will be used in Section 4, since there the test data generator mimics the process of empirical
predictability; but we think that the lemma could also have different applications in the future.

Algorithms 2014, 7 611

2.3. Succinct Data Structures for Rank

Let T [0, n) be a bit-string of length n. The fundamental rank- and select-operations on T are defined
as follows: rank1(T, i) gives the number of 1’s in the prefix T [0, i], and select1(T, i) gives the position
of the i’th 1 in T , reading T from left to right (0 ≤ i < n). Operations rank0(T, i) and select0(T, i) are
defined similarly for 0’s.

In [2,3] Munro and Clark developed the basic structure to solve rank/select queries in constant time
within n + o(n) space. Most newer rank/select dictionaries are based on their work, and so is ours. We
partition the input bit string into large blocks of length bl := log2 n. For each large block we store the
number of 1’s before the block, which is equal to a rank sample at the block border. As there are n

bl

large blocks and we need at most log n bits to store each of those values, this requires only o(n) bits of
storage. We call this the top-level structure.

Similarly, we partition each large block into small blocks of size bs := logn
2

. For each small block
we store the number of 1’s before the small block and within the same large block, which is equal to a
rank sample relative to the previous top-level sample. As there are n

bs
small blocks and we need at most

log(bl) bits, this requires only o(n) bits of storage. We call this the mid-level structure.
As the size of small blocks is limited to bs, there are 2bs =

√
n different small blocks possible. Note

that not all possible small blocks necessarily occur. For every possible small block and each position
within a small block we store the number of 1’s within this small block before the given position in a
table. This table requires

√
n · bs log bs = o(n) bits. We call this table the lookup table.

For each small block we need to find the index of the corresponding line in the lookup table. This
is, in fact, the original content of the block, and we get it from the text T itself. As we intend to
solve this problem with something different than a plain storage of T , we call the representation of T the
bottom-level structure. If we use an alternative bottom-level structure the rank structure can still simulate
T for constant time read-only random access.

3. New Data Structure

As described in the previous section, rank/select dictionaries break down into top-level, mid-level,
bottom-level, and a lookup table. While the top and mid-level structures basically contain rank/select
information, the text T is stored in the bottom-level and the lookup table. In fact the bottom-level and
the lookup table are sufficient to reconstruct T . Thus we try to exploit the compressibility of T here.

The mid-level structure conceptually partitions T into blocks, which are then used to address the
lookup table. Thus the most native approach to compress the bottom-level is to encode frequent blocks
into short code words. Using the shortest code for the most frequent blocks produces the best possible
compression. Amongst such block encoding techniques is the Canonical Code (Section 3.1.1). However,
it produces variable length code words and thus we do not have an easy constant time random access
(though this is possible with a bit of work). In order to provide constant time random access we
investigate three approaches. Two of them are totally independent of the used code and differ in size
and speed. The third one is a code that tries to get fixed length codes in most cases while using small
auxiliary data structures for the exceptions. We call it the Exception Code.

Algorithms 2014, 7 612

The upper-level rank structures already contain the information of how many 1’s a desired block
contains. Considering this, a block’s code does not need to be unique amongst all blocks, but only
unique amongst all blocks with the same number of 1’s. The actual unique code of a block b then is
the pair (#(b), σ(b)), where #(b) is the number of 1’s in b, and σ(b) is the stored code word. σ(b) is
calculated for every #(b) separately, and we require a decoding table for each #(b), but all code words
σ(b) can be stored in the same data structure. Note that we still only have one decoding table entry per
occurring block, and thus memory consumption only increases by O(bs) = o(n). This is done for each
of the codes in Section 3.1.

3.1. Coding Schemes

3.1.1. Canonical Code

This coding scheme corresponds to the idea of Ferragina and Venturini [9], where it is also shown
that the coding achieves empirical entropy of order k. It works as follows. We order all possible bit
strings by their length and, as secondary criterion, by their binary value. We get the following sequence:
ε,0,1,00,01,10,11,000,001 Note that we can calculate the position j of a bit string s in this
sequence: j = 1s−1, where 1s is the bit string s with a preceding 1, interpreted as a binary number. We
use the first element of this sequence to encode the most frequent block, the second one for the second
most frequent block, etc. This is obviously optimal in terms of memory consumption as long as we
assume the beginnings and endings of code words to be known.

As long as each block is encoded in a code of fixed length b the code of a specific block i can be found
by simple arithmetic. However, the Canonical Code produces variable length code words and thus we
require a technique to find the desired block code. We next describe two approaches to achieve that.

One option is to maintain a two-level pointer structure [9], similar to the top and mid-level of
the rank directory described in Section 2.3. For each large block we store the beginning of its first
encoded small block directly in log n bits using O(n logn

bl
) = o(n) bits in total. We call it the top-level

pointers. The mid-level pointers defined analogously and use n log(bl)
bs

= o(n) bits. As for rank structures
this only requires constant time to access, but the space consumption is much more significant than
the o(n) indicates.

An alternative approach is to store a bit vector parallel to the encoded bit vector, where we mark the
beginning of each code word with a 1 and prepare it for select queries (as previously done in [14,15],
for example). To find the ith code word we can use select1(V, i) on this beginnings vector V . If the
original text is highly compressible, the encoded bit vector and thus the beginnings vector is rather short
compared to other data structures used. Otherwise, it is sparsely populated and can be compressed by
choosing an appropriate select dictionary, for example the sparse array by Sadakane and Okanohara [5].
On the downside, using select to find the proper code word comes with constant but significant run-time
costs in practice.

Algorithms 2014, 7 613

3.1.2. Exception Code

For this code we categorize the blocks into 3 classes (see also [16] for the a generalization of this
idea called alphabet partitioning): frequent blocks, rare blocks and ultra rare blocks. For the first two
classes we choose parameters bfreq and brare, defining how many bits we use to encode their blocks. Ultra
rare blocks are stored verbatim, so they still need their original size bs. We define the most frequent 2bfreq

blocks to be frequent blocks. Rare blocks are the most frequent 2brare blocks that are not yet classified as
frequent. All other blocks are classified ultra rare.

We maintain simple arrays for each of those classes of blocks, encoding all blocks of that class in the
order of their occurrence. In order to access a block we need to find out what class it belongs to and how
many blocks of that class occur before. For this we maintain a bit vector freq with one bit per block. We
mark frequent blocks with a 1 and prepare it for rank queries using an appropriate rank dictionary. Those
rank queries tell us how many frequent blocks occur before a desired block, so it is already sufficient for
accessing frequent blocks. For non-frequent blocks subtracting the number of previous frequent blocks
from its index we obtain its position in a conceptional list of non-frequent blocks. With this we can
proceed exactly the same way as above: maintaining a bit vector rare with one bit per non-frequent
block marking rare blocks with a 1 and preparing it for rank queries. To access a non-frequent block we
need to rank it both in freq and in rare. Figure 1 illustrates the data structures.

The Exception Code uses more space than the Canonical Code for the encoded blocks, and it is not
clear at all if it achieves kth order empirical entropy in theory. However, the former only requires two
rank structures on freq and rare to enable random access. As they are built upon bit vectors with only one
bit per block, they require at most n

b
(1 + o(1)) bits for blocks of size b, and our hope is that this is small

compared to the beginnings vector or even the two-level pointer structure required for the Canonical
Code structure. In terms of execution time we need little more than one subordinate rank query for
frequent blocks, and two for non-frequent blocks, hopefully resulting in faster average query times.

Figure 1. Illustration to the Exception Code. Shaded blocks denote 1’s, and empty
blocks 0’s.

T

freq

rare

code

ultra rare frequent rare frequent rare frequent frequent frequent

Algorithms 2014, 7 614

3.2. Table Lookup

3.2.1. Verbatim Lookup vs. Broadword Computation

In the original Munro and Clark version as described in Section 2.3, the lookup table stores the
relative rank or select results for each of the 2bs possible small blocks and each of the bs possible queries
in log(bs) bits requiring 2bs · bs · log bs bits of storage. To keep the table small, bs had to be chosen very
small. Vigna [6] bypasses the lookup table and instead calculates its entries on the fly via broadword
computation. According to Vigna [6], “broadword programming uses large (say, more than 64-bit wide)
registers as small parallel computers, processing several pieces of information at a time.” This is efficient
as long as blocks fit into processor registers. In our approach bottom-level blocks are encoded only based
on their frequency, and not on their content. Thus we inevitably need a decoding table. After looking
up the appropriate table row it needs to provide rank information. This can be stored directly within the
table, turning it into a combined decoding and lookup table.

3.2.2. Expected Table Size

In the rank/select structure as described in Section 2.3, all possible small blocks are listed. This
implies that bs has to be small, which increases the number N := n

bs
of small blocks. In our structure

the lookup table only contains blocks that do actually occur in T . (This is possible since both of the
codes above—Canonical Code and Exception Code—imply an implicit enumeration of the occurring
blocks without gaps; see, for example, the first paragraph of Section 3.1.1 for how to compute this
numbering.) Thus the table size is limited by O(n), without restricting the choice of bs. For predictable
texts (Pk(T) � 1

2
), we intuitively expect most blocks to occur very often within T (and thus not

increasing the lookup table size). This intuition is confirmed in the following, by calculating the expected
number of entries in the lookup table.

To this end, look at a fixed block B ∈ {0, 1}b of b := bs bits. Its probability of occurrence depends
mainly on the number i of bits that are not as predicted. Assuming the first k bits are distributed uniformly
at random, the probability of B (with i mispredictions) to occur is:

Pb,i =
1

2k
· P b−k−i

k (1− Pk)i .

There are

Cb,i = 2k ·
(
b− k
i

)
blocks with i mispredictions, so we expect

Eb,i(N) = Cb,i · (1− (1− Pb,i)N)

of them to appear within T . This is the well known formula of bounded exponential growth, a monotonic
concave function bounded from above by Cb,i. Its derivative E ′b,i(N) is proportional to the satiation
Cb,i−Eb,i(N), and E ′b,i(0) = Pb,i. For small i the upper bound Cb,i is quite small. For larger i the growth

Algorithms 2014, 7 615

rate E ′b,i quickly falls behind the linear growth of other data structures used. Summing over all possible
i, we get the expected number of blocks occurring in the lookup table:

Ek,b(N) =
b−k∑
i=0

Eb,i(N) =
b−k∑
i=0

(
1− (1− Pb,i)N

)
·
(

2k ·
(
b− k
i

))
.

In Figure 2 we plot the expected table size, which is Ek,b(N) · b, using Pk = 0.99 and b = 64 as an
example. For comparison we also plot N · log b, which is a lower bound for the mid-level data structure.
We can see that despite the large block size the table’s memory consumption is less than that of the
mid-level data structure. As the lookup table is the only data structure that grows with increasing block
sizes and the mid-level structure significantly profits from large block sizes, this shows that b = bs has
to be chosen quite high.

Figure 2. Expected memory usage for the lookup table for a text with Pk = 0.99 and block
size b = 64.

0

4Mbit

8Mbit

12Mbit

0 64 Mbit 128 Mbit
n

table size
log b ·N

4. Test Data Generator

Our data structures aim to fit data with low empirical entropy of higher order even if the empirical
entropies of lower order are quite high. We created such data by a specific generator that we are going
to describe next, which might be of independent interest. It produces bit vectors with lower order
empirical entropies very close to 1 (H0 ≈ H1 ≈ . . . ≈ Hk−1 ≈ 1) and higher order empirical entropies
significantly lower (1� Hk ≥ Hk+1 ≥ . . .).

The test data generator rolls each bit with a probability P (1|s′) for a 1 dependent on s′, where s′

are the k preceding bits. We get these probabilities from a table. The first half of this table, containing
probabilities for bit patterns starting with a 0, is filled with values close to 1 or close to 0 at random.
By Lemma 1 and since our test data generator mimics the empirical predictability, this ensures a low
Hk. The second half is filled with exactly the opposite probabilities namely P (1|0s) = 1 − P (1|1s)

Algorithms 2014, 7 616

for all bit patterns s of length k − 1. This ensures lower order empirical entropies to be 1, as shown in
Lemma 2 below.

From a different point of view this test data generator is a probabilistic finite state machine with one
state for each bit pattern of length k and two state transitions out of each state, one with high probability
and one with low probability. Due to filling the second half of the table opposite to the first, the two
incoming state transitions of each state behave like the outgoing ones: One of them has a high probability
and the other has a low probability. Thus we get circles of high probability edges and a low probability
to switch the circle or jump within a circle. Figure 3 shows such a finite state machine, the according
probability table, and an example output bit string.

Figure 3. Example of a test data generation. (a) The associated finite state machine, low
probability edges are shown gray. (b) Table of probabilities to roll a 1. (c) Output, low
probability rolls are underlined.

000

010 001

011

100

101110

111

95%

5%

97%

3%

98%

2%

97%
3%

95%
5%

97%

3%

98%

2%

97%

3%

(a)

s P [1|s] s P [1|s]
000 0.05 100 0.95
001 0.97 101 0.03
010 0.98 110 0.02
011 0.97 111 0.03

(b)

1100111001110000000000

0000000000001110011100

1110011100111001110011

1001010101010101001110

0111000000000000000. . .
(c)

Lemma 2. An infinite text generated that way has H0 = . . . = Hk−1 = 1.

Proof. We have to show that the finite state machine enters each state with the same probability in the
long term, thus we have to show that the uniform distribution vector E = (1, . . . , 1) is an eigenvector of
the state transition matrixM of the Markov process. For each s ∈ {0,1}k−1 we have:

Algorithms 2014, 7 617

ME =

0s
↓

1s
↓

0 0
...

...
0 0

s0→ 0 . . . 0 p 0 . . . 0 1− p 0 . . . 0

s1→ 0 . . . 0 1− p 0 . . . 0 p 0 . . . 0

0 0
...

...
0 0

1
...
1

 =

...
0s→ 1

...
1s→ 1

...

 ;

as this holds for all s ∈ {0,1}k−1, we getME = E , which proves the claim.

Lemma 2 also holds for finite texts except for statistical errors, which are negligible for long
enough texts.

5. Experimental Results

We implemented the data structures described in this article in C++ and made extensive tests tuning
the parameters. The source code is available at [17]. We used GNU g++ 4.6.3 with the flags -O3
-funroll-loops -DNDEBUG -std=c++0x to compile our programs. Our test computer was an Intel
i5@3.33 GHz with 32 kiB L1-, 256 kiB L2-, and 4 MiB L3-cache and 8 GiB RAM. Interestingly,
tuning for space also resulted in faster query times, mainly due to caching effects. This resulted in the
following implementations:

canRnk2LPTR A basic 2-level structure, using the Canonical Code from Section 3.1. Backed by
the analysis of the expected table size (Section 3.2), we used large block sizes on both levels, namely
bs = 26 and bl = 212.

canRnkBeg The same as canRnk2LPTR, but this time using a bit-vector marking the beginnings of
the codewords.

exceptionRank The Exception Code from Section 3.1, using parameters bs = 26, bl = 212, bfreq = 25,
and brare = 212.

We compare our data structures to several existing implementations of rank and select dictionaries
from different sources. We stress that none of these data structures was designed to achieve high order
compression; we just include them in our tests to give some idea of how our new structures compare
with existing implementations.

sdslMcl Munro and Clark’s original rank-dictionary, using an implementation from Simon Gog’s
sdsl [18].

sdslv5 A space-conscious rank implementation from sdsl, tuned to use only 5% of space on top of the
bit vector.

rsdicRRR A 0-order compressed version of Navarro and Providel’s rank-dictionary [10], using an
implementation by Daisuke Okanohara [19].

SadaSDarray Okanohara and Sadakane’s SDArray [5].

Algorithms 2014, 7 618

suxVignaRank9 Sebastiano Vigna’s rank9-implementation [6].
Figure 4 shows the compression and query times for example texts with n = 250MB and H4 = 0.044

or H4 = 0.112, respectively (averaged over 10 repeats of 107 random queries). Other distributions of
entropies yielded similar results. We can see that our data structures are significantly smaller than the
others. At the extreme end, our smallest structure (canRnkBeg) uses less that 1/4 of the space used by
the smallest existing structure (sdslv5). However, we trade this advantage for higher query times, in the
example mentioned by a factor of 2.

Figure 4. Space/time tradeoff for various rank dictionaries. (a) H4 = 0.044, Hk ≈ 1 for
k ≤ 3. (b) H4 = 0.112, Hk ≈ 1 for k ≤ 3.

Figure 15: Space/time tradeo↵ for various rank dictionaries

(a) H2 = 0.045

0

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ti
m

e
p
er

ra
n
k

in
n
s

compression

canRnk2LPTR
canRnkBeg

exceptionRank
sdslMcl
sdslv5

rsdicRRR
SadaSDarray

suxVignaRank9

(b) H4 = 0.044

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ti
m

e
p
er

ra
n
k

in
n
s

compression

canRnk2LPTR
canRnkBeg

exceptionRank
sdslMcl
sdslv5

rsdicRRR
SadaSDarray

suxVignaRank9

33

(a)

Figure 16: Space/time tradeo↵ for various rank dictionaries

(a) H2 = 0.106

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ti
m

e
p
er

ra
n
k

in
n
s

compression

canRnk2LPTR
canRnkBeg

exceptionRank
sdslMcl
sdslv5

rsdicRRR
SadaSDarray

suxVignaRank9

(b) H4 = 0.112

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ti
m

e
p
er

ra
n
k

in
n
s

compression

canRnk2LPTR
canRnkBeg

exceptionRank
sdslMcl
sdslv5

rsdicRRR
SadaSDarray

suxVignaRank9

34

(b)

6. Conclusions

We introduced new methods for compressing dense bit-vectors, while supporting rank/select
queries, and showed that the methods perform well in practice. An interesting extension for future

Algorithms 2014, 7 619

work is engineering compressed balanced parentheses implementations, with full support for all
navigational operations.

Author Contributions

Both authors developed the algorithms and wrote the manuscript. Implementation and testing was
done by Kai Beskers.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Sadakane, K.; Navarro, G. Fully-Functional Succinct Trees. In Proceedings of Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January
2010; pp. 134–149.

2. Clark, D. Compact Pat Trees. PhD thesis, University of Waterloo, Ontario, Canada, 1996.
3. Munro, J.I. Tables. In Proceedings of 16th Foundations of Software Technology and Theoretical

Computer Science, Hyderabad, India, 18–20 December 1996; pp. 37–42.
4. Raman, R.; Raman, V.; Rao, S.S. Succinct indexable dictionaries with applications to encoding

k-ary trees and multisets. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, CA, USA, 6–8 January 2002; pp. 233–242.

5. Okanohara, D.; Sadakane, K. Practical Entropy-Compressed Rank/Select Dictionary. In
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments, New Orleans,
LA, USA, 6 January, 2007.

6. Vigna, S. Broadword implementation of rank/select queries. In Experimental Algorithms;
Springer: Berlin Heidelberg, Germany, 2008; pp. 154–168.

7. Navarro, G.; Puglisi, S.J.; Valenzuela, D. Practical compressed document retrieval. In
Experimental Algorithms; Springer: Berlin Heidelberg, Germany, 2011; pp. 193–205.

8. Kärkkäinen, J.; Kempa, D.; Puglisi, S.J. Hybrid Compression of Bitvectors for the FM-Index.
In Proceedings of Data Compression Conference, Snowbird, UT, USA, 26–28 March 2014;
pp. 302–311.

9. Ferragina, P.; Venturini, R. A Simple Storage Scheme for Strings Achieving Entropy Bounds.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, USA, 7–9 January, 2007; pp. 690–696.

10. Navarro, G.; Providel, E. Fast, small, simple rank/select on bitmaps. In Experimental Algorithms;
Springer: Berlin Heidelberg, Germany, 2012; pp. 295–306.

11. Jansson, J.; Sadakane, K.; Sung, W.K. Ultra-succinct representation of ordered trees with
applications. J. Comput. Syst. Sci. 2012, 78, 619–631.

12. Manzini, G. An Analysis of the Burrows-Wheeler Transform. J. ACM 2001, 48, 407–430.
13. Gagie, T. A Note on Sequence Prediction over Lage Alphabets. Algorithms 2012, 5, 50–55.

Algorithms 2014, 7 620

14. Brisaboa, N.R.; Ladra, S.; Navarro, G. DACs: Bringing Direct Access to Variable-Length Codes.
Inf. Process. Manag. 2013, 49, 392–404.

15. Fischer, J.; Heun, V.; Stühler, H.M. Practical Entropy Bounded Schemes for O(1)-Range
Minimum Queries. In Proceedings of Data Compression Conference, Snowbird, UT, USA,
25–27 March 2008; pp. 272–281.

16. Barbay, J.; Claude, F.; Gagie, T.; Navarro, G.; Nekrich, Y. Efficient Fully-Compressed Sequence
Representations. Algorithmica 2014, 69, 232–268.

17. Source code. Available online: http://ls11-www.cs.uni-dortmund.de/_media/fischer/research/
diplcode.tar.gz (accessed on 30 October 2014).

18. Simon Gog’s sdsl. Available online: https://github.com/simongog/sdsl (accessed on 30
October 2014).

19. Daisuke Okanohara’s Rsdic. Available online: https://code.google.com/p/rsdic/ (accessed on 30
October 2014).

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://ls11-www.cs.uni-dortmund.de/_media/fischer/research/diplcode.tar.gz
http://ls11-www.cs.uni-dortmund.de/_media/fischer/research/diplcode.tar.gz
https://github.com/simongog/sdsl
https://code.google.com/p/rsdic/

	Introduction
	Our Contribution

	Preliminaries
	Empirical Entropy
	Empirical Predictability
	Succinct Data Structures for Rank

	New Data Structure
	Coding Schemes
	Canonical Code
	Exception Code

	Table Lookup
	Verbatim Lookup vs. Broadword Computation
	Expected Table Size

	Test Data Generator
	Experimental Results
	Conclusions

