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Abstract: In electric power systems, power cable operation under normal conditions is very 

important. Various cable faults will happen in practical applications. Recognizing the cable 

faults correctly and in a timely manner is crucial. In this paper we propose a method that an 

annealed chaotic competitive learning network recognizes power cable types. The result 

shows a good performance using the support vector machine (SVM) and improved Particle 

Swarm Optimization (IPSO)-SVM method. The experimental result shows that the fault 

recognition accuracy reached was 96.2%, using 54 data samples. The network training time 

is about 0.032 second. The method can achieve cable fault classification effectively. 

Keywords: power cable; cable faults; SVM; recognition; competitive learning network; 

annealed chaotic 

 

1. Introduction 

With the rapid development of social economy, and the improvement of science and technology, 

people rely on power more intensely, and the demand for power resources continues to expand, for which 

China’s power industry has entered a phase of vigorous development. With the rapid development of 

urban areas, urban land-value rises year after year and electric underground cables have increased year 
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by year. The demands for the use of electric underground cables under the condition of market economy 

are increasing. With the development of the energy industry, all kinds of cables are, increasingly, used 

in various fields of production and life. Power cables not only convey the transmission of information, 

but are also an important part of manufacturing electrical equipment and instrumentation. In the future, 

power cable will bring us to an information-based society. Cables buried underground have the 

advantages of safety and reliability, and small influence due to climate, compared with the overhead 

lines. However, a power cable will cause different kinds of fault due to long-term use, increase of  

load, etc. The power cables buried underground are invisible and once a fault happens, the fault is very 

difficult to find; it often takes several hours, or more, to find a fault. Therefore, not only will this cause 

a waste of manpower and material resources, but will also cause huge economic losses, such as the 

production accidents, the banking system, airport scheduling systems, or rail transport systems. It will 

bring a great deal of inconvenience to our daily lives. 

With the gradual development of production technology, in terms of the infrastructure of power 

systems, the circuit of electrical cables becomes more complex. In the power system, the cable fault 

needs to be removed the first time, but also must meet the selectivity of relay protection and be reliable, 

in addition to the type of the fault recognition, in order to repair the cable fault as soon as possible. Thus, 

the fault signal feature extraction and cable fault analysis are very important for the correct action for 

relay protection and different kinds of fault-type recognition, and the safety of the power system [1]. 

Once the power cable fault occurs, the fault is very difficult to find. With the increase of various cable 

faults, it causes great economic losses, directly or indirectly. Detecting the fault location of power cables 

accurately, and recognizing the fault type quickly, are important tasks in a normal power system. 

Generally, cable faults can be caused by the following several cases: ageing of insulation, heat load, 

mechanical damage, corrosion protection layer, overvoltage, material defects, etc. We focus on the 

research of fault-type recognition in this paper. 

Cable fault type recognition has been researched widely. There are different kinds of fault recognition 

methods, such as wavelet analysis, artificial neural network, particle swarm optimization (PSO) [2–4], 

support vector machine (SVM) [5–7], the improved PSO-SVM algorithm, etc. The transient traveling 

wave signal of the cable fault is disposed of by the wavelet transformation, based on cable traveling 

wave transmission theory [8–10]. Electric-heating cable fault testing is based on a neural network [11]. 

An improved particle swarm optimization and support vector machine recognize the power cable fault 

types [12]. An adaptive procedure for the problem of synchronization and parameter identification for 

chaotic networks is proposed [13]. 

An annealed chaotic competitive network, recognizing power cable fault types is proposed in this 

paper. Artificial neural networks change their internal structure and form self-adaptive systems in 

practical applications. They are applied to learning and classification in many different fields. A 

competitive learning network solves the problem of color image segmentations [14]. A two-layer 

annealed chaotic competitive learning network detects the image edge [15,16]. Hybrid Hopfield neural 

networks and a self-adaptive genetic algorithm calibrate camera parameters [17,18]. Fuzzy possibilistic 

c-means embed into the Hopfield network to construct a classification system [19]. The neural network 

is classified by the method of clustering in many different fields. In the paper, the method of clustering 

deals with power cable fault recognition. The chaotic behavior is controlled to escape from local minima 

by the annealed chaotic competitive learning network. The network architecture classifies the training 
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sample data to generate feasible clusters in clustering problems. A simulated annealing technique having 

a non-zero probability to go from one state to another, moves toward a bad state temporarily, so as to 

jump out of local minima. The annealing strategy is added to control the chaotic behavior. The neuron 

state is refined to reach global optimal results when the energy function is converged. The sample data 

can be converged effectively in a test and the experiment shows a good performance. 

The rest of this paper is organized as follows. First, in Section 2, the competitive learning network 

and annealed chaotic function are introduced. In Section 3, an annealed chaotic competitive learning 

network is presented. In Section 4, the network is applied to recognize power cable fault types, and show 

the experiment. Finally, we conclude in the last section.  

2. Related Research 

2.1. Support Vector Machine 

A Support Vector Machine (SVM) [20] is applied to classify data by finding the best hyperplane that 

separates all data points of one class from those of another class. Here, the best hyperplane of the SVM 

means the one with the largest margin between the two classes. Margin means the maximal width of the 

hyperplane that has no interior data points. 

The support vectors are the data points on the boundary of the slab that are closest to the  

separating hyperplane. 

The training data is classified correctly by a given hyperplane. The hyperplane, represented by (w,b), 
is equally expressed by all pairs  ,w b   for R  . Thus, we define the canonical hyperplane to be 

that which separates the data from the hyperplane by a “distance” of at least 1. That is to say, the 

relationship satisfies the following formula:  
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or, more compactly, as follows: 

  1 0,i iy x w b i      (2)

Based on the considerations presented above, the optimum separation hyperplane conditions from 

Equation (2) can be formulated into the following expression that represents a linear SVM:  
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The optimization problem from Equation (3) represents the minimization of a quadratic function 

under linear constraints. The training data are converted into a feature space with kernel function, and 

different kernel function cause different effect of classification, thus, the kernel functions in SVM are 

important for the choice. 

Here, the Gaussian RBF kernel is used as follows: 
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  2 2( , ) exp 2i j j iK x x x x     (4)

Width coefficient penalty factor C  and radial basis kernel factor   need to be determined before 

support vector machine model corresponding to the classification. The parameters of SVM are optimized 

by the particle swarm optimization algorithm in improved Particle Swarm Optimization-Support Vector 

machine (IPSO-SVM) method. 

2.2. Particle Swarm Optimization Algorithm (PSO) 

PSO [21–23] is a populated search method, which is used to select c  and   parameters in SVM. It 

is similar to genetic algorithms. PSO is performed by a population (called swarm) of individuals (called 

particles) that are updated from iteration to iteration [24,25]. The particle of improved  

PSO-SVM is composed of two parts, c  and  . To discover the optimal solution, each particle moves 

in the direction of its previously best position (pbest) and its best global position (gbest). For each 
particle, i, and dimension, j, search space, assume: particle vector 1 2( , ,... )T

i i i ijx x x x  denotes the current 

position of the ith particle, the velocity vector 1 2( , ,... )T
i i i ijv v v v  denotes the fly velocity of the ith 

particle, the velocity and position of particles can be updated by the following equations: 

   1
1 1 2 2

t t t t
ij ij id ij gd ijv wv c r p x c r p x       (5)

1 1t t t
ij ij ijx x v    (6)

In the above formula, t is the evolutionary time. ijv  is the velocity of particle i on dimension j, of 

which the value is limited to the range ( max max,v v ), maxv  value is very important for the algorithm. ijx  

is the position of particle i on dimension j, of which the value is limited to the range ( max max,x x ). The 

inertia weight w is used to balance the global exploration and local exploitation. The 1r  and 2r   

are random function in the range (0, 1), positive constants 1c  and 2c  are personal and social  

learning factors. 

The method has a great effect on the size of the search space, it is easy to cause the particles to miss 

the optimal solution if this value is set too large; however, if too small, it can also cause an incomplete 

search process. 

Figure 1 shows velocity and position adjustment of particle at time t0 and t0 + 1. The global optimal 
solution is at ⌾. 1v  indicates flight velocity of “self-awareness” particle toward pbest  direction at time t0. 

2v  indicates flight velocity of “social-consensus” particle toward gbest  direction at time t0 + 1.  

3v  represents the particle’s own current velocity. The particle reaches new particle position 1tx   at a 

speed of 1tv   by the three velocities. Velocity and position of the particle are an iteration process by the 

method. Finally, the particle constantly keeps close to the optimal position. 

2.3. Improved Particle Swarm Optimization-Support Vector Machine (IPSO-SVM) Method 

Width coefficient penalty factor C  and radial basis kernel factor σ of Support Vector Machine are 

optimized by Particle Swarm Optimization. The outline of the IPSO-SVM algorithm is given as follows.  
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Step 1: Initialization. Assume: the size of particle swarm is N, the inertia weight is w, acceleration 
constant is 1c , 2c , maximum number of iterations is maxt , set width coefficient penalty factor C  and 

radial basis kernel factor  , set the position of each particle with pbest , the best position of all the 

particles are expressed by gbest . 

Step 2: Evaluation of particle. Set the training data of cable as the input data of SVM, establish SVM 

classification model, then evaluate each particle according to the fitness function. 

Step 3: Reset speed and position of each particle. 

Step 4: Termination condition. If the maximum number of iterations reaches to the initialization 

settings or the position of the particle can be stable within a small range, then the iteration will stop. In 
this process, establish the classification of support vector machine according to the parameters ,c  , 

otherwise it returns step 2. 

Step 5: The test sample data of cable regards as the input data of SVM model, determine the different 

cable fault type according to output result. 

Figure 1. Velocity and position adjustment of particle at time t0 (a) and t0 + 1 (b). 

pbest gbest

tx

2v
1v

3v

pbest

tx
1 2 3v v v 

0 1tx 

0 1tv 

 
(a) (b) 

2.4. Competitive Learning Network 

The conventional competitive learning neural network consists of two layers: the input layer, which 

represents the feature vector, and the output layer, representing the different classification. The network 

deals with color image segmentation to detect edges and extract boundaries in [16]. The detected 

different image blocks are classified by the competitive learning network. Different power cable fault 
types are classified by the method of clustering. Each unit of the network output layer, jw , is fully 

connected to each unit of the network input layer, xz , with connections ,x ju . The topology of the 

competitive learning network is shown in Figure 2. 

Figure 2. The competitive learning neural network topology. 
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The objective function for the network satisfies the following inequality: 
2

,
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Where c is the number of classification, j is the number of neuron unit of the network, and cJ  is energy 

function. In the self-organizing, winner-take-all, architecture, the neuron unit, which wins the 
competition, is called a winner-take-all neuron. If , 1x ju  , the neuron belongs to the jw , otherwise 

, 0x ju  , the neuron unit, belongs to other cluster.  

,x ju  is defined as follows: 
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Gradient descent is expressed by the objective function as follows: 
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Where   is a small learning-rate parameter. 

For all the jw : 

(t 1) w (t) w (t)j j jw      (10)

2.5. Annealed Chaotic Function 

In the neural network algorithm in the training process, the network is probably not global-minima, 

but local-minima. Thus, chaotic simulated annealing is used in the network model. The network can 

escape from local-minima and get global-optimal solution by the annealed chaotic mechanism. The 

energy function of the neural network is converged effectively. The related research is proposed  

in [26–30]. Transiently chaotic dynamics of the single neuron-annealing model are shown as  

follows (11–12): 

(t)/

1
(t)

1 v
u

e 


 (11)

0(t 1) k (t) (t)( (t) I )v v E T u      (12)

Where:  

u  = transient state of the interconnection strength between input neurons and output neurons 

v  = internal state of neuron the interconnection strength between input neurons and output neurons 

0I  = input bias of neuron 

k  = damping factor of nerve membrane (0 1)k   

E  = energy function of the chaotic network with input neurons and output neurons  
  = steepness parameter of the output function ( 0)   

(t)T  = Self-feedback connection weight 

For Equations (11) and (12), output (t)u  is expressed by a value of the self-feedback connection 

weight (t)T  in the chaotic function. Figure 3 demonstrates the various bifurcation states for the weight 
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(t)T  during 3000 iteration. For a self-feedback connection weight in an interconnection strength  

T = 0.068 chaotic activity is generated, while T < 0.068 the transient state (t)u  gradually transient form 

chaotic state though periodic bifurcation to a steady-state. The chaotic function converges with the 
decrease of (t)T  gradually. The chaotic function converges with the decrease of (t)T  gradually.  

Figure 3 shows the process of (t)u  transient state of the interconnection strength between input neurons 

and output neurons. Where the initial condition is as follow: 0.004  , 0.9k  , 0E  , 0 0.65I  . The 

phenomenon indicates the chaotic behavior in a chaotic network. An annealed function is used to 
converge to a stable equilibrium point for a dynamic (t)T . 

Figure 3. For various T(t) during 3000 iterations, demonstrates the various bifurcation states: 

(a) T(t) = 0.068; (b) T(t) = 0.061; (c) T(t) = 0.0588; (d) T(t) = 0.0499; (e) T(t) = 0.033. 

(a) (b) 

(c) (d) 
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Figure 3. Cont. 

(e) 

Figure 4 shows the time evolution of (t)u , (t)T . The initial condition is as follows: 0.004  , 

0.9k  , 0E  , 0 0.65I  , 0 0.09T  , 0 0.5y  , 500  , 0.98   [6]. Output (t)u can converge to a 

steady-state point. It shows the process of a number of iterations and bifurcation of chaotic dynamics. 
Exponential damping of (t)T  is a process of simulated annealing [8]. The dynamic structure  

embeds into the competitive learning network in the experiment. Furthermore, the initial value of the 

parameters influences the dynamics process in training network. The above selected parameters were 

valid for all the bifurcation processes. The experiment shows the annealed chaotic mechanism can 
converge rapidly in the competitive network. Figure 4a demonstrates the output of a single neuron (t)u . 

Figure 4a demonstrates annealing process of damping variable. 

1
( ) [ tanh( ) ] ( -1)

1
 


tT t b a T t

b
 t=1,2,3… (13)

T  = self-feedback connection weight or refractory strength ( 0)T . 

Figure 4. (a) Output of single neuron (t)u ; (b) Self-feedback connection weight (t)T  during 

3000 iteration, or the damping variable corresponding to the temperature in the annealing 
process. ( 0.98  , 500  , 0E  ). 

(a) (b) 
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3. Annealed Chaotic Competitive Learning Network 

The conventional competitive learning network can drop into local minima in the training network. 

The network embeds into an annealed chaotic mechanism and obtains an optical solution in a global 

scope [26]. The transient chaotic network model sensitively relies on a self-feedback connection weight. 

It is similar to a stochastic simulated annealing temperature and changes dynamically in the process. The 

annealed chaotic competitive network can jump out the local-minima and reduce the convergence time.  

A two-layer annealed chaotic competitive learning network topology is shown in Figure 5.  

N neurons in the input layer are divided into c classifications in the output layer. There are c  
cluster-centers in the output layer. In the training process, the transient state ;x ju  and the internal state 

;x jv  of the interconnection strength between the input layer and the output layer are tending towards 

stability by an annealed chaotic mechanism. The output states are updated by a gradient descending 

manner with a small learning-rate parameter. In the bifurcation states the parameter is used for parallel 

synchronous computation. 

Figure 5. The annealed chaotic neural network topology. 

 

The convergence process of annealed chaotic competitive neural network (ACCLN) is shown  
in [26]. The neuron states are changed by the function ;x jv . A simulated annealing strategy is applied for 

the training network by Equation (14). The network model is composed by n neurons in the  

input layer, c neurons in the output layer and n × c interconnection strengths. The model is shown  

as follows:  

2
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Algorithms 2014, 7 501 

 

 

1
(t) [ tanh( ) ]T(t 1)

1
tT  


  


 (18)

(t 1) (t) (t)j j jw w w    (19)

Where E  is energy function of the n input neuron nodes and c output nodes. ;x ju  and ;x jv  are the 

transient state and internal state of interconnection strength, respectively. The transient state and internal 

state are training by a self-feedback manner. 

4. The Application of the ACCLN to Power Cable Fault 

4.1. The Experimental Platform 

Block diagram of the data acquisition system is shown in Figure 6. The system is based on the  

PCI-6221 data acquisition card to complete the data acquisition. Cable fault data is acquired by a signal 

conditioning circuit, then, the data converts into a digital signal by the acquisition card. Furthermore, the 

data is processed by computer, or sent to the data to monitoring room and realized by remote monitoring 

and control. 

Figure 6. The experimental platform. 

 

Table 1 shows 54 data, which contains training samples and test samples. There are two kinds of 

cable faults types and a normal condition, interphase short circuit, three phase short circuit, and normal 

condition, respectively. In this paper, those data are applied to test the IPSO-SVM method and the 

ACCLN method. The steps of IPSO-SVM method are introduced, the training results and test results are 

shown as follows: 

Table 1. Cable fault sample data. 

Fault types Training samples Test samples Total sample number 

interphase short circuit 9 7 16 
three phase short circuit 8 5 13 

normal condition 15 10 25 
Total 32 22 54 
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4.2. Performance of the IPSO-SVM Algorithm 

In order to test performance of the IPSO-SVM algorithm, Figure 7 shows the training result of  

IPSO-SVM method. Figure 8 shows the test result of IPSO-SVM method. 

Figure 7 shows the training result the by IPSO-SVM method via 32 training data in Table 1. Figure 8 

shows the test result the by IPSO-SVM method via 22 test data in Table 1. The cable fault features have 

different degrees of difference. However, it is not easy to distinguish the similar cable fault. So the 

ACCLN method is proposed to solve the problem. 

Figure 7. The training results of improved Particle Swarm Optimization-Support Vector 

machine (IPSO-SVM) method. 

 

Figure 8. The test results of IPSO-SVM method. 

 

4.3. Power Cable Fault is Processed by the ACCLN Method 

In this section we apply the ACCLN method to deal with power cable fault types. The data in [16] is 

used to recognize the power cable fault types. There are three kinds of fault types in [16], interphase 
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short circuit, three phase short circuit, and normal condition, respectively. A total of 54 sample data are 

used in the experiment. The ACCLN consists of a neuron array 54 × 1 in the input layer and three neuron 
nodes in the output layer. The transient state ;x ju  and the internal state ;x jv  are 54 × 3 array. Each testing 

point of phase entropy and amplitude entropy are composed of an input vector, and normalized in the 

input layer. The phase entropy and amplitude entropy are normalized as follow. For example, for each 

phase entropy and amplitude entropy, the normalized value is shown as Equations (20) and (21):  

; min max min( ) / ( )norm i ip p p p p    (20)

; min max min( ) / ( )norm i ia a a a a    (21)

and an input vector iz  is shown: 

; ;[p ]i norm i norm iz a  (22)

Where ip  indicates the i-th phase entropy, minp  and maxp  is the minima and maxima of the 54 phase 

values, respectively. ;norm ip  is the i-th normalized phase value. The process of normalizing amplitude 

entropy is the same as phase entropy. iz  is the i-th input vector, composing the normalized phase value 

;norm ip  and the normalized amplitude value ;norm ia . 

The flow chart of ACCLN algorithm is shown in Figure 9. The step of ACCLN algorithm for power 

cable fault classification is shown as follow: 

Step 1: Preprocess the input phase entropy and amplitude entropy for each test point using  

Equations (20–22). 
Step 2: Set the cluster-center jw  (j=1,2,3...) randomly for interphase short circuit, three phase short 

circuit, and normal condition. 
Step 3: Initialize self-feedback connection (0)T , internal states and transient state for all 

interconnection strengths. 

Step 4: Calculate the energy function (14). 

Step 5: Update internal states and transient state for all interconnection strengths using  

Equations (15) and (16). 

Step 6: Update the cluster-centers by a small learning-rate parameter using Equations (17) and (19). 
Step 7: Decrease the self-feedback connection weight (t)T  using Equation (18). 

Step 8: If the network does not converge then goes to Step 4; otherwise stop. 

Figure 10 shows the experimental sample data distribution. There are 6 category data, interphase short 

circuit of training data and test data, three phase short circuit of training data and test data, normal 

condition of training data and test data, respectively. The recognition accuracy was 87.0% with the SVM 

method and 90.7% with the IPSO-SVM method in [16]. 
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Figure 9. Flow chart of annealed chaotic competitive neural network (ACCLN). 

 

Figure 10. Experimental sample data distribution. X axis indicates amplitude entropy;  

Y axis indicates phase entropy. 
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Figure 11 shows the experimental result of ACCLN. There are 54 sample data. Those samples are 

divided into three classifications. The green “ ” indicates normal condition of power cable, 25 samples. 

The blue “ ” indicates the power cable of three-phase short circuit, 13 samples. The red “ ” indicates 
the power cable of interphase short fault, 16 samples. The different colors “☆” corresponds to  

each cluster-center. 

Figure 11. Experimental result of ACCLN. X axis indicates amplitude entropy; Y axis 

indicates phase entropy. 

 

Table 2 shows the recognition accuracy of SVM, IPSO-SVM, and ACCLN methods. The recognition 

accuracy of ACCLN, IPSO-SVM and SVM is 96.2%, 90.7%, 87.0%, respectively. The training times 

are 0.032, 0.0523, 0.0575, respectively. The performance of the power cable fault recognition of ACCLN 

method is better than SVM and the IPSO-SVM method. 

Table 2. Recognition accuracy of SVM, IPSO-SVM and ACCLN. 

Algorithm Recognition Accuracy Training Time 

ACCLN 96.2% 0.032 
IPSO-SVM 90.7% 0.0523 

SVM 87.0% 0.0575 

In order to test the effectiveness of the proposed method, each group of dataset add 10 test samples, 

30 test samples are added on the basis of original samples. So there are 84 test samples in experiment. 
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Figure 12 shows 84 sample distributions. Figure 13 shows the result of ACCLN method. The recognition 

accuracy of ACCLN is 96.4%. 

Figure 12. Experimental sample data distribution (84 samples); X axis indicates amplitude 

entropy; Y axis indicates phase entropy. 

 

Figure 13. Experimental result of ACCLN (84 samples). X axis indicates amplitude entropy; 

Y axis indicates phase entropy. 
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5. Conclusions 

In this paper, we apply the ACCLN algorithm to recognize power cable fault types. A simulated 

annealing strategy and chaotic mechanism are used for clustering analysis. The proposed approach 

possesses the merits of obtaining global optimal solution and high accuracy. The annealing process in 

the ACCLN algorithm is associated with the series of the bifurcation. In the classification of power cable 

faults, the results show a better performance than with the SVM and IPSO-SVM methods. 

It is difficult to select suitable parameters to obtain the global optimal solution with the ACCLN 

method. In order to demonstrate the effectiveness of selecting parameters, different bifurcation states are 

displayed in the experiment. A set of valid parameters is fixed to produce a near global optimal solution. 

Therefore, how to select suitable parameters automatically, and improve the accuracy of the ACCLN 

method, is our future work. 
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