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Abstract: The im perialist competitive algorithm (ICA) is a  new h euristic algorithm 
proposed for continuous optim ization problems. The research  about its application on 
solving the traveling salesm an problem (TSP) is still very lim ited. Aiming to explore its 
ability on solving TSP, we present a discrete im perialist competitive algorithm in this  
paper. The proposed algorithm  modifies the original rules of the assimilation and 
introduces the 2-opt algorithm into the revolution process. To examine its performance, we 
tested the proposed algorithm  on 10 s mall-scale and 2 large-scale standard benchm ark 
instances from the TSPLIB and compared the experimental results with that obtained by 
two other ICA-based algorithms and six other existing algorithms. The proposed algorithm 
shows excellent performance in the experiments and comparisons. 

Keywords: discrete imperialist com petitive algorithm; traveling salesman problem;  
2-opt algorithm; numerical experiments 

 

1. Introduction 

Because of its  widespread application and s ignificant research value, the trav eling salesman 
problem (TSP) has probably becom e the most classical, famous and extensively studied problem  in  
the field of combinatorial optimization [1–3]. It can be simply described as to find out the shortest tour 
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that starts from  one city from  the set of giv en cities, visits every given city once, and returns to  
the original finally. As a typical  NP-hard combinatorial optimization problem, it is extremely difficult 
to solve [4]. Com pared with the exact algo rithms for sol ving TSP, the approxim ate algorithms are 
simpler. Although they cannot guarantee to find the optimal solution, often they can obtain a satisfactory 
solution. They are m ore suitable to be used to  solve larger-scale TSP [5]. Many approxim ate 
algorithms have been applied to solve the TSP [6–26]. 

Imperialist competitive algorithm (ICA) is a ne w socio-politically motivated meta-heuristic 
algorithm proposed by Atashpaz-G argari and Lucas in 2007, inspired by the colonial phenom enon in 
human society and  history [27] . Although it has b een successfully applied to  many different 
optimization tasks and has shown great perform ance in both the convergence rate and the global 
optimal achievement [28–33], its application on solv ing TSP is still very lim ited. The literature [34] 
gives some results obtained by ICA, but the desc ription about how to use ICA to solve TSP i s 
ambiguous. The literature [35] subm its a new approac h, but in our test expe riments, the approach 
cannot produce the results given in the literature. Mohamm ad Ahmadvand et al. [36] proposed a 
hybrid algorithm based on ICA and tabu search, usi ng ICA to solve T SP at first and using a tabu 
search to improve the solution, however, the resu lts obtained by the hybrid  algorithm are not yet  
good enough. 

Seeking to explore the potential of ICA and to find a novel and efficient way for solving TSP, w e 
present a novel discrete ICA in this paper. 

The rest of this paper is organized as follows. In Section 2, a brie f introduction about the basic ICA 
is given. In Section 3, the propos ed algorithm is set out in deta il. In Section 4, the numerical 
experiments, results and related discussion are given. In Section 5,  we conclude the paper and put 
forward the future works. 

2. Basic Imperialist Competitive Algorithm 

The ICA simulates th e process of  competition between empires in hu man society. It s tarts with a 
randomly generated initial population of size N, which are called countries, just like the chromosomes 
in the genetic algorithm. The cos t of each cou ntry is calculated  by the e quation specific for th e 
problem to be optim ized. Then, count ries are divided into  imperialists and colonies. Im perialists are 
the best countries in the population, and colonies ar e the others left. Then th e colonies are random ly 
distributed to the imperialists. The number of colonies that an imperialist obtains is proportional to its 
power. Here the power of each im perialist is calculated and  normalized depended on its co st. The 
imperialist with bigg er power va lue is better. One imperialist and its colonie s consist of an em pire 
together, thus several empires are initialized. 

After, within each empire group, the colonies are moved to the position of the imperialist according 
to a certain rule. This process is called “ assimilation”, simulates the assim ilation process the 
imperialist implements on its co lonies in a rea listic society. Meanwhile, some colonies are rand omly 
selected out and replaced with ne w randomly generated countries. This  process is called “revolution”, 
just like the m utation in the gene tic algorithm, simulates the sudden change in the socio-political 
characteristics of a colony in a realistic society. In the process of assim ilation and revolution, if a  
colony becomes better than the imperialist, the colony and the imperialist will exchange their roles. 
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The competitive behavior between the empires is the core of the ICA. In this s tage, all empires try 
to occupy colonies from  others. Firstly, the total co st of every em pire is calculated and norm alized 
according to the formulas (1) and (2 ) [27], in where the T.C.n and the N.T.C.n stand for the total cost 
and the normalized total cost of the nth empire, respectively, and the ξ is a  little positive nu mber, 
whose value determines the role of the colonies in determining the total cost of the empire. 

( ) { ( )}n n nT.C. = Cost imperialist + ξ mean Cost colonies of empire  (1) 

. . . . . max{ . . }n n i
i

N T C T C T C= -
 (2) 

Then, the weakest colony of the weakest empire is picked out. Other empires try to obtain it through 
competition. The succes s probability of each e mpire is given by the f ormula (3) [27] and form  the 
vector P as the form ula (4) [27]. A vector R with the sam e size as  P whose elem ents are uniformly 
distributed random numbers is created as the formula (5) [27]. Then v ector D is created by subtracting 
R from P, as the formula (6) [27]. The empire whose relevant index in D is m aximized will obtain the 
mentioned colony at the end. 
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There is just one empire left or a preset maximum number of iterations is reached is usually utilized 
as the termination condition of the algorithm. The competition proceeds until the termination condition 
is met. The weak em pire gradually loses its co lonies and the m ighty empire occupies m ore and more 
colonies. The empire loses all its colonies will be collapsed. The final residua l imperialist stands for 
the solution. 

The pseudo code of the basic ICA is shown in Figure 1. 

Figure 1. The pseudo code of the basic imperialist competitive algorithm (ICA). 

 

3. Approach to Discretize the ICA for TSP 

Since the basic ICA is proposed fo r numerical function optimization, when it is util ized to solve  
TSP, some detail rules in the algorithm should be modified.  
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3.1. Generate Initial Population and Initiate Empires 

The discrete ICA we pr opose starts with a ra ndomly generated ini tial population of size N also.  
The only difference is that here a country represents a tour. We use a randomly arranged integer sequence 
to represent a country. There are n integers from  1 to n in the sequence, each integer represents a city, 
appears only once and the order of them  represents the order of the visited citie s. For example, in a  
4-cities-TSP, the sequence (1, 4, 3, 2) implies that the tour starts from the city 1 to city 4,  then goes 
from city 4 to city 3, then goes to city 2, finally retu rning from city 2 to city 1. The cost of a country is 
the total length of the tour it repres ents. Because of the aim is to find out the shortest tour, a cou ntry 
which represents a shorter tour is  better, so the power of a country  can be directly defined as  
the reciprocal of its cost. 

At the process of for ming initial empires, we are required to assign the colonies to the im perialists. 
here we define that this  assignment is according to the formula (7), in where the N denotes the size of 
the initial population, the m denotes the number of imperialists, N and m can be set freely according to 
the size of the TSP to be solved, th e kj denotes the num ber of colonies assigned to the jth imperialist 
and the fj denotes the cost of the jth imperialist. 
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 (7) 

3.2. The Modified Assimilation Process 

In the assimilation process, colonies obtain information from and adjust themselves to keep consistent 
with the relevant imperialist. This process can be viewed as a learning process of the colonies from the 
imperialist. Basing on the country encoding method, we redefine the de tail rule of the assim ilation 
process as follows: A subsequence is random ly chosen from the relevant imperialist, and a position is  
randomly chosen from the colony. Then, the m entioned subsequence is inse rted to the m entioned 
position. Finally, the cities which are included in the subsequence are deleted fr om the part com ing  
from the previous colony. This proce ss is shown by Figure 2, in where the tour (3, 1, 5, 2, 4, 6) is  
a hypothetical tour just used as an example. The subsequence (1 5 2) is chosen from the imperialist and 
the position between city 5 and city  3 is chosen from  the colony. The subsequence (1 5 2) which m ay 
include effective information, is transferred from the imperialist to its colony after the assimilation process. 

Figure 2. An example of the redefined assimilation. 

25 4 613

63 2 154

25 3 614

The imperialist:

The colony before:

The colony after:
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3.3. The Modified Revolution Process 

Obviously, we can achieve the revo lution process by replacing the ra ndomly selected colonies with 
an equal number of new random ly generated countries, like the m ethod in the basic ICA. However, 
here, in order to enhance the ab ility of the proposed algorithm further, we introduce the 2-op t 
algorithm [37] into the revolution process. 

Due to its simplicity and  effectiveness, the 2-opt algorithm is probably the m ost widely used local 
search approach for solving TSP. It can be applied to an arbitrary initial tour, and searches the shortest  
tour by cha nging the visiting or der of cities, but th e 2-opt algorithm  often takes a very long  time, 
especially when it is applied in a larger number of candidate tours. 

Figure 3 sh ows an illu stration of the 2-opt al gorithm. Here, the tou r (A-B-F-E-C-D-H-I-G-A) 
presents an example tour before using 2-opt algorith m. Firstly, the leng th of this tour is calcula ted. 
Then a link A-B and another link C -D are selected out. A new tour is  generated by linking A and C, B 
and D, respectiv ely. If the new tour (A-C-E-F-B-D -H-I-G-A) is shorter than the old tour, then,  
the new tour is accepted. The above procedure is replicated for all li nks between each two cities until 
there is no more decrease of the total tour length. 

Figure 3. An illustration of the 2-opt algorithm. 

 

Our way goes as follows: for every em pire, take out a part of colonies randomly from its colonies, 
apply the 2-opt algorithm to them, and replace them with the improved. Because the revolution process 
is applied to a few countries, introducing the 2-opt algorithm into it will not take a very long time. 

The pseudo code of the proposed algorithm is shown in Figure 4. It is similar to the pseudo code of 
the basic ICA, but is different on the specific operations of the step 1, step 2 and step 3. 

Figure 4. The pseudo code of the proposed algorithm. 
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4. Numerical Experiments, Results and Discussions 

4.1. Experiments Settings 

In order to verify its effectiv eness, we test the proposed algorithm  on 12 standard benchm ark 
instances (listed in the Table 1) from the TSPLI B [38]. The first 10 instances are small-scale problems, 
with sizes ranging from 51 to 150 cities, and the last two are large-scale problems, whose size is 1323 and 
1400 respectively. To avoid the effects caused by the randomness of the algorithm, the experiments for 
the former eight instances are repeated 20 times independently , the experim ents for KroA150 and 
KroB150 are repeated 10 tim es independently, and th e experiments for the last two instances are 
repeated 5 times independently, considering the consumption of time. As the calculation method of the 
TSPLIB, the distance between two cities is com puted using Euclidean distance equation and rounded 
to an integer. 

Table 1. The parameters set for every instance. 

Instance Num.C Num.E Num.Ite Instance Num.C Num.E Num.Ite 

eil51 100 6 200 berlin52 100 6 200 
st70 100 6 200 eil76 100 6 200 
pr76 100 6 200 kroA100 100 6 200 

kroB100 100 6 200 eil101 100 6 300 
kroA150 150 6 300 kroB150 150 8 350 
rl1323 200 10 400 fl1400 200 10 400 

The proposed algorithm is coded in MATLAB R2010b. All the experiments are finished on a PC 
with Core 2 Duo at 2.2 GHZ, 2 GB  RAM and W indows Vista Home Basic Operating system. In our 
tests, the revolution rate  is set to 0.3 and the ξ is set to 0.1. W e specify a m aximum number of 
iterations for each test.  The algorithm stopped after getting to the iterations number. The number of 
initial countries, initial empires and iterations set for every inst ance are shown in Table 1, represented 
by “Num.C”, “Num.E” and “Num.Ite” respectively. Larger scale TSP means higher solving difficulty, 
so we set more population size, more em pire numbers and m ore iterations numbers for the larger  
scale TSP. Note that th e parameters we listed here  may be not the best. Actually, in our previous 
experiments, we found that the proposed algorithm is not very sensitive to the initial parameters. 

In order to examine the role of 2-opt algorithm in the proposed algorithm (abbreviated as DICA1 in 
the following), another discrete ICA (abbreviated as  DICA2 in the f ollowing) is also tes ted on  
the mentioned instances for making a comparison. In the DICA2, the assimilation process is the sam e 
as that in the DICA1, but the revolution proce ss is achieved by replacing the random ly selected 
colonies with an equal num ber of new random ly generated countries. For fair ness, the parameters set 
in the DICA2 are same as those in the DICA1. 

Table 2 shows the experim ental results. The colu mn “opt” represents th e length of the known 
optimal solution of every instance. The columns “Best”, “Worst”, “Ave” and “StD” represent the best, 
the worst f ound result, the average and the stand deviation of the results for every instance, 
respectively. The column “N1%” denotes the number of the found results that ar e within 1% deviation 
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of the optimality over the experiments for every instance. The last column “Ave.time” represents the 
average running time for every instance. The bold data in the table are better. 

Table 2. The results of the experiments. 

Instance Opt Algorithm Best Worst Average StD N1% Ave.time (s) 

eil51 426 
DICA1 426 432 427.25 1.3717 19 15.49 
DICA2 590 770 700.6 43.9167 0 14.77 

berlin52 7542 
DICA1 7542 7542 7542 0.00 20 19.69 
DICA2 11,034 14,074 12,229.55 736.6680 0 16.87 

st70 675 
DICA1 675 683 676.7 2.5976 19 15.05 
DICA2 1300 1702 1518.2 93.2386 0 14.54 

eil76 538 
DICA1 538 546 540.75 2.5521 18 16.65 
DICA2 972 1298 1180 70.0669 0 15.86 

pr76 10,8159 
DICA1 108,159 109,085 108,350.65 316.9696 20 15.36 
DICA2 228,851 280,746 258,438.5 1333.2 0 15.12 

kroA100 21,282 
DICA1 21,282 21,433 21,306. 5 43.0893 20 18.31 
DICA2 66,573 84,480 73,032.3 4561.7 0 18.28 

kroB100 22,141 
DICA1 22,141 22,376 22,194.45 67.5539 19 18.16 
DICA2 65,905 88,172 73,587.9 5113.6 0 17.98 

eil101 629 
DICA1 629 643 635.35 4.8153 10 29.46 
DICA2 1426 1751 1574.3 82.1956 0 25.49 

kroA150 26,524 
DICA1 26,524 26,857 26,657.5 110.5805 8 54.28 
DICA2 102,953 118,004 109,867.7 4397.2 0 44.67 

kroB150 26,130 
DICA1 26,141 26,290 26,230.1 47.8944 10 64.20 
DICA2 97,697 109,665 105,396.8 4432.1 0 53.17 

rl1323 270,199 
DICA1 272,985 283,357 277,965.4 3895.7 0 6151.8 
DICA2 7,311,486 7,491,391 7,398,724.4 74,062 0 179.71 

fl1400 20,127 
DICA1 20,621 20,707 20,669.4 38.24 0 5607.6 
DICA2 1,196,412 1,226,156 1,208,172.6 13,065 0 184.39 

Figure 5. Trend lines of the two algorithms on rl1323. 

 

Figures 5 and 6 show the trend lines of the DICA1 and the DICA2 on r l1323 and fl1400. They are 
utilized to compare the convergence process of the two algorithms. Limited by the length of the article, 
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the trend lines of the two algorithms on other instances are not given here. Figures 5 and 6 are utilized 
as a representative. 

Figure 6. Trend lines of the two algorithms on fl1400. 

 

4.2. Discussions of the Results Obtained by the Proposed Algorithm 

It can be seen from Table 2, for the for mer nine instances, the proposed  algorithm (DICA1) found 
the known optimal solution, and for last three instances, though the kn own optimal solutions are not 
found, the best result found by the pr oposed algorithm are very close to the known optim al solutions. 
Their deviations with the corresponding know n optimal solution are only 0.0421%, 1.0311% and 
2.4544%, respectively. The average of the results for every instance is also quite close to the known 
optimal solution. Only for eil101, pr1323 and fl1400, the deviation with th e known optimal solution 
exceeds 1%. For all the former ten instances except eil101, the probability of finding a solution w hich 
is within 1% deviation with the known optimal so lution can reach more than 80%, especially, for  
berlin52, pr76, kroA100 and kroB 150, it reaches 100%. In addition, for berl in52, the proposed 
algorithm found the known optimal solution in every test. 

4.3. Discussions of the Role of 2-opt Algorithm 

From Table 2, Figures 5 and 6, it can be seen that, com pared with the DICA1, the convergence   
rate of the DICA2 is slower, and the results it obtained are also worse. In the earlier stage of iterations, 
the convergence rate of the DICA2 is accep table, but in  the later stage of iterations, it stagnated at  
a solution which is ver y poor. The cause of this phenomenon is that in the earlier stage of the iterations, 
the individuals in the population ar e diverse and generally bad, it is very easy to find a solution which 
is better than the cu rrent best solu tion in the as similation process, in th e revolution process an d in  
the competition process; but with the increase of the number of iterations, all the ind ividuals in  
the population become more and more similar with the imperialist, the diversity of population decline, 
relying on the revolution process which using randomly generated countries to obtain a solution which 
is better than the current best solution is very d ifficult, so the DICA2 very eas ily stagnates at a very 
poor solution. 
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In DICA1, the revolution process is achieved by im proved some randomly selected colonies by  
the 2-opt algorithm. Due to its  strong local search ability, the 2-op t algorithm can greatly improve   
the quality of a colony, using this mechanism can easily find a solution which is greatly better than  
the current best solution. Meanwhile, the mechanism of the DICA1 can quickly replace the new find 
best solution to the position of  the imperialist, and then to guide the f urther evolution of the entir e 
population. So its convergence rate is very fast and the solutions it obtained are very good. 

The revised assim ilation makes it possible that ut ilizing the orig inal ICA to solve TSP, and   
the revised revolution combined with 2-op t algorithm ensures the algor ithm to f ind a su perior  
solution quickly. 

Furthermore, it can be seen from the last column “Ave.time”, when the scale of TSP is sm all, using 
2-opt algorithm would not significantly increase the time consumption. When the scale of TSP is large, 
the time consumption increases obviously. The main reason is that the 2-opt algorithm costs more time 
when applied to solve large-scale TSP.  

4.4. Compared with Other Two ICA-Based Algorithms 

The results obtained by  the DICA1 are com pared with that obtained by other two ICA-based 
algorithms for solving TSP. One is proposed in liter ature [34] (abbreviated as OICA i n the following) 
and another is proposed in literature [36], combined  with tabu search (abbreviated as ICATS in the 
following). The com parison is arranged in Table 3, in where the co lumn “Best.Err” and “Av e.Err” 
represent the percentage deviation of the bes t result and  the aver age of the results over the known 
optimal solution, respectively, calculat ed as the for mula 8, the “NA” re presents that the data is not 
given in the corresponding literature. The bold data in the table are best. 

 100%Err =(the result opt) / opt   (8)

Table 3. Compared with two other ICA-based algorithms. 

Instance 
DICA1 ICATS OICA 

Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%)

eil51 0 0.2934 0 2.5822 1.39 NA 
berlin52 0 0 NA NA 0.09 NA 

st70 0 0.2519 NA NA 0.44 NA 
eil76 0 0.5112 NA NA 0.99 NA 
pr76 0 0.1771 0 0.1072 NA NA 

kroA100 0 0.1151 0 0.5451 0.10 NA 
kroB100 0 0.2414 0 0.8356 0.38 NA 

eil101 0 1.01 0 7.9491 NA NA 
kroA150 0 0.5033 0 0.7917 NA NA 

From Table 3, it can be seen th at the performance of the OICA is the worst in the three algorithms. 
On every instance, it cannot obt ain the known optim al solution. The performance of the ICA TS is 
centered in the thr ee algorithms, though it can obtai n the known optimal solution for every instance, 
but the average of the results obtained by it for e very instance except pr76 is worse than that obtained  
by the DICA1. The performance of the DICA1 is the best in the three algorithms. 
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4.5. Compared with Other Six Heuristic Algorithms 

Meanwhile, the results are compared with that obtained by the particle swarm optimization (PSO) [19], 
the bee colony optimization (BCO) [6], the self-organizing Neural Network (NN) [20], the i mproved 
ACO with Pherom one Correction Strategy (A CO+SEE) [14], the generalized chromosome genetic 
algorithm (GCGA) [ 25] and the genetic s imulated annealing ant colony system with particle swarm 
optimization techniques (GSAP) [22], shown in Tables 4 and 5. The meanings of the fields in Tables 4 
and 5 are same as those in Table 3. More intuitive comparisons are shown in Figures 7 and 8. 

Table 4. Compared with the p article swarm optimization (PSO), the bee colony 
optimization (BCO) and the Neural Network (NN). 

Instance 

DICA1 PSO BCO NN 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

eil51 0 0.2934 0.2347 2.5751 0.4695 0.85 0.2347 2.6925 
berlin52 0 0 0 3.8458 NA NA 0 5.1777 

st70 0 0.2519 0 3.3422 NA NA NA NA 
eil76 0 0.5112 1.487 4.1673 0.1859 2.01 0.5576 3.4071 
pr76 0 0.1771 0.1119 3.8176 NA NA NA NA 

kroA100 0 0.1151 NA NA 2.2601 3.43 0.2396 1.1311 
kroB100 0 0.2414 NA NA 2.2402 3.1 0.9123 2.3507 

eil101 0 1.01 NA NA 0.9539 2.29 1.4308 3.1208 
kroA150 0 0.5033 NA NA 5.0294 6.39 0.5806 3.1367 
kroB150 0.0421 0.7658 NA NA 1.55 3.68 0.5128 1.9207 
rl1323 1.0311 2.8743 NA NA NA NA 11.3143 12.9961 
fl1400 2.4544 2.8817 NA NA NA NA 3.5972 4.8840 

Table 5. Compared with the improved ACO with Pheromone Correction Strategy (ACO + 
SEE), the g eneralized chromosome genetic algorithm (GCGA) and the genetic sim ulated 
annealing ant colony system with particle swarm optimization techniques (GSAP). 

Instance 

DICA1 ACO + SEE GCGA GSAP 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

Best.Err 
(%) 

Ave.Err 
(%) 

eil51 0 0.2934 0.2347 0.23 0.2347 0.94 0.23 0.3 
berlin52 0 0 0 0.13 NA NA 0 0 

st70 0 0.2519 0 1.36 0 0.44 NA NA 
eil76 0 0.5112 1.487 1.19 2.2305 2.42 0 0.41 
pr76 0 0.1771 0.1119 2.62 0.1378 0.72 NA NA 

kroA100 0 0.1151 0 0.72 0.047 1.23 0 0.42 
kroB100 0 0.2414 NA NA 0.2439 1.81 0 0.64 

eil101 0 1.01 NA NA 1.5898 2.7 0.16 0.99 
kroA150 0 0.5033 NA NA 1.3987 2.92 0 1.41 
kroB150 0.0421 0.7658 NA NA 1.6303 2.11 0 1.22 
rl1323 1.0311 2.8743 NA NA NA NA 2.7546 3.6945 
fl1400 2.4544 2.8817 NA NA NA NA 2.3153 6.0746 
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From Table 4, Table 5, Figure 7 and Figure 8, it can be seen that, when compared with the PSO, the 
BCO, the ACO+SEE, the NN and the GCGA, the proposed algorithm not only found the known optimal 
solution that others succeeded, but also found th at the others failed. In addition, for kroB150, th ough 
all the four algorithms (the PSO and the ACO + SEE have not been tested on kroB150 in the literatures) 
failed to find the known optimal solution, the proposed algorithm obtained a best result. For rl1323 and 
fl1400, the proposed algorithm shows greater performance than the NN (other four algorithms have not 
been tested on rl1323 and fl1400 in the literatures). Furtherm ore, for every instance,  the deviation 
between the average of the results obtained by th e proposed algorithm and the known optimal solution 
is much lower. When compared with the GSAP , for eil76, all the two algorithm s found the known 
optimal solution while the average of the results obt ained by the GSAP is slightly better. For eil101, 
the proposed algorithm found the known opti mal solution while the GSAP failed, but the average of 
the results obtained by the GSAP is  slightly better. For kroB150, the proposed algorithm failed to find 
the known optimal solution while the GSAP succ eeded, but the average of the results obtained by the 
proposed algorithm is better. For fl1400, the best solu tion obtained by the GSAP is slightly better, but 
the average of the results obtained b y the GSAP is worse. For the remaining instances, the prop osed 
algorithm shows better perform ance on the best result  and the average of the results than the GSAP. 
Comprehensively speaking, the perf ormance of the proposed algorithm is much better than the PSO, 
the BCO, t he NN and the GCGA, and slightly be tter than the GSAP. The pr oposed algorithm  
is excellent. 

Figure 7. Comparison between the best results obtained by several algorithms. 

 

Figure 8. Comparison between the average results obtained by several algorithms. 
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5. Conclusions and Further Works 

A discrete imperialist com petitive algorithm for T SP is proposed. It retain s the basic flow of  
the original, redefines the ass imilation and the revolution and introdu ces the 2-opt algorithm into  
the revolution process. The proposed algorithm is excellent, proved by the experim ents on some  
benchmark problems and the comparisons with other six algorithms. Future research should be focused 
on enhancing its perf ormance and applying it on  larger-scale TSP and other com binational 
optimization problems. 
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