
Algorithms 2014, 7, 229-242; doi:10.3390/a7020229

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Article

Application of Imperialist Competitive Algorithm on Solving the
Traveling Salesman Problem

Shuhui Xu 1,2, Yong Wang 1,2,* and Aiqin Huang 1,2

1 School of Mechanical Engineering, Shandong University, Jinan 250061, China;
E-Mail: sduxushuhui@126.com

2 Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University),
Ministry of Education, Jinan 250061, China; E-Mail: aqhuang@163.com

* Author to whom correspondence should be addressed; E-Mail: meywang@sdu.edu.cn;
Tel.: +86-531-8839-2539.

Received: 9 March 2014; in revised form: 5 May 2014 / Accepted: 5 May 2014 /

Published: 13 May 2014

Abstract: The im perialist competitive algorithm (ICA) is a new h euristic algorithm
proposed for continuous optim ization problems. The research about its application on
solving the traveling salesm an problem (TSP) is still very lim ited. Aiming to explore its
ability on solving TSP, we present a discrete im perialist competitive algorithm in this
paper. The proposed algorithm modifies the original rules of the assimilation and
introduces the 2-opt algorithm into the revolution process. To examine its performance, we
tested the proposed algorithm on 10 s mall-scale and 2 large-scale standard benchm ark
instances from the TSPLIB and compared the experimental results with that obtained by
two other ICA-based algorithms and six other existing algorithms. The proposed algorithm
shows excellent performance in the experiments and comparisons.

Keywords: discrete imperialist com petitive algorithm; traveling salesman problem;
2-opt algorithm; numerical experiments

1. Introduction

Because of its widespread application and s ignificant research value, the trav eling salesman
problem (TSP) has probably becom e the most classical, famous and extensively studied problem in
the field of combinatorial optimization [1–3]. It can be simply described as to find out the shortest tour

OPEN ACCESS

Algorithms 2014, 7 230

that starts from one city from the set of giv en cities, visits every given city once, and returns to
the original finally. As a typical NP-hard combinatorial optimization problem, it is extremely difficult
to solve [4]. Com pared with the exact algo rithms for sol ving TSP, the approxim ate algorithms are
simpler. Although they cannot guarantee to find the optimal solution, often they can obtain a satisfactory
solution. They are m ore suitable to be used to solve larger-scale TSP [5]. Many approxim ate
algorithms have been applied to solve the TSP [6–26].

Imperialist competitive algorithm (ICA) is a ne w socio-politically motivated meta-heuristic
algorithm proposed by Atashpaz-G argari and Lucas in 2007, inspired by the colonial phenom enon in
human society and history [27] . Although it has b een successfully applied to many different
optimization tasks and has shown great perform ance in both the convergence rate and the global
optimal achievement [28–33], its application on solv ing TSP is still very lim ited. The literature [34]
gives some results obtained by ICA, but the desc ription about how to use ICA to solve TSP i s
ambiguous. The literature [35] subm its a new approac h, but in our test expe riments, the approach
cannot produce the results given in the literature. Mohamm ad Ahmadvand et al. [36] proposed a
hybrid algorithm based on ICA and tabu search, usi ng ICA to solve T SP at first and using a tabu
search to improve the solution, however, the resu lts obtained by the hybrid algorithm are not yet
good enough.

Seeking to explore the potential of ICA and to find a novel and efficient way for solving TSP, w e
present a novel discrete ICA in this paper.

The rest of this paper is organized as follows. In Section 2, a brie f introduction about the basic ICA
is given. In Section 3, the propos ed algorithm is set out in deta il. In Section 4, the numerical
experiments, results and related discussion are given. In Section 5, we conclude the paper and put
forward the future works.

2. Basic Imperialist Competitive Algorithm

The ICA simulates th e process of competition between empires in hu man society. It s tarts with a
randomly generated initial population of size N, which are called countries, just like the chromosomes
in the genetic algorithm. The cos t of each cou ntry is calculated by the e quation specific for th e
problem to be optim ized. Then, count ries are divided into imperialists and colonies. Im perialists are
the best countries in the population, and colonies ar e the others left. Then th e colonies are random ly
distributed to the imperialists. The number of colonies that an imperialist obtains is proportional to its
power. Here the power of each im perialist is calculated and normalized depended on its co st. The
imperialist with bigg er power va lue is better. One imperialist and its colonie s consist of an em pire
together, thus several empires are initialized.

After, within each empire group, the colonies are moved to the position of the imperialist according
to a certain rule. This process is called “ assimilation”, simulates the assim ilation process the
imperialist implements on its co lonies in a rea listic society. Meanwhile, some colonies are rand omly
selected out and replaced with ne w randomly generated countries. This process is called “revolution”,
just like the m utation in the gene tic algorithm, simulates the sudden change in the socio-political
characteristics of a colony in a realistic society. In the process of assim ilation and revolution, if a
colony becomes better than the imperialist, the colony and the imperialist will exchange their roles.

Algorithms 2014, 7 231

The competitive behavior between the empires is the core of the ICA. In this s tage, all empires try
to occupy colonies from others. Firstly, the total co st of every em pire is calculated and norm alized
according to the formulas (1) and (2) [27], in where the T.C.n and the N.T.C.n stand for the total cost
and the normalized total cost of the nth empire, respectively, and the ξ is a little positive nu mber,
whose value determines the role of the colonies in determining the total cost of the empire.

() { ()}n n nT.C. = Cost imperialist + ξ mean Cost colonies of empire (1)

. max{ . . }n n i
i

N T C T C T C= -
 (2)

Then, the weakest colony of the weakest empire is picked out. Other empires try to obtain it through
competition. The succes s probability of each e mpire is given by the f ormula (3) [27] and form the
vector P as the form ula (4) [27]. A vector R with the sam e size as P whose elem ents are uniformly
distributed random numbers is created as the formula (5) [27]. Then v ector D is created by subtracting
R from P, as the formula (6) [27]. The empire whose relevant index in D is m aximized will obtain the
mentioned colony at the end.

1

. . .P
. . .n imp

n
P N

ii

N T C

N T C





(3)

P = []
1 2 3 Nimp

P P P Pp , p , p , , p (4)

R = [] where U(0,1) and 1
imp1 2 3 N i impr ,r ,r , ,r , r i N£ £  (5)

D = P R [] []
imp 1 2 3 N impimp

1 2 3 N P 1 P 2 P 3 P N= D ,D ,D , ,D = p r , p r , p r , , p r- - - - -  (6)

There is just one empire left or a preset maximum number of iterations is reached is usually utilized
as the termination condition of the algorithm. The competition proceeds until the termination condition
is met. The weak em pire gradually loses its co lonies and the m ighty empire occupies m ore and more
colonies. The empire loses all its colonies will be collapsed. The final residua l imperialist stands for
the solution.

The pseudo code of the basic ICA is shown in Figure 1.

Figure 1. The pseudo code of the basic imperialist competitive algorithm (ICA).

3. Approach to Discretize the ICA for TSP

Since the basic ICA is proposed fo r numerical function optimization, when it is util ized to solve
TSP, some detail rules in the algorithm should be modified.

Algorithms 2014, 7 232

3.1. Generate Initial Population and Initiate Empires

The discrete ICA we pr opose starts with a ra ndomly generated ini tial population of size N also.
The only difference is that here a country represents a tour. We use a randomly arranged integer sequence
to represent a country. There are n integers from 1 to n in the sequence, each integer represents a city,
appears only once and the order of them represents the order of the visited citie s. For example, in a
4-cities-TSP, the sequence (1, 4, 3, 2) implies that the tour starts from the city 1 to city 4, then goes
from city 4 to city 3, then goes to city 2, finally retu rning from city 2 to city 1. The cost of a country is
the total length of the tour it repres ents. Because of the aim is to find out the shortest tour, a cou ntry
which represents a shorter tour is better, so the power of a country can be directly defined as
the reciprocal of its cost.

At the process of for ming initial empires, we are required to assign the colonies to the im perialists.
here we define that this assignment is according to the formula (7), in where the N denotes the size of
the initial population, the m denotes the number of imperialists, N and m can be set freely according to
the size of the TSP to be solved, th e kj denotes the num ber of colonies assigned to the jth imperialist
and the fj denotes the cost of the jth imperialist.

1

1

= int () 1,2,... 1
)

j
j m

jj=1

m

m ii

1 / f
k N m j m

(1 / f

k N m k j m




 
   
 
 

   




 (7)

3.2. The Modified Assimilation Process

In the assimilation process, colonies obtain information from and adjust themselves to keep consistent
with the relevant imperialist. This process can be viewed as a learning process of the colonies from the
imperialist. Basing on the country encoding method, we redefine the de tail rule of the assim ilation
process as follows: A subsequence is random ly chosen from the relevant imperialist, and a position is
randomly chosen from the colony. Then, the m entioned subsequence is inse rted to the m entioned
position. Finally, the cities which are included in the subsequence are deleted fr om the part com ing
from the previous colony. This proce ss is shown by Figure 2, in where the tour (3, 1, 5, 2, 4, 6) is
a hypothetical tour just used as an example. The subsequence (1 5 2) is chosen from the imperialist and
the position between city 5 and city 3 is chosen from the colony. The subsequence (1 5 2) which m ay
include effective information, is transferred from the imperialist to its colony after the assimilation process.

Figure 2. An example of the redefined assimilation.

25 4 613

63 2 154

25 3 614

The imperialist:

The colony before:

The colony after:

Algorithms 2014, 7 233

3.3. The Modified Revolution Process

Obviously, we can achieve the revo lution process by replacing the ra ndomly selected colonies with
an equal number of new random ly generated countries, like the m ethod in the basic ICA. However,
here, in order to enhance the ab ility of the proposed algorithm further, we introduce the 2-op t
algorithm [37] into the revolution process.

Due to its simplicity and effectiveness, the 2-opt algorithm is probably the m ost widely used local
search approach for solving TSP. It can be applied to an arbitrary initial tour, and searches the shortest
tour by cha nging the visiting or der of cities, but th e 2-opt algorithm often takes a very long time,
especially when it is applied in a larger number of candidate tours.

Figure 3 sh ows an illu stration of the 2-opt al gorithm. Here, the tou r (A-B-F-E-C-D-H-I-G-A)
presents an example tour before using 2-opt algorith m. Firstly, the leng th of this tour is calcula ted.
Then a link A-B and another link C -D are selected out. A new tour is generated by linking A and C, B
and D, respectiv ely. If the new tour (A-C-E-F-B-D -H-I-G-A) is shorter than the old tour, then,
the new tour is accepted. The above procedure is replicated for all li nks between each two cities until
there is no more decrease of the total tour length.

Figure 3. An illustration of the 2-opt algorithm.

Our way goes as follows: for every em pire, take out a part of colonies randomly from its colonies,
apply the 2-opt algorithm to them, and replace them with the improved. Because the revolution process
is applied to a few countries, introducing the 2-opt algorithm into it will not take a very long time.

The pseudo code of the proposed algorithm is shown in Figure 4. It is similar to the pseudo code of
the basic ICA, but is different on the specific operations of the step 1, step 2 and step 3.

Figure 4. The pseudo code of the proposed algorithm.

Algorithms 2014, 7 234

4. Numerical Experiments, Results and Discussions

4.1. Experiments Settings

In order to verify its effectiv eness, we test the proposed algorithm on 12 standard benchm ark
instances (listed in the Table 1) from the TSPLI B [38]. The first 10 instances are small-scale problems,
with sizes ranging from 51 to 150 cities, and the last two are large-scale problems, whose size is 1323 and
1400 respectively. To avoid the effects caused by the randomness of the algorithm, the experiments for
the former eight instances are repeated 20 times independently , the experim ents for KroA150 and
KroB150 are repeated 10 tim es independently, and th e experiments for the last two instances are
repeated 5 times independently, considering the consumption of time. As the calculation method of the
TSPLIB, the distance between two cities is com puted using Euclidean distance equation and rounded
to an integer.

Table 1. The parameters set for every instance.

Instance Num.C Num.E Num.Ite Instance Num.C Num.E Num.Ite

eil51 100 6 200 berlin52 100 6 200
st70 100 6 200 eil76 100 6 200
pr76 100 6 200 kroA100 100 6 200

kroB100 100 6 200 eil101 100 6 300
kroA150 150 6 300 kroB150 150 8 350
rl1323 200 10 400 fl1400 200 10 400

The proposed algorithm is coded in MATLAB R2010b. All the experiments are finished on a PC
with Core 2 Duo at 2.2 GHZ, 2 GB RAM and W indows Vista Home Basic Operating system. In our
tests, the revolution rate is set to 0.3 and the ξ is set to 0.1. W e specify a m aximum number of
iterations for each test. The algorithm stopped after getting to the iterations number. The number of
initial countries, initial empires and iterations set for every inst ance are shown in Table 1, represented
by “Num.C”, “Num.E” and “Num.Ite” respectively. Larger scale TSP means higher solving difficulty,
so we set more population size, more em pire numbers and m ore iterations numbers for the larger
scale TSP. Note that th e parameters we listed here may be not the best. Actually, in our previous
experiments, we found that the proposed algorithm is not very sensitive to the initial parameters.

In order to examine the role of 2-opt algorithm in the proposed algorithm (abbreviated as DICA1 in
the following), another discrete ICA (abbreviated as DICA2 in the f ollowing) is also tes ted on
the mentioned instances for making a comparison. In the DICA2, the assimilation process is the sam e
as that in the DICA1, but the revolution proce ss is achieved by replacing the random ly selected
colonies with an equal num ber of new random ly generated countries. For fair ness, the parameters set
in the DICA2 are same as those in the DICA1.

Table 2 shows the experim ental results. The colu mn “opt” represents th e length of the known
optimal solution of every instance. The columns “Best”, “Worst”, “Ave” and “StD” represent the best,
the worst f ound result, the average and the stand deviation of the results for every instance,
respectively. The column “N1%” denotes the number of the found results that ar e within 1% deviation

Algorithms 2014, 7 235

of the optimality over the experiments for every instance. The last column “Ave.time” represents the
average running time for every instance. The bold data in the table are better.

Table 2. The results of the experiments.

Instance Opt Algorithm Best Worst Average StD N1% Ave.time (s)

eil51 426
DICA1 426 432 427.25 1.3717 19 15.49
DICA2 590 770 700.6 43.9167 0 14.77

berlin52 7542
DICA1 7542 7542 7542 0.00 20 19.69
DICA2 11,034 14,074 12,229.55 736.6680 0 16.87

st70 675
DICA1 675 683 676.7 2.5976 19 15.05
DICA2 1300 1702 1518.2 93.2386 0 14.54

eil76 538
DICA1 538 546 540.75 2.5521 18 16.65
DICA2 972 1298 1180 70.0669 0 15.86

pr76 10,8159
DICA1 108,159 109,085 108,350.65 316.9696 20 15.36
DICA2 228,851 280,746 258,438.5 1333.2 0 15.12

kroA100 21,282
DICA1 21,282 21,433 21,306. 5 43.0893 20 18.31
DICA2 66,573 84,480 73,032.3 4561.7 0 18.28

kroB100 22,141
DICA1 22,141 22,376 22,194.45 67.5539 19 18.16
DICA2 65,905 88,172 73,587.9 5113.6 0 17.98

eil101 629
DICA1 629 643 635.35 4.8153 10 29.46
DICA2 1426 1751 1574.3 82.1956 0 25.49

kroA150 26,524
DICA1 26,524 26,857 26,657.5 110.5805 8 54.28
DICA2 102,953 118,004 109,867.7 4397.2 0 44.67

kroB150 26,130
DICA1 26,141 26,290 26,230.1 47.8944 10 64.20
DICA2 97,697 109,665 105,396.8 4432.1 0 53.17

rl1323 270,199
DICA1 272,985 283,357 277,965.4 3895.7 0 6151.8
DICA2 7,311,486 7,491,391 7,398,724.4 74,062 0 179.71

fl1400 20,127
DICA1 20,621 20,707 20,669.4 38.24 0 5607.6
DICA2 1,196,412 1,226,156 1,208,172.6 13,065 0 184.39

Figure 5. Trend lines of the two algorithms on rl1323.

Figures 5 and 6 show the trend lines of the DICA1 and the DICA2 on r l1323 and fl1400. They are
utilized to compare the convergence process of the two algorithms. Limited by the length of the article,

Algorithms 2014, 7 236

the trend lines of the two algorithms on other instances are not given here. Figures 5 and 6 are utilized
as a representative.

Figure 6. Trend lines of the two algorithms on fl1400.

4.2. Discussions of the Results Obtained by the Proposed Algorithm

It can be seen from Table 2, for the for mer nine instances, the proposed algorithm (DICA1) found
the known optimal solution, and for last three instances, though the kn own optimal solutions are not
found, the best result found by the pr oposed algorithm are very close to the known optim al solutions.
Their deviations with the corresponding know n optimal solution are only 0.0421%, 1.0311% and
2.4544%, respectively. The average of the results for every instance is also quite close to the known
optimal solution. Only for eil101, pr1323 and fl1400, the deviation with th e known optimal solution
exceeds 1%. For all the former ten instances except eil101, the probability of finding a solution w hich
is within 1% deviation with the known optimal so lution can reach more than 80%, especially, for
berlin52, pr76, kroA100 and kroB 150, it reaches 100%. In addition, for berl in52, the proposed
algorithm found the known optimal solution in every test.

4.3. Discussions of the Role of 2-opt Algorithm

From Table 2, Figures 5 and 6, it can be seen that, com pared with the DICA1, the convergence
rate of the DICA2 is slower, and the results it obtained are also worse. In the earlier stage of iterations,
the convergence rate of the DICA2 is accep table, but in the later stage of iterations, it stagnated at
a solution which is ver y poor. The cause of this phenomenon is that in the earlier stage of the iterations,
the individuals in the population ar e diverse and generally bad, it is very easy to find a solution which
is better than the cu rrent best solu tion in the as similation process, in th e revolution process an d in
the competition process; but with the increase of the number of iterations, all the ind ividuals in
the population become more and more similar with the imperialist, the diversity of population decline,
relying on the revolution process which using randomly generated countries to obtain a solution which
is better than the current best solution is very d ifficult, so the DICA2 very eas ily stagnates at a very
poor solution.

Algorithms 2014, 7 237

In DICA1, the revolution process is achieved by im proved some randomly selected colonies by
the 2-opt algorithm. Due to its strong local search ability, the 2-op t algorithm can greatly improve
the quality of a colony, using this mechanism can easily find a solution which is greatly better than
the current best solution. Meanwhile, the mechanism of the DICA1 can quickly replace the new find
best solution to the position of the imperialist, and then to guide the f urther evolution of the entir e
population. So its convergence rate is very fast and the solutions it obtained are very good.

The revised assim ilation makes it possible that ut ilizing the orig inal ICA to solve TSP, and
the revised revolution combined with 2-op t algorithm ensures the algor ithm to f ind a su perior
solution quickly.

Furthermore, it can be seen from the last column “Ave.time”, when the scale of TSP is sm all, using
2-opt algorithm would not significantly increase the time consumption. When the scale of TSP is large,
the time consumption increases obviously. The main reason is that the 2-opt algorithm costs more time
when applied to solve large-scale TSP.

4.4. Compared with Other Two ICA-Based Algorithms

The results obtained by the DICA1 are com pared with that obtained by other two ICA-based
algorithms for solving TSP. One is proposed in liter ature [34] (abbreviated as OICA i n the following)
and another is proposed in literature [36], combined with tabu search (abbreviated as ICATS in the
following). The com parison is arranged in Table 3, in where the co lumn “Best.Err” and “Av e.Err”
represent the percentage deviation of the bes t result and the aver age of the results over the known
optimal solution, respectively, calculat ed as the for mula 8, the “NA” re presents that the data is not
given in the corresponding literature. The bold data in the table are best.

 100%Err =(the result opt) / opt  (8)

Table 3. Compared with two other ICA-based algorithms.

Instance
DICA1 ICATS OICA

Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%)

eil51 0 0.2934 0 2.5822 1.39 NA
berlin52 0 0 NA NA 0.09 NA

st70 0 0.2519 NA NA 0.44 NA
eil76 0 0.5112 NA NA 0.99 NA
pr76 0 0.1771 0 0.1072 NA NA

kroA100 0 0.1151 0 0.5451 0.10 NA
kroB100 0 0.2414 0 0.8356 0.38 NA

eil101 0 1.01 0 7.9491 NA NA
kroA150 0 0.5033 0 0.7917 NA NA

From Table 3, it can be seen th at the performance of the OICA is the worst in the three algorithms.
On every instance, it cannot obt ain the known optim al solution. The performance of the ICA TS is
centered in the thr ee algorithms, though it can obtai n the known optimal solution for every instance,
but the average of the results obtained by it for e very instance except pr76 is worse than that obtained
by the DICA1. The performance of the DICA1 is the best in the three algorithms.

Algorithms 2014, 7 238

4.5. Compared with Other Six Heuristic Algorithms

Meanwhile, the results are compared with that obtained by the particle swarm optimization (PSO) [19],
the bee colony optimization (BCO) [6], the self-organizing Neural Network (NN) [20], the i mproved
ACO with Pherom one Correction Strategy (A CO+SEE) [14], the generalized chromosome genetic
algorithm (GCGA) [25] and the genetic s imulated annealing ant colony system with particle swarm
optimization techniques (GSAP) [22], shown in Tables 4 and 5. The meanings of the fields in Tables 4
and 5 are same as those in Table 3. More intuitive comparisons are shown in Figures 7 and 8.

Table 4. Compared with the p article swarm optimization (PSO), the bee colony
optimization (BCO) and the Neural Network (NN).

Instance

DICA1 PSO BCO NN

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

eil51 0 0.2934 0.2347 2.5751 0.4695 0.85 0.2347 2.6925
berlin52 0 0 0 3.8458 NA NA 0 5.1777

st70 0 0.2519 0 3.3422 NA NA NA NA
eil76 0 0.5112 1.487 4.1673 0.1859 2.01 0.5576 3.4071
pr76 0 0.1771 0.1119 3.8176 NA NA NA NA

kroA100 0 0.1151 NA NA 2.2601 3.43 0.2396 1.1311
kroB100 0 0.2414 NA NA 2.2402 3.1 0.9123 2.3507

eil101 0 1.01 NA NA 0.9539 2.29 1.4308 3.1208
kroA150 0 0.5033 NA NA 5.0294 6.39 0.5806 3.1367
kroB150 0.0421 0.7658 NA NA 1.55 3.68 0.5128 1.9207
rl1323 1.0311 2.8743 NA NA NA NA 11.3143 12.9961
fl1400 2.4544 2.8817 NA NA NA NA 3.5972 4.8840

Table 5. Compared with the improved ACO with Pheromone Correction Strategy (ACO +
SEE), the g eneralized chromosome genetic algorithm (GCGA) and the genetic sim ulated
annealing ant colony system with particle swarm optimization techniques (GSAP).

Instance

DICA1 ACO + SEE GCGA GSAP

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

eil51 0 0.2934 0.2347 0.23 0.2347 0.94 0.23 0.3
berlin52 0 0 0 0.13 NA NA 0 0

st70 0 0.2519 0 1.36 0 0.44 NA NA
eil76 0 0.5112 1.487 1.19 2.2305 2.42 0 0.41
pr76 0 0.1771 0.1119 2.62 0.1378 0.72 NA NA

kroA100 0 0.1151 0 0.72 0.047 1.23 0 0.42
kroB100 0 0.2414 NA NA 0.2439 1.81 0 0.64

eil101 0 1.01 NA NA 1.5898 2.7 0.16 0.99
kroA150 0 0.5033 NA NA 1.3987 2.92 0 1.41
kroB150 0.0421 0.7658 NA NA 1.6303 2.11 0 1.22
rl1323 1.0311 2.8743 NA NA NA NA 2.7546 3.6945
fl1400 2.4544 2.8817 NA NA NA NA 2.3153 6.0746

Algorithms 2014, 7 239

From Table 4, Table 5, Figure 7 and Figure 8, it can be seen that, when compared with the PSO, the
BCO, the ACO+SEE, the NN and the GCGA, the proposed algorithm not only found the known optimal
solution that others succeeded, but also found th at the others failed. In addition, for kroB150, th ough
all the four algorithms (the PSO and the ACO + SEE have not been tested on kroB150 in the literatures)
failed to find the known optimal solution, the proposed algorithm obtained a best result. For rl1323 and
fl1400, the proposed algorithm shows greater performance than the NN (other four algorithms have not
been tested on rl1323 and fl1400 in the literatures). Furtherm ore, for every instance, the deviation
between the average of the results obtained by th e proposed algorithm and the known optimal solution
is much lower. When compared with the GSAP , for eil76, all the two algorithm s found the known
optimal solution while the average of the results obt ained by the GSAP is slightly better. For eil101,
the proposed algorithm found the known opti mal solution while the GSAP failed, but the average of
the results obtained by the GSAP is slightly better. For kroB150, the proposed algorithm failed to find
the known optimal solution while the GSAP succ eeded, but the average of the results obtained by the
proposed algorithm is better. For fl1400, the best solu tion obtained by the GSAP is slightly better, but
the average of the results obtained b y the GSAP is worse. For the remaining instances, the prop osed
algorithm shows better perform ance on the best result and the average of the results than the GSAP.
Comprehensively speaking, the perf ormance of the proposed algorithm is much better than the PSO,
the BCO, t he NN and the GCGA, and slightly be tter than the GSAP. The pr oposed algorithm
is excellent.

Figure 7. Comparison between the best results obtained by several algorithms.

Figure 8. Comparison between the average results obtained by several algorithms.

Algorithms 2014, 7 240

5. Conclusions and Further Works

A discrete imperialist com petitive algorithm for T SP is proposed. It retain s the basic flow of
the original, redefines the ass imilation and the revolution and introdu ces the 2-opt algorithm into
the revolution process. The proposed algorithm is excellent, proved by the experim ents on some
benchmark problems and the comparisons with other six algorithms. Future research should be focused
on enhancing its perf ormance and applying it on larger-scale TSP and other com binational
optimization problems.

Acknowledgments

This research is supported by Specialized Research Fund for th e Doctoral Program of Highe r
Education (Grant No.20110131110042), China.

Author Contributions

The idea for this research work is proposed by Professor Yong W ang, the MA TLAB code is
achieved by Shuhui Xu, and the paper writing is completed by Aiqin Huang.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hoffman, K.L.; Padberg, M.; Rinaldi, G. Traveling salesm an problem. In Encyclopedia of

Operations Research and Management Science, 3rd ed.; Springer US: New York, NY, US A,
2013; pp. 1573–1578.

2. Gutin, G.; Punnen, A.P. The Traveling Salesman Problem and Its Variations; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 2002; p. 830.

3. Applegate, D.L. The Traveling Salesman Problem: A Computational Study; Princeton University
Press: Princeton, NJ, USA, 2006; p. 593.

4. Papadimitriou, C.H. The euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci.

1977, 4, 237–244.
5. Laporte, G. The traveling salesm an problem: An overview of exact and approxim ate algorithms.

Eur. J. Oper. Res. 1992, 59, 231–247.
6. Wong, L.-P.; Low, M.Y.H.; Chong, C.S. A Bee Colony Optimization Algorithm for Traveling

Salesman Problem, Proceedings of the 2nd Asia International Conference on Modelling and
Simulation, AMS 2008, Kuala Lumpur, Malaysia , 13–15 May 2008; IEEE Co mputer Society:
Kuala Lumpur, Malaysia, 2008; pp. 818–823.

7. Wong, L.-P.; Low, M.Y.H.; Chong, C.S. Bee colony optimization with local search for traveling
salesman problem. Int. J. Artif. Intell. Tools 2010, 19, 305–334.

8. Albayrak, M.; Allahverdi, N. Developm ent a new mutation operator to solve the traveling
salesman problem by aid of genetic algorithms. Expert Syst. Appl. 2011, 38, 1313–1320.

Algorithms 2014, 7 241

9. Ouaarab, A.; Ahiod, B.; Yang, X.-S. Discrete cuckoo search algorithm for the travelling salesman
problem. Neural Comput. Appl. 2013, doi:10.1007/s00521-013-1402-2.

10. Pandey, S.; Kumar, S. Enhanced artificial bee colony al gorithm and it’s applic ation to travelling
salesman problem. HCTL Open Int. J. Technol. Innov. Res. 2013, 2, 137–146.

11. Roy, S. Genetic algorithm based approach to so lve travelling salesman problem with one point
crossover operator. Int. J. Comput. Technol. 2013, 10, 1393–1400.

12. Ray, S.; Bandyopadhyay, S.; Pal, S. Genetic operat ors for combinatorial optimization in TSP and
microarray gene ordering. Appl. Intell. 2007, 26, 183–195.

13. Sun, K.; Wu, H.; Wang, H.; Ding, J. Hybrid ant colony and particle swarm algorithm for solving
TSP. Jisuanji Gongcheng yu Yingyong (Comput. Eng. Appl.) 2012, 48, 60–63.

14. Tuba, M.; Jovanovic, R . Improved ACO algorithm with pherom one correction strategy for the
traveling salesman problem. Int. J. Comput. Commun. Control 2013, 8, 477–485.

15. Chen, Y.-W.; Zhu, Y.-J.; Yang, G.-K.; Lu, Y.-Z. Improved extrem al optimization for the
asymmetric traveling salesman problem. Phys. A: Stat. Mech. Appl. 2011, 390, 4459–4465.

16. Wang, Y.- T.; Li, J.-Q.; Gao, K.-Z.; Pan, Q.-K. Memetic algorithm based on i mproved
invercover operator and linckernighan local search for the euclidea n traveling salesman problem.
Comput. Math. Appl. 2011, 62, 2743–2754.

17. Basu, S. Neighborhood reduction strategy for tabu search implementation in asymmetric traveling
salesman problem. OPSEARCH 2012, 49, 400–412.

18. Yu, Y.; Chen, Y.; Li, T. A New Design of Genetic Algorithm for Solving TSP, Proceedings of the
4th International Joint Confer ence on Com putational Sciences and O ptimization, CSO 2011,
Kunming, Lijiang, Yunnan, China, 15–19 April 2011; IEEE Computer Society: Washington, DC,
USA, 2011; pp. 309–313.

19. Shi, X.H.; Liang, Y.C.; Lee, H.P.; Lu, C.; Wang, Q.X. Particle swarm optim ization-based
algorithms for TSP and generalized TSP. Inf. Process. Lett. 2007, 103, 169–176.

20. Masutti, T.A.S.; de Castro, L.N. A self-organiz ing neural network using ideas from the immune
system to solve the traveling salesman problem. Inf. Sci. 2009, 179, 1454–1468.

21. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on
an adaptive sim ulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11,
3680–3689.

22. Chen, S.-M.; Chien, C.-Y. Solving the traveling salesman problem based on the genetic simulated
annealing ant colony system with particle swarm optimization techniques. Expert Syst. Appl. 2011,
38, 14439–14450.

23. Dong, G.; Guo, W .W.; Tickle, K. Solving the tr aveling salesman problem using cooperative
genetic ant systems. Expert Syst. Appl. 2012, 39, 5006–5011.

24. Alhamdy, S.; Ahmad, S.; Noudehi, A.N.; Majdara, M. Solving traveling salesm an problem (TSP)
using ants colony (ACO) algorithm and compari ng with tabu search, si mulated annealing and
genetic algorithm. J. Appl. Sci. Res. 2012, 8, 434–440.

25. Yang, J.; Wu, C.; Lee, H.P.; Liang, Y. Solving traveling salesman problems using generalized
chromosome genetic algorithm. Prog. Natural Sci. 2008, 18, 887–892.

26. Shuang, B.; Chen, J.; Li, Z. Study on hybrid PS-ACO algorithm. Appl. Intell. 2011, 34, 64–73.

Algorithms 2014, 7 242

27. Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic Competition, Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, CEC 2007, Singapo re, 25–28 Septem ber 2007; IEEE Co mputer
Society: Singapore, 2007; pp. 4661–4667.

28. Behnamian, J.; Zandieh, M. A discrete coloni al competitive algorithm for hybrid flowshop
scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl. 2011, 38,
14490–14498.

29. Kaveh, A.; Talatah ari, S. Optim um design of sk eletal structures using imperialist competitive
algorithm. Comput. Struct. 2010, 88, 1220–1229.

30. Nazari-Shirkouhi, S.; Eivazy, H.; Ghodsi, R.; Rezaie, K.; Atashpaz-Gargari, E. Solving the integrated
product mix-outsourcing problem using the imperialist competitive algorithm. Expert Syst. Appl.

2010, 37, 7615–7626.
31. Niknam, T.; Taherian Fard, E.; Pourjafarian, N.; Rousta, A. An efficient hybrid algorithm based on

modified imperialist competitive algorithm and k-means for data clustering. Eng. Appl. Artif. Intell.

2011, 24, 306–317.
32. Shokrollahpour, E.; Zandieh, M.; Dorri, B. A novel imperialist com petitive algorithm for

bi-criteria scheduling of the assembly flowshop problem. Int. J. Prod. Res. 2010, 49, 3087–3103.
33. Shabani, H.; Vahidi, B.; Ebrahimpour, M. A robust PID controller based on im perialist

competitive algorithm for load-frequency control of power systems. ISA Trans. 2013, 52, 88–95.
34. Firoozkooh, I. Using im perial competitive algorithm for solving traveling salesm an problem and

comparing the efficiency of the propos ed algorithm with methods in use. Aust. J. Basic Appl. Sci.

2011, 5, 540–543.
35. Yousefikhoshbakht, M.; Sedighpour, M. New im perialist competitive algorithm to solve the

travelling salesman problem. Int. J. Comput. Math. 2012, 90, 1495–1505.
36. Ahmadvand, M.; Yousefikhoshbakht, M.; Darani, N. M. Solving the traveling salesm an problem

by an efficient hybrid metaheuristic algorithm. J. Adv. Comput. Res. 2012, 3, 75–84.
37. Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791–812.
38. TSPLIB. Available online: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed on

6 August 2008).

© 2014 by the authors; licensee MD PI, Basel, Switzerland. This arti cle is an open access article
distributed under the term s and condition s of the Creativ e Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

