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Abstract: We give a 3
2
-approximation algorithm for finding stable matchings that runs

in O(m) time. The previous most well-known algorithm, by McDermid, has the same
approximation ratio but runs in O(n3/2m) time, where n denotes the number of people and m

is the total length of the preference lists in a given instance. In addition, the algorithm and the
analysis are much simpler. We also give the extension of the algorithm for computing stable
many-to-many matchings.
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1. Introduction

In the paper, we consider a variant of the problem called Stable Matchings, known also in the
literature as the Stable Marriage problem. The problem is defined as follows. We are given two sets W
and U of women and men. Each woman w of W has a preference list Lw of a subset of men, and similarly,
each man m of U has a preference list Lm of a subset of women. The preference lists are linearly ordered
lists of ties, which are subsets of men (or respectively, women), who are equally good for a given woman
(respectively, man). Ties are disjoint and can contain also one person, appropriately a man or a woman.
Thus if m and m′ are on list Lw of woman w, then either (1) w prefers m to m′, or in other words, m is
better for w than m′; or (2) m and m′ are in a tie on Lw, and then we say that w is indifferent between m

and m′ or that m and m′ are equally good for her; or (3) w prefers m′ to m. Man m and woman w are
said to be mutually acceptable to each other if they belong to each other’s preference lists. The most
preferred person(s) is (are) at the top of the preference lists. A matching is a set of pairs (m,w) such that
m ∈ U,w ∈ W and m and w are mutually acceptable, and each man/woman belongs to at most one pair.
If (m,w) belongs to a certain matching M , then we write M(m) = w, which means that in M woman
w is a partner of m, and analogously that M(w) = m. If man m (or woman w) is not contained in any
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pair of a matching M , then we say that m (or w) is unmatched or free in M . A matching M is called
stable if it does not admit a blocking pair. A pair (m,w) is blocking for M if (1) m and w are mutually
acceptable; (2) m is unmatched or prefers w to M(m); and (3) w is unmatched or prefers m to M(w).
Each instance of the problem can be represented by a bipartite graph G = (U ∪W,E) with vertices of
U representing men, vertices of W representing women and edges E connecting all mutually acceptable
pairs of men and women. The problem we are interested in is that of finding a stable matching that has
the largest cardinality. The version in which there are no ties in the preference lists of men and women
has been long known and an algorithm by Gale and Shapley [3] solves it exactly in O(m) time, where
m denotes the number of edges in the underlying graph. In the version without ties a stable matching
always exists, and every stable matching has the same cardinality. If we allow ties, as in the problem we
consider in this paper, then a stable matching also always exists and can be found via the Gale-Shapley
algorithm by breaking ties arbitrarily. However, the sizes of stable matchings can vary considerably,
and the problem of finding a stable matching of maximum cardinality is NP -hard, which was shown by
Manlove et al. in [14]. Therefore it is desirable to devise an approximation algorithm for the problem.

Previous and related results Previous approximation algorithms were presented in [7–9,11,14].
Currently the best approximation algorithm is by McDermid [15] and achieves the approximation
guarantee 3

2
. Its running time is O(n3/2m), where n denotes the number of vertices and m the number of

edges. Inapproximabilty results were shown in [4,5,17]. For a variant of the Stable Matchings problem,
in which ties are allowed on one side only, an approximation algorithm achieving the ratio 25

17
has been

given in [10]. A slightly different linear time 3
2
-approximation algorithm based on an earlier version

of this paper was given by Király in [12]. The conference version of this paper appeared also in the
proceedings of WAOA’11 (Workshop on Approximation and Online Algorithms) [16].

Our results While constructing approximation algorithms, the goal is not only to achieve a good
approximation guarantee but also good running time. We give a 3/2-approximation algorithm that
runs in O(m) time and additionally is significantly simpler than that of McDermid. In devising the
algorithm we were led by the observation that it suffices to find a stable matching that will not create
a dangerous path, which is defined later. We also give the extension of the algorithm for computing
stable many-to-many matchings, which runs in O(m log c) time, where c denotes the minimum of the
maximal capacities in each side of the bipartition. In particular, it means that we give an O(m)-time
algorithm for the Hospitals-Residents problem, improving on an O(d5/2n3/2m) time algorithm given by
McDermid, where d denotes the maximal capacity of a hospital. McDermid’s algorithm follows from the
reduction of the Hospitals-Residents problem to the Stable Matchings problem by "cloning" hospitals.
The approach by cloning does not work if the vertices on both sides of the bipartition are allowed
to have capacities larger than 1. Since these problems have many practical applications (see [1,2,6],
for example), we believe our algorithms will be of help.

2. Algorithm

For a given instance of the problem let Mopt denote an optimal (i.e., largest) stable matching and
let M,M ′ be any two matchings. We say that e is an M -edge if e ∈ M . A path P or a cycle C is
called alternating (w.r.t. M ) if its edges alternate between M -edges and edges of E\M . It is well
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known from matching theory (see [13] for example) that M ⊕M ′ disintegrates into a set of alternating
paths and alternating cycles. (For two sets X, Y , the set X ⊕ Y denotes (X\Y ) ∪ (Y \X).) Let S
denote a set of maximal alternating paths and cycles of M ⊕Mopt. Consider any alternating cycle C

of S or any alternating path P of even length of S. Then both C and P contain the same number
of M -edges and Mopt-edges. Consider an alternating path P of length 2k + 1 of S. Then either
|Mopt∩P |
|M∩P | = k+1

k
or |M∩P |
|Mopt∩P | =

k+1
k

. Therefore, if M is stable and S does not contain a path of length 3

with the middle edge being an M -edge, then |Mopt| ≤ 3
2
|M | and M is a 3

2
-approximation of Mopt. To

achieve a 3
2
-approximation, we will eliminate such potential paths of length 3 of M ⊕Mopt.

Accordingly, we define a dangerous path w.r.t. a matching M to be an alternating path
P = (w,m1, w1,m) such that w and m are unmatched in M (which means that (m1, w1) is in
M and (w,m1), (w1,m) do not belong to M ) and (m1, w1) is not a blocking pair for the matching
N = {(w,m1), (w1,m)}. We need to concern ourselves only with dangerous paths w.r.t. a matching
M that can be extended to a stable matching,i.e., M is such that there exists a stable matching M ′ with
M ⊆ M ′. Therefore, if P = (w,m1, w1,m) is a dangerous path w.r.t. M , then w and m1 do not form
a blocking pair for M , which means that w1 is at least as good for m1 as w, and similarly, w1 and m

do not form a blocking pair for M , hence m1 is at least as good for w1 as m. Since (m1, w1) is not a
blocking pair for the matching N = {(w,m1), (w1,m)}, either m1 is indifferent between w and w1 and
then we say that P is a masculine dangerous path, or w1 is indifferent between m and m1 and then we
say that P is a feminine dangerous path. A path P can of course be both a masculine and a feminine
dangerous path.

We also introduce the following terminology.

• If man m is matched to woman w and there is at least one free woman w1 such that w and w1 are
equally good for m, then we say that w1 is a satellite of m and m is satellitic.
• If woman w is matched to a satellitic man m, then we say that w is co-satellitic.
• If e = (m,w) is such that w is free and there is at least one free woman w1 6= w such that w and w1

are equally good for m, then e is called special, and consequently, (m,w1) is also called special.
• If man m has at least one free woman incident with him, then he is said to be subsatellitic.
• Woman w matched to a subsatellitic man m and not co-satellitic is said to be co-subsatellitic w.r.t.
m′ if m and m′ are equally good for her.

Figure 1 illustrates the notions introduced above.
Let us notice that if a free man m has a co-satellitic woman w on his list, then it is possible that he

belongs to a masculine dangerous path, and analogously, if a free man m has a woman w on his list who
is co-subsatellitic with respect to him, then it is possible that he belongs to a feminine dangerous path.
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Figure 1. The description of a dangerous path and its two types: a feminine dangerous path
and a masculine dangerous path.
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2.1. Description of Algorithm GS Modified

Algorithm GS Modified given further on is to some extent modeled on the Gale-Shapley algorithm in
which men propose to women on their lists and women dispose. In the course of running the algorithm,
preference lists Lm will diminish and some additional lists L′m will be built. If at some point a free
man m has a nonempty list Lm, it means that he has not yet proposed to all women on his list Lm and
potentially belongs to a blocking pair or a masculine dangerous path. If a free man m has a nonempty
list L′m, it means that he potentially belongs to a feminine dangerous path.

Whenever it is man m’s turn to propose and Lm 6= ∅, he would like to get matched to the best possible
woman on his list Lm without creating a blocking pair (as in GS algorithm) but also ensure that he does
not belong to any masculine dangerous path. To this end, m proposes to the woman w to whom he has not
yet proposed and who is as high on Lm as possible. If w is free or matched to someone worse for her than
m, she accepts m and rejects her current partner if she had one. If w is co-satellitic, which means that
she is matched to some man m′ such that there is a free woman w′ who is equally good for m′ as w, then
it means that m currently belongs to a masculine dangerous path (m,w,m′, w′). In this case w does not
care whether m is better for her than m′ and accepts him while rejecting m′, and immediately afterwards
m′ proposes to w′, who accepts him. This operation can be very well viewed as though m′ proposed to
w′ without having proposed to w first, and some time later m proposed to w. (Here edge (m′, w) was
special at the moment m′ proposed to w for the first time and that’s why if m′ gets rejected by w′, he
will propose to w again, because in this case w was not removed from Lm′ . Let us notice that if m′ were
allowed to remove w from his list Lm′ at the moment he proposed to w for the first time and the edge
(m′, w) was special, then after being rejected by w′ later on, he would not propose to w for the second
time, and as a result a blocking pair involving m′ and w might arise.) To avoid multiple operations of
this kind concerning one woman, we will assume that given a tie, a man proposes to unmatched women
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before proposing to matched ones. This ensures that in the above scenario, m cannot become satellitic
after being matched with w. If a woman w to whom m proposes is matched to man m′ equally good for
her as m, and w is co-subsatellitic w.r.t. m, meaning that m′ has some free women on his list, then at the
current moment m belongs to a feminine dangerous path. What happens now is that w rejects m but m
adds w to his list L′m. (Woman w does not accept m because m may be subsatellitic as well.) In every
other case w rejects m.

If man m has proposed to all women on his list Lm and remained free, but his list L′m is nonempty, he
will propose to women on L′m starting from the top. If he proposes to w, and w is matched to some man
m′ who is equally good for her as m, and additionally, m′ is subsatellitic, then w accepts m and rejects
m′. Otherwise w rejects him. Let us notice that it cannot happen that w prefers m to m′, because man m

had proposed to all women on his list Lm before proceeding to list L′m ⊆ Lm. Therefore he must have
been rejected by w at some point, which means that w must be now matched to someone at least as good
for her as m. (This will also be formally proved in the next section.)

Algorithm GS Modified

Each man m’s preference list Lm is organized in such a way that if Lm contains a tie t, then free women
in t come before matched women in t. At the beginning all women are free and ties on men’s lists are broken
arbitrarily, and in the course of running the algorithm, whenever woman w becomes matched for the first time,
say to man m, we move her to the end of every tie she belongs to.

while there exists a free man m with a nonempty list Lm or a nonempty list L′m
if Lm 6= ∅, then

w ← woman at the top of m’ s list Lm

if (m,w) is not special, then remove w from Lm

if w is free, then M ←M ∪ (m,w)

else if w is co-satellitic, then
let w′ be a satellite of M(w)

if (M(w), w′) is not special, then remove w′ from LM(w)

M ←M ∪ {(m,w), (M(w), w′)}\(w,M(w))

else if w prefers m to M(w), then M ←M ∪ (m,w)\(w,M(w))

else if w is co-subsatellitic w.r.t. m, then add w to the end of list L′m
else

w ← woman at the top of m’ s list L′m
remove w from L′m
if w is co-subsatellitic w.r.t. m, then M ←M ∪ (m,w)\(w,M(w))
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First we show how Algorithm GS Modified runs on the following example. Suppose the preference
lists of men m1,m2,m3,m4 and women w1, w2, w3, w4 are as follows. The brackets indicate ties.

m1 : (w1, w2) w3

m2 : w1 w3 w4

m3 : w2 w1 w3

m4 : w3

w1 : m1 m2 m3

w2 : m3 m1 m2

w3 : m1 (m2,m4) m3

w4 : m2

Suppose that man m1 starts. He proposes to woman w1 and gets accepted ((m1, w1) is a special edge
and w2 is a satellite of m1). Now suppose that it is m2’s turn to propose. (It might also be m3 or m4.) He
proposes to woman w1 and gets accepted, because w1 is co-satellitic. Man m1 gets matched with woman
w2. Next m3 proposes to woman w2 and gets accepted. Now m1 proposes to w1 (as (m1, w1) was a
special edge) and gets accepted. Then m2 proposes to w3 and gets accepted. Next m4 proposes to w3

and gets rejected, but w3 is co-subsatellitic w.r.t. m4, and m4 adds w3 to his list L′m4
. Afterwards

m4 proposes to w3 again, this time from L′m4
, and gets accepted. Finally m2 proposes to w4 and

gets accepted.

3. Correctness of Algorithm GS Modified

In this section we prove the correctness of Algorithm GS Modified.
If w ∈ Lm and m proposes to w, then we will sometimes say that m proposes from Lm (to w). If

Lm = ∅, w ∈ L′m and m proposes to w, then we will sometimes say that m proposes from L′m (to w).

Lemma 1. 1. If woman w becomes matched, she will stay matched.
2. Woman w can become co-satellitic only the first time someone, say m, proposes to her and only if

at the time of the proposal edge (m,w) is special. If a co-satellitic woman w receives a proposal,
she always accepts it and is no longer co-satellitic.

3. If woman w is matched to man m and is not co-satellitic, she can accept man m′ only if m′ is at
least as good for her as m. Moreover, if m′ is better for her than m, she always accepts him. If m′

is equally good for her as m, then she accepts him only if she is co-subsatellitic w.r.t. m′ and m′

proposes from L′m′ .
4. If woman w matched to man m is not co-satellitic and changes m for m′, who is equally good for

her as m, then m is subsatellitic and m′ is not.

Proof. Statements 1 and 3 follow directly from the description of Algorithm GS Modified.
Let us prove statement 2. If w is matched and m proposes to her, then there is no free woman w′

incident with m who is equally good for m as w (because then m would propose to w′ before proposing
to w). As a result, if w becomes matched to m, she will not become co-satellitic and she will cease to be
co-satellitic if she was before.
It remains to prove statement 4. If w changes m for m′ who is equally good for her as m (and w is not
co-satellitic), then by statement 3, m′ proposes from L′m′ and m is subsatellitic. Man m′ proposing from
L′m′ does not have any free women incident with him. 2
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Lemma 2. Let M denote a matching computed by Algorithm GS Modified. Then the underlying graph
does not contain blocking pairs and dangerous paths w.r.t. M .

Proof. Suppose that (m,w) is a blocking pair. Man m is either free or M(m) is worse for him than w.
It means that at some point m proposed to w from Lm when edge (m,w) was not special. (Clearly, at
some point m proposed to w from Lm. Assume that at that point edge (m,w) was special. Then w was
free and accepted m. However, m got rejected later and therefore proposed to w from Lm again, when
edge (m,w) was no longer special.) If w rejected him then, then by claim 2 of Lemma 1, w was not
co-satellitic and, by claim 3 of Lemma 1, was matched to someone at least as good for her as m and
thus would have stayed matched to someone as good for her as m. If w accepted m, then after getting
matched to m she was not co-satellitic, and by claim 3 of Lemma 1, would have stayed matched to
someone at least as good for her as m. Either way we get a contradiction.

Suppose now that the graph contains a masculine dangerous path (m′, w,m,w′) such that m = M(w).
Thus m is satellitic and w is co-satellitic. Since she is co-satellitic, it means that the only proposal she
ever got was from m, but m′ must have proposed to her too, a contradiction.

Finally, suppose that the graph contains a feminine dangerous path (m′, w,m,w′) such that
m = M(w). Thus m is subsatellitic and w is co-subsatellitic w.r.t. m′, also m′ is not subsatellitic.
At some point, m′ proposed to w from Lm′ when (m′, w) was not special. If he got accepted at that
moment, then later on he could not become rejected, because by claim 3 of Lemma 1, after accepting m′

woman w was not co-satellitic, and by claim 4 of Lemma 1, could not accept a subsatellitic man equally
good for her as her current partner. Therefore he was rejected then, and w was already matched with m

(by claims 3 and 4 of Lemma 1). Hence w was co-subsatellitic w.r.t. m′ (because m was subsatellitic),
and m′ added w to the end of list L′m′ . Thus later m′ proposed to w from L′m′ . According to the
algorithm, w would have accepted him and could not later on become matched to someone subsatellitic
and equally good for her as m′. A contradiction. 2

Theorem 1. Algorithm GS Modified computes a stable matching M which is a 3
2
- approximation of the

optimal solution. Algorithm GS Modified runs in O(m) time.

Proof. By Lemma 2, matching M computed by Algorithm GS Modified is stable and does not contain
dangerous paths. Therefore M is a 3

2
-approximation of the optimal solution.

The running time of the algorithm is proportional to the sum of the lengths of lists Lm and L′m. By
the length of list Lm or L′m we mean the number of people on it and not the number of ties. Each edge
of Lm is scanned at most twice–twice only if the first time it was scanned, it was special, and each edge
of L′m is scanned at most once. Checking whether a given woman w is co-satellitic or co-subsatellitic
can be done in constant time as follows. Suppose that w is matched to man m. We look at the tie at the
top of list Lm. If this tie contains woman w and some free woman w′, then w is co-satellitic, otherwise
she is not. (Recall that the free women proceed matched ones in a tie.) To facilitate checking whether
a given man is subsatellitic, each man has the counter of free women incident with him, and whenever
a woman becomes matched and moves herself to the end of the ties, men decrease their respective
counters. The number of movements in the ties is upperbounded by the sum of the lengths of lists Lm

as once a woman becomes matched, she stays so. 2
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Let us finally make the following remark.
If we break ties and run the classic Gale-Shapley algorithm, then the cardinality of the computed

matching depends on the order in which we break ties. Algorithm GS Modified outputs a matching
that would have been output by the GS algorithm if ties were broken as follows. Men’s lists would be
identical to those at the beginning of Algorithm GS Modified but for one thing: if at some point during
running Algorithm GS Modified, man m proposes to a co-satellitic woman w, and as a result m gets
matched to w, and w’s partner M(w) gets matched to his satellite w′, then a tie on LM(w) would be
broken in such a way that w′ comes before w. Every tie t on a woman w’s list would be first broken
into (m1,m2, . . . ,ms) in such a way that m1 denotes the first man of t to whom w got matched without
becoming co-satellitic, and assuming that it happened at some step S, m2 denotes the first man of t who
proposed to w after step S, m3 denotes the second man of t, who proposed to w after step S and so on.
Next we would make the following alterations on women’s lists: if at some point, man m proposes from
L′m to a co-subsatellitic woman w matched to M(w), then a tie on Lw would be broken in such a way
that m comes before M(w).

4. Extension to Bipartite Stable b-Matchings

Suppose we have a simple bipartite graph G = (V,E), where V = U ∪ W and U,W are disjoint
sets, and a function b: V → N. Then a subset M ⊆ E is called a b-matching if for each v ∈ V it
is degM(v) ≤ b(v), where degM(v) denotes the degree of vertex v in the graph GM = (U ∪ W,M).
We refer to the vertices of U and W as U -agents and W -agents, respectively. Each U -agent u of U
has a preference list Lu of a subset of W -agents, and analogously, each W -agent w has a preference
list Lw of a subset of U -agents. The preference lists are linearly ordered lists of ties. The majority of
the terminology for stable matchings goes through for stable b-matchings. Instead of saying that some
agent or vertex is free, we will use the term unsaturated: agent v is unsaturated in a b-matching M if
degM(v) < b(v), and if degM(v) = b(v), then we will say that v is saturated. For any agent v we will
denote the set {w ∈ U ∪W :(v, w) ∈ M} by M(v). A pair (u,w) is blocking for a b-matching M if
(1) u and w are mutually acceptable; (2) u is unsaturated or prefers w to one of the W -agents of M(u);
and (3) w is unsaturated or prefers u to one of the U -agents of M(w). A b-matching M is said to be
stable if it does not admit a blocking pair. As previously, we are interested in finding a stable b-matching
of largest size. Let us also note that if for each u in U we have b(u) = 1, then the problem is known
under the name Hospitals-Residents problem or one-to-many stable matching problem.

Alternating paths and cycles are defined for b-matchings in an analogous way as for matchings,
but we do not require paths and cycles to be simple, i.e., an alternating path P w.r.t. a
b-matching M is defined as any sequence of edges (v1, v2), (v2, v3), . . . , (vk−1, vk) such that the
edges alternate between M -edges and edges of E\M , and an alternating cycle C w.r.t. M is
defined as an alternating path (w.r.t. M ) that ends and begins with the same vertex, i.e., the
sequence of edges has the form (v1, v2), (v2, v3), . . . , (vk, v1). As before, for any two b-matchings
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M and M ′, the symmetric difference M ⊕ M ′ can be partitioned into maximal alternating paths and
cycles (i.e., no two alternating paths from the partition can be combined to form one alternating path).
A given stable b-matching M might not be a 3/2-approximation of Mopt, where Mopt denotes a stable
b-matching of maximum size, only if the underlying graph contains a dangerous path defined as follows.
If M is a stable b-matching, then a path P = (w, u1, w1, u) is called dangerous with respect to M if u
and u1 are U -agents, w and w1 are W -agents, (u1, w1) is in M , (w, u1), (w1, u) are not in M , w and u are
unsaturated in M , u1 and w1 are saturated in M , and (u1, w1) is not a blocking pair for the b-matching
M ′ = (M \ (u1, w1)) ∪ {(w, u1), (w1, u)}. Since (w, u1) is not blocking for M , w is not better for u1

than any of the W -agents currently belonging to M(u1), and analogously, u is not better for w1 than any
of the U -agents currently belonging to M(w1). Thus if P is dangerous, then either w and w1 are equally
good for u1 and then P is called a masculine dangerous path, or u and u1 are equally good for w1 and
then P is called a feminine dangerous path.

An approximation algorithm for finding stable b-matchings is constructed analogously to the
algorithm for finding stable matchings. U -agents play the role of men and W -agents play the role of
women. For convenience, we shall refer to a U -agent as "he" and to a W -agent as "she". We adapt the
terminology from the one-to-one setting to the current one as follows.

• If a U -agent u is in M(w), and there is at least one unsaturated W -agent w1 /∈ M(u) different
from w such that w and w1 are equally good for u, then we say that w1 is a satellite of u w.r.t. w
and u is satellitic w.r.t. w.
• W -agent w belonging to M(u) such that u is satellitic w.r.t. w is said to be co-satellitic.
• If e = (u,w) is such that w is unsaturated and there is at least one unsaturated W -agent w1 6= w

such that w and w1 are equally good for u, then e is called special, and consequently, (u,w1) is
also called special.
• If a U -agent u has at least one unsaturated W -agent w /∈ M(u) incident with him, then he is

called subsatellitic.
• A saturated and not co-satellitic W -agent w ∈ M(u) such that u is subsatellitic is said to be

co-subsatellitic w.r.t. u′ if u′ /∈M(w) and u and u′ are equally good for her.
• By a worst U -agent belonging to M(w) we will mean any U -agent u ∈ M(w) such that there is

no other U -agent u′ ∈M(w) who is worse for w than u.
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Algorithm ASBM (short for Approximate Stable b-Matching)

Each U -agent u’s preference list Lu is organized in such a way that if Lu contains a tie t, then unsaturated
W -agents in t come before saturated W -agents in t. At the beginning, all W -agents are unsaturated and ties on
U -agents’s lists are broken arbitrarily, and in the course of running the algorithm, whenever W -agent w becomes
saturated for the first time, we move her to the end of every tie she belongs to.

while there exists an unsaturated U -agent u with a nonempty list Lu or a nonempty list L′u

if Lu 6= ∅, then
w ←W -agent at the top of u’ s list Lu

if (u,w) is not special, then remove w from Lu

if w is unsaturated, then M ←M ∪ (u,w)

else if w is co-satellitic, then
let w′ be a satellite of a U -agent u′ ∈M(w) w.r.t. w
if (u′, w′) is not special, then remove w′ from Lu′

M ←M ∪ {(u,w), (u′, w′)}\(w, u′)
else if w prefers u to a worst U -agent in M(w), then

let u′ denote any worst U -agent belonging to M(w)

M ←M ∪ (u,w)\(w, u′)
if w is co-subsatellitic w.r.t. u′, then add w to the end of list L′u′

else if w is co-subsatellitic w.r.t. u, then add w to the end of list L′u.
else

w ←W -agent at the top of u’ s list L′u
remove w from L′u
if w is co-subsatellitic w.r.t. u, then

let u′ denote a subsatellitic U -agent in M(w) equally good for w as u
M ←M ∪ (u,w)\(w, u′)
if w is co-subsatellitic w.r.t. u′, then add w to the end of L′u′

5. Correctness of Algorithm ASBM

The correctness of Algorithm ASBM is proved in a very similar way as the correctness of Algorithm
GS Modified.

Lemma 3. 1. If a W -agent becomes saturated, she will stay saturated.
2. A co-satellitic W -agent w accepts every proposal. Once a saturated W -agent is not co-satellitic,

she cannot become co-satellitic later.
3. A W -agent w ∈ M(u) can reject u only if w is saturated and a) u is satellitic w.r.t. w (w is

co-satellitic), or b) w is not co-satellitic, u is one of the worst U -agents belonging to M(w), and
w receives a proposal from u′ who is better for w than u, or c) w is not co-satellitic and u is one
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of the worst U -agents belonging to M(w), u is subsatellitic, and w is co-subsatellitic w.r.t. u′ who
proposes from L′u′

4. A saturated W -agent w who is not co-satellitic can accept a U -agent u′ only if u′ is at least as
good for w as a worst U -agent u ∈ M(w); moreover if u′ is equally good for w as u, then w

accepts u′ only if w is co-subsatellitic w.r.t. u′ and u′ proposes from L′u′ .

The proof of Lemma 3 is very similar to that of Lemma 1 and follows directly from the description
of Algorithm ASBM.

Theorem 2. Let M denote a b-matching computed by Algorithm ASBM. Then M is a 3/2-approximation
of an optimal stable b-matching.

Proof. We will show that the underlying graph does not contain blocking pairs and dangerous paths
with respect to M . The non-existence of a dangerous path for the stable matching found guarantees the
approximation ratio 3/2.

Suppose that (u,w) is a blocking pair. Agent u is either unsaturated or there exists w′ ∈M(u) worse
for u than w. It means that at some point u proposed to w from Lu when edge (u,w) was not special.
If u’s proposal to w was rejected, then at that point w was saturated and not co-satellitic, and the worst
u′ ∈ M(w) was at least as good as u for w (by Lemma 3), and thus (also by claim 4 of Lemma 3) w
could not later become matched to some u′′ who is worse for w than u. Therefore u got accepted then and
later got rejected. Since at the moment of that proposal edge (u,w) was not special, u was not satellitic
w.r.t. w (and clearly could not become satellitic later.) By claim 3 of Lemma 3, W -agent w was not
co-satellitic at the moment of rejecting u, and the worst U -agent belonging to M(w) was u. Therefore
by claim 4 of Lemma 3, w could not later become matched to some u′′ who is worse for her than u.
A contradiction.

Suppose now that the graph contains a masculine dangerous path (u′, w, u, w′) such that u ∈ M(w).
Thus u is satellitic w.r.t. w and w is co-satellitic. It means that at some point u′ proposed to w from
Lu′ when edge (u′, w) was not special. Then w was either co-satellitic, because she is co-satellitic
now, or unsaturated. Therefore u′ got accepted. Later on he was clearly rejected. However, by claim 3 of
Lemma 3 and the description of the algorithm ABSM, this is impossible, because a co-satellitic w rejects
only U -agents who are satellitic w.r.t. w.

Finally, suppose that the graph contains a feminine dangerous path (u′, w, u, w′) such that u ∈M(w).
Thus w is co-subsatellitic w.r.t. u′, and u is subsatellitic. At some point u′ proposed to w from Lu′

when edge (u′, w) was not special. If he got rejected, then w was not co-satellitic, and a worst U -agent
u′′ ∈ M(w) was equally good for her as u′ and hence as u. By the description of the algorithm, at that
point w was co-subsatellitic w.r.t. u′, and u′ added w to the end of list L′u′ . If he was accepted (i.e.,
when he was proposing from Lu′ and edge (u′, w) was not special), then later he was rejected, and by
the description of the algorithm, he also must have added w to the end of list L′u′ . When u′ proposed
to w from L′u′ , w was still co-subsatellitic w.r.t. u′ (because w is co-subsatellitic w.r.t. u′ now), hence
u′ was accepted (because u′ proposing from L′u′ is not subsatellitic) and could not have got rejected
later if there were still subsatellitic U -agents matched with w who were equally good as u′ for w.
A contradiction. 2
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6. Data Structures and Running Time

Each agent a (either a U -agent or a W -agent) has a preference list La, which is a list of lists, i.e., we
have a list for each tie. For each list we have access to both its first and last element.

Each agent has a pointer to their position in every tie they belong to (here a 1-element list is also
considered a tie). Whenever W -agent w gets saturated for the first time, w goes over her whole list Lw

and moves herself to the end of every tie she belongs to, as explained in the description of Algorithm
ASBM. This operation takes O(|Lw|) time.

Every W -agent w stores information about U -agents currently belonging to M(w) in a priority queue.
U -agents belonging to M(w) who are equally good for w are kept in one list, thus the priority queue
contains lists. Each such list is associated with a priority value, which is the position the U -agents
on that list have on the initial list Lw, i.e., the U -agents that are at the top tie of list Lw have priority
equal to 1. We implement a priority queue as a balanced tree with an additional pointer to the maximum
element. We will use the following operations:

• finding the maximum element (takes O(1) time)
• deleting a given element (takes O(log n) time, where n denotes the number of elements in a

priority queue)
• inserting a given element (takes O(log n) time)
• finding an element having a certain priority value (takes O(log n) time).

After deleting or inserting an element we update the pointer to the maximum element, which takes
O(log n) time.

Each U -agent u keeps track of W -agents currently belonging to M(u) in a list.
Each U -agent u has the counter of the number of unsaturated W -agents incident with him, and

whenever a saturated W -agent moves herself to the end of the ties, U -agents also decrease respective
counters. Therefore checking if u is subsatellitic takes constant time.

Each W -agent w has a separate list Sw of satellitic U -agents w.r.t. w belonging to M(w). Every time
w gets matched to some new U -agent u who is satellitic with respect to w, she adds u to Sw. When we
want to check if w is co-satellitic, we go over Sw and for each u ∈ Sw check if u is still satellitic w.r.t.
w. Checking if a U -agent u is satellitic w.r.t. w can be done as follows. W -agent w has a pointer to
her position in a tie t on Lu. We also have access to the first element of t. If the first element of t is
unsaturated, then it means that u is satellitic w.r.t. w. This way we can also find a satellite of a satellitic
U-agent in M(w). If u is not satellitic w.r.t. w, we remove u from Sw, otherwise we do an appropriate
exchange. Once u is removed from Sw, he will not be added to Sw again. It is so since once u has
no unsaturated W -agents equally good for him as w on his list, it will stay so. Hence the overall time
Algorithm ASBM spends on Sw is O(|Lw|).

Each list describing a tie within the priority queue of U -agents belonging to M(w) is organized in
such a way that subsatellitic U -agents proceed U -agents that are not subsatellitic. Whenever a U -agent u
ceases to be subsatellitic, we move him to the end of every list in every priority queue he is in. Moving u

to the end of every such list takes O(|M(u)|) time. Every u ceases to be subsatellitic at most once in the
course of running the algorithm. Therefore the total time spent on moving U -agents who ceased to be
subsatellitic to the ends of priority queues does not exceed O(m). This way, to see if w is co-subsatellitic
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w.r.t. u, we look at the list in the priority queue containing U -agents in M(w) that are equally good for
w as u and see if the first U -agent on this list is subsatellitic.

Each U -agent u makes a proposal to every W -agent on Lu at most twice and to every W -agent on
L′u at most once. The second statement follows from the observation that whenever an agent u proposes
from L′u, he does not have any unsaturated W -agents on L′u. After each such proposal, Algorithm
ASBM performs at most two insertions and at most one deletion on a suitable priority queue. Each
insertion and each deletion into a priority queue containing U -agents belonging to M(w) takes at most
O(log b(w)) time.

Summing all the arguments together, we get that the running time of Algorithm ASBM is
O(mmax{1, logmax{b(w) : w ∈ W}}), where m denotes the number of edges in G. If max{b(u) :

u ∈ U} < max{b(w) : w ∈ W}, then we can swap the roles of U -agents and W -agents. Therefore we
can state the following.

Theorem 3. The running time of Algorithm ASBM is O(mmax{1, log c}), where c = min{max{b(v) :
v ∈ U},max{b(v) : v ∈ W}} and m denotes the number of the edges.
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