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Abstract:

 We give a [image: there is no content]-approximation algorithm for finding stable matchings that runs in [image: there is no content] time. The previous most well-known algorithm, by McDermid, has the same approximation ratio but runs in [image: there is no content] time, where n denotes the number of people and m is the total length of the preference lists in a given instance. In addition, the algorithm and the analysis are much simpler. We also give the extension of the algorithm for computing stablemany-to-many matchings.
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1. Introduction

In the paper, we consider a variant of the problem called Stable Matchings, known also in the literature as the Stable Marriage problem. The problem is defined as follows. We are given two sets W and U of women and men. Each woman w of W has a preference list [image: there is no content] of a subset of men, and similarly, each man m of U has a preference list [image: there is no content] of a subset of women. The preference lists are linearly ordered lists of ties, which are subsets of men (or respectively, women), who are equally good for a given woman (respectively, man). Ties are disjoint and can contain also one person, appropriately a man or a woman. Thus if m and [image: there is no content] are on list [image: there is no content] of woman w, then either (1) w prefers m to [image: there is no content], or in other words, m is better for w than [image: there is no content]; or (2) m and [image: there is no content] are in a tie on [image: there is no content], and then we say that w is indifferent between m and [image: there is no content] or that m and [image: there is no content] are equally good for her; or (3) w prefers [image: there is no content] to m. Man m and woman w are said to be mutually acceptable to each other if they belong to each other’s preference lists. The most preferred person(s) is (are) at the top of the preference lists. A matching is a set of pairs [image: there is no content] such that [image: there is no content] and m and w are mutually acceptable, and each man/woman belongs to at most one pair. If [image: there is no content] belongs to a certain matching M, then we write [image: there is no content], which means that in M woman w is a partner of m, and analogously that [image: there is no content]. If man m (or woman w) is not contained in any pair of a matching M, then we say that m (or w) is unmatched or free in M. A matching M is called stable if it does not admit a blocking pair. A pair [image: there is no content] is blocking for M if (1) m and w are mutually acceptable; (2) m is unmatched or prefers w to [image: there is no content]; and (3) w is unmatched or prefers m to [image: there is no content]. Each instance of the problem can be represented by a bipartite graph [image: there is no content] with vertices of U representing men, vertices of W representing women and edges E connecting all mutually acceptable pairs of men and women. The problem we are interested in is that of finding a stable matching that has the largest cardinality. The version in which there are no ties in the preference lists of men and women has been long known and an algorithm by Gale and Shapley [3] solves it exactly in [image: there is no content] time, where m denotes the number of edges in the underlying graph. In the version without ties a stable matching always exists, and every stable matching has the same cardinality. If we allow ties, as in the problem we consider in this paper, then a stable matching also always exists and can be found via the Gale-Shapley algorithm by breaking ties arbitrarily. However, the sizes of stable matchings can vary considerably, and the problem of finding a stable matching of maximum cardinality is [image: there is no content]-hard, which was shown by Manlove et al. in [14]. Therefore it is desirable to devise an approximation algorithm for the problem.

Previous and related results Previous approximation algorithms were presented in [7,8,9,11,14]. Currently the best approximation algorithm is by McDermid [15] and achieves the approximation guarantee [image: there is no content]. Its running time is [image: there is no content], where n denotes the number of vertices and m the number of edges. Inapproximabilty results were shown in [4,5,17]. For a variant of the Stable Matchings problem, in which ties are allowed on one side only, an approximation algorithm achieving the ratio [image: there is no content] has been given in [10]. A slightly different linear time [image: there is no content]-approximation algorithm based on an earlier version of this paper was given by Király in [12]. The conference version of this paper appeared also in the proceedings of WAOA’11 (Workshop on Approximation and Online Algorithms) [16].

Our results While constructing approximation algorithms, the goal is not only to achieve a good approximation guarantee but also good running time. We give a 3/2-approximation algorithm that runs in [image: there is no content] time and additionally is significantly simpler than that of McDermid. In devising the algorithm we were led by the observation that it suffices to find a stable matching that will not create a dangerous path, which is defined later. We also give the extension of the algorithm for computing stable many-to-many matchings, which runs in [image: there is no content] time, where c denotes the minimum of the maximal capacities in each side of the bipartition. In particular, it means that we give an [image: there is no content]-time algorithm for the Hospitals-Residents problem, improving on an [image: there is no content] time algorithm given by McDermid, where d denotes the maximal capacity of a hospital. McDermid’s algorithm follows from the reduction of the Hospitals-Residents problem to the Stable Matchings problem by "cloning" hospitals. The approach by cloning does not work if the vertices on both sides of the bipartition are allowed to have capacities larger than 1. Since these problems have many practical applications (see [1,2,6], for example), we believe our algorithms will be of help.



2. Algorithm

For a given instance of the problem let [image: there is no content] denote an optimal (i.e., largest) stable matching and let [image: there is no content] be any two matchings. We say that e is an M-edge if [image: there is no content]. A path P or a cycle C is called alternating (w.r.t. M) if its edges alternate between M-edges and edges of E∖M. It is well known from matching theory (see [13] for example) that [image: there is no content] disintegrates into a set of alternating paths and alternating cycles. (For two sets [image: there is no content], the set [image: there is no content] denotes [image: there is no content]∖Y) ∪ (Y∖[image: there is no content].) Let S denote a set of maximal alternating paths and cycles of M⊕[image: there is no content]. Consider any alternating cycle C of S or any alternating path P of even length of S. Then both C and P contain the same number of M-edges and [image: there is no content]-edges. Consider an alternating path P of length [image: there is no content] of S. Then either|[image: there is no content]∩P||M∩P|=k+1k or |M∩P||[image: there is no content]∩P|=k+1k. Therefore, if M is stable and S does not contain a path of length 3 with the middle edge being an M-edge, then |[image: there is no content]|≤[image: there is no content]|M| and M is a [image: there is no content]-approximation of [image: there is no content]. To achieve a [image: there is no content]-approximation, we will eliminate such potential paths of length 3 of M⊕[image: there is no content].

Accordingly, we define a dangerous path w.r.t. a matching M to be an alternating path [image: there is no content] such that w and m are unmatched in M (which means that [image: there is no content] is in M and [image: there is no content] do not belong to M) and [image: there is no content] is not a blocking pair for the matching [image: there is no content]. We need to concern ourselves only with dangerous paths w.r.t. a matching M that can be extended to a stable matching, i.e., M is such that there exists a stable matching [image: there is no content] with M⊆[image: there is no content]. Therefore, if [image: there is no content] is a dangerous path w.r.t. M, then w and [image: there is no content] do not form a blocking pair for M, which means that [image: there is no content] is at least as good for [image: there is no content] as w, and similarly, [image: there is no content] and m do not form a blocking pair for M, hence [image: there is no content] is at least as good for [image: there is no content] as m. Since [image: there is no content] is not a blocking pair for the matching [image: there is no content], either [image: there is no content] is indifferent between w and [image: there is no content] and then we say that P is a masculine dangerous path, or [image: there is no content] is indifferent between m and [image: there is no content] and then we say that P is a feminine dangerous path. A path P can of course be both a masculine and a feminine dangerous path.

We also introduce the following terminology.


	If man m is matched to woman w and there is at least one free woman [image: there is no content] such that w and [image: there is no content] are equally good for m, then we say that [image: there is no content] is a satellite of m and m is satellitic.


	If woman w is matched to a satellitic man m, then we say that w is co-satellitic.


	If [image: there is no content] is such that w is free and there is at least one free woman [image: there is no content]≠w such that w and [image: there is no content] are equally good for m, then e is called special, and consequently, (m,[image: there is no content]) is also called special.


	If man m has at least one free woman incident with him, then he is said to be subsatellitic.


	Woman w matched to a subsatellitic man m and not co-satellitic is said to be co-subsatellitic w.r.t. [image: there is no content] if m and [image: there is no content] are equally good for her.




Figure 1 illustrates the notions introduced above.

Figure 1. The description of a dangerous path and its two types: a feminine dangerous path and a masculine dangerous path.
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Let us notice that if a free man m has a co-satellitic woman w on his list, then it is possible that he belongs to a masculine dangerous path, and analogously, if a free man m has a woman w on his list who is co-subsatellitic with respect to him, then it is possible that he belongs to a feminine dangerous path.




2.1. Description of Algorithm GS Modified

Algorithm GS Modified given further on is to some extent modeled on the Gale-Shapley algorithm in which men propose to women on their lists and women dispose. In the course of running the algorithm, preference lists [image: there is no content] will diminish and some additional lists [image: there is no content] will be built. If at some point a free man m has a nonempty list [image: there is no content], it means that he has not yet proposed to all women on his list [image: there is no content] and potentially belongs to a blocking pair or a masculine dangerous path. If a free man m has a nonempty list [image: there is no content], it means that he potentially belongs to a feminine dangerous path.

Whenever it is man m’s turn to propose and [image: there is no content]≠∅, he would like to get matched to the best possible woman on his list [image: there is no content] without creating a blocking pair (as in GS algorithm) but also ensure that he does not belong to any masculine dangerous path. To this end, m proposes to the woman w to whom he has not yet proposed and who is as high on [image: there is no content] as possible. If w is free or matched to someone worse for her than m, she accepts m and rejects her current partner if she had one. If w is co-satellitic, which means that she is matched to some man [image: there is no content] such that there is a free woman [image: there is no content] who is equally good for [image: there is no content] as w, then it means that m currently belongs to a masculine dangerous path (m,w,[image: there is no content],[image: there is no content]). In this case w does not care whether m is better for her than [image: there is no content] and accepts him while rejecting [image: there is no content], and immediately afterwards [image: there is no content] proposes to [image: there is no content], who accepts him. This operation can be very well viewed as though [image: there is no content] proposed to [image: there is no content] without having proposed to w first, and some time later m proposed to w. (Here edge ([image: there is no content],w) was special at the moment [image: there is no content] proposed to w for the first time and that’s why if [image: there is no content] gets rejected by [image: there is no content], he will propose to w again, because in this case w was not removed from L[image: there is no content]. Let us notice that if [image: there is no content] were allowed to remove w from his list L[image: there is no content] at the moment he proposed to w for the first time and the edge ([image: there is no content],w) was special, then after being rejected by [image: there is no content] later on, he would not propose to w for the second time, and as a result a blocking pair involving [image: there is no content] and w might arise.) To avoid multiple operations of this kind concerning one woman, we will assume that given a tie, a man proposes to unmatched women before proposing to matched ones. This ensures that in the above scenario, m cannot become satellitic after being matched with w. If a woman w to whom m proposes is matched to man [image: there is no content] equally good for her as m, and w is co-subsatellitic w.r.t. m, meaning that [image: there is no content] has some free women on his list, then at the current moment m belongs to a feminine dangerous path. What happens now is that w rejects m but m adds w to his list [image: there is no content]. (Woman w does not accept m because m may be subsatellitic as well.) In every other case w rejects m.

If man m has proposed to all women on his list [image: there is no content] and remained free, but his list [image: there is no content] is nonempty, he will propose to women on [image: there is no content] starting from the top. If he proposes to w, and w is matched to some man [image: there is no content] who is equally good for her as m, and additionally, [image: there is no content] is subsatellitic, then w accepts m and rejects [image: there is no content]. Otherwise w rejects him. Let us notice that it cannot happen that w prefers m to [image: there is no content], because man m had proposed to all women on his list [image: there is no content] before proceeding to list [image: there is no content]⊆[image: there is no content]. Therefore he must have been rejected by w at some point, which means that w must be now matched to someone at least as good for her as m. (This will also be formally proved in the next section.)







Algorithm GS Modified

Each man m’s preference list [image: there is no content] is organized in such a way that if [image: there is no content] contains a tie t, then free women in t come before matched women in t. At the beginning all women are free and ties on men’s lists are broken arbitrarily, and in the course of running the algorithm, whenever woman w becomes matched for the first time, say to man m, we move her to the end of every tie she belongs to.

while there exists a free man m with a nonempty list [image: there is no content] or a nonempty list [image: there is no content]

  if [image: there is no content]≠∅, then

    [image: there is no content] woman at the top of m’ s list [image: there is no content]

    if [image: there is no content] is not special, then remove w from [image: there is no content]

    if w is free, then [image: there is no content]

    else if w is co-satellitic, then

        let [image: there is no content] be a satellite of [image: there is no content]

        if (M(w),[image: there is no content]) is not special, then remove [image: there is no content] from L[image: there is no content]

        M←M∪{[image: there is no content],(M(w),[image: there is no content])}∖[image: there is no content]

    else if w prefers m to [image: there is no content], then [image: there is no content]∖[image: there is no content]

    else if w is co-subsatellitic w.r.t. m, then add w to the end of list [image: there is no content]

  else

    [image: there is no content] woman at the top of m’ s list [image: there is no content]

    remove w from [image: there is no content]

    if w is co-subsatellitic w.r.t. m, then [image: there is no content]∖[image: there is no content]





First we show how Algorithm GS Modified runs on the following example. Suppose the preference lists of men [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content] and women [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content] are as follows. The brackets indicate ties.



[image: there is no content]:([image: there is no content],[image: there is no content])[image: there is no content][image: there is no content]:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]:[image: there is no content][image: there is no content]:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]:[image: there is no content]([image: there is no content],[image: there is no content])[image: there is no content][image: there is no content]:[image: there is no content]








Suppose that man [image: there is no content] starts. He proposes to woman [image: there is no content] and gets accepted ([image: there is no content] is a special edge and [image: there is no content] is a satellite of [image: there is no content]). Now suppose that it is [image: there is no content]’s turn to propose. (It might also be [image: there is no content] or [image: there is no content].) He proposes to woman [image: there is no content] and gets accepted, because [image: there is no content] is co-satellitic. Man [image: there is no content] gets matched with woman [image: there is no content]. Next [image: there is no content] proposes to woman [image: there is no content] and gets accepted. Now [image: there is no content] proposes to [image: there is no content] (as [image: there is no content] was a special edge) and gets accepted. Then [image: there is no content] proposes to [image: there is no content] and gets accepted. Next [image: there is no content] proposes to [image: there is no content] and gets rejected, but [image: there is no content] is co-subsatellitic w.r.t. [image: there is no content], and [image: there is no content] adds [image: there is no content] to his list L[image: there is no content]′. Afterwards [image: there is no content] proposes to [image: there is no content] again, this time from L[image: there is no content]′, and gets accepted. Finally [image: there is no content] proposes to [image: there is no content] andgets accepted.




3. Correctness of Algorithm GS Modified

In this section we prove the correctness of Algorithm GS Modified.

If w∈[image: there is no content] and m proposes to w, then we will sometimes say that m proposes from [image: there is no content] (to w). If [image: there is no content]=∅,w∈[image: there is no content] and m proposes to w, then we will sometimes say that m proposes from [image: there is no content] (to w).

Lemma 1.


	If woman w becomes matched, she will stay matched.


	Woman w can become co-satellitic only the first time someone, say m, proposes to her and only if at the time of the proposal edge [image: there is no content] is special. If a co-satellitic woman w receives a proposal, she always accepts it and is no longer co-satellitic.


	If woman w is matched to man m and is not co-satellitic, she can accept man [image: there is no content] only if [image: there is no content] is at least as good for her as m. Moreover, if [image: there is no content] is better for her than m, she always accepts him. If [image: there is no content] is equally good for her as m, then she accepts him only if she is co-subsatellitic w.r.t. [image: there is no content] and [image: there is no content] proposes from L[image: there is no content]′.


	If woman w matched to man m is not co-satellitic and changes m for [image: there is no content], who is equally good for her as m, then m is subsatellitic and [image: there is no content] is not.




Proof. Statements 1 and 3 follow directly from the description of Algorithm GS Modified.

Let us prove statement 2. If w is matched and m proposes to her, then there is no free woman [image: there is no content] incident with m who is equally good for m as w (because then m would propose to [image: there is no content] before proposing to w). As a result, if w becomes matched to m, she will not become co-satellitic and she will cease to be co-satellitic if she was before.

It remains to prove statement 4. If w changes m for [image: there is no content] who is equally good for her as m (and w is not co-satellitic), then by statement 3, [image: there is no content] proposes from L[image: there is no content]′ and m is subsatellitic. Man [image: there is no content] proposing from L[image: there is no content]′ does not have any free women incident with him. □

Lemma 2. Let M denote a matching computed by Algorithm GS Modified. Then the underlying graph does not contain blocking pairs and dangerous paths w.r.t. M.

Proof. Suppose that [image: there is no content] is a blocking pair. Man m is either free or [image: there is no content] is worse for him than w. It means that at some point m proposed to w from [image: there is no content] when edge [image: there is no content] was not special. (Clearly, at some point m proposed to w from [image: there is no content]. Assume that at that point edge [image: there is no content] was special. Then w was free and accepted m. However, m got rejected later and therefore proposed to w from [image: there is no content] again, when edge [image: there is no content] was no longer special.) If w rejected him then, then by claim 2 of Lemma 1, w was not co-satellitic and, by claim 3 of Lemma 1, was matched to someone at least as good for her as m and thus would have stayed matched to someone as good for her as m. If w accepted m, then after getting matched to m she was not co-satellitic, and by claim 3 of Lemma 1, would have stayed matched to someone at least as good for her as m. Either way we get a contradiction.

Suppose now that the graph contains a masculine dangerous path ([image: there is no content],w,m,[image: there is no content]) such that [image: there is no content]. Thus m is satellitic and w is co-satellitic. Since she is co-satellitic, it means that the only proposal she ever got was from m, but [image: there is no content] must have proposed to her too, a contradiction.

Finally, suppose that the graph contains a feminine dangerous path ([image: there is no content],w,m,[image: there is no content]) such that [image: there is no content]. Thus m is subsatellitic and w is co-subsatellitic w.r.t. [image: there is no content], also [image: there is no content] is not subsatellitic. At some point, [image: there is no content] proposed to w from L[image: there is no content] when ([image: there is no content],w) was not special. If he got accepted at that moment, then later on he could not become rejected, because by claim 3 of Lemma 1, after accepting [image: there is no content] woman w was not co-satellitic, and by claim 4 of Lemma 1, could not accept a subsatellitic man equally good for her as her current partner. Therefore he was rejected then, and w was already matched with m (by claims 3 and 4 of Lemma 1). Hence w was co-subsatellitic w.r.t. [image: there is no content] (because m was subsatellitic), and [image: there is no content] added w to the end of list L[image: there is no content]′. Thus later [image: there is no content] proposed to w from L[image: there is no content]′. According to the algorithm, w would have accepted him and could not later on become matched to someone subsatellitic and equally good for her as [image: there is no content]. A contradiction. □

Theorem 1. Algorithm GS Modified computes a stable matching M which is a [image: there is no content]- approximation of the optimal solution. Algorithm GS Modified runs in [image: there is no content] time.

Proof. By Lemma 2, matching M computed by Algorithm GS Modified is stable and does not contain dangerous paths. Therefore M is a [image: there is no content]-approximation of the optimal solution.

The running time of the algorithm is proportional to the sum of the lengths of lists [image: there is no content] and [image: there is no content]. By the length of list [image: there is no content] or [image: there is no content] we mean the number of people on it and not the number of ties. Each edge of [image: there is no content] is scanned at most twice–twice only if the first time it was scanned, it was special, and each edge of [image: there is no content] is scanned at most once. Checking whether a given woman w is co-satellitic or co-subsatellitic can be done in constant time as follows. Suppose that w is matched to man m. We look at the tie at the top of list [image: there is no content]. If this tie contains woman w and some free woman [image: there is no content], then w is co-satellitic, otherwise she is not. (Recall that the free women proceed matched ones in a tie.) To facilitate checking whether a given man is subsatellitic, each man has the counter of free women incident with him, and whenever a woman becomes matched and moves herself to the end of the ties, men decrease their respective counters. The number of movements in the ties is upperbounded by the sum of the lengths of lists [image: there is no content] as once a woman becomes matched, she stays so. □

Let us finally make the following remark.

If we break ties and run the classic Gale-Shapley algorithm, then the cardinality of the computed matching depends on the order in which we break ties. Algorithm GS Modified outputs a matching that would have been output by the GS algorithm if ties were broken as follows. Men’s lists would be identical to those at the beginning of Algorithm GS Modified but for one thing: if at some point during running Algorithm GS Modified, man m proposes to a co-satellitic woman w, and as a result m gets matched to w, and w’s partner [image: there is no content] gets matched to his satellite [image: there is no content], then a tie on L[image: there is no content] would be broken in such a way that [image: there is no content] comes before w. Every tie t on a woman w’s list would be first broken into ([image: there is no content],[image: there is no content],…,ms) in such a way that [image: there is no content] denotes the first man of t to whom w got matched without becoming co-satellitic, and assuming that it happened at some step S, [image: there is no content] denotes the first man of t who proposed to w after step S, [image: there is no content] denotes the second man of t, who proposed to w after step S and so on. Next we would make the following alterations on women’s lists: if at some point, man m proposes from [image: there is no content] to a co-subsatellitic woman w matched to [image: there is no content], then a tie on [image: there is no content] would be broken in such a way that m comes before [image: there is no content].



4. Extension to Bipartite Stable b-Matchings

Suppose we have a simple bipartite graph [image: there is no content], where [image: there is no content] and [image: there is no content] are disjoint sets, and a function b: [image: there is no content]. Then a subset [image: there is no content] is called a b-matching if for each [image: there is no content] it is [image: there is no content], where [image: there is no content] denotes the degree of vertex v in the graph [image: there is no content]. We refer to the vertices of U and W as U-agents and W-agents, respectively. Each U-agent u of U has a preference list [image: there is no content] of a subset of W-agents, and analogously, each W-agent w has a preference list [image: there is no content] of a subset of U-agents. The preference lists are linearly ordered lists of ties. The majority of the terminology for stable matchings goes through for stable b-matchings. Instead of saying that some agent or vertex is free, we will use the term unsaturated: agent v is unsaturated in a b-matching M if [image: there is no content] and if [image: there is no content], then we will say that v is saturated. For any agent v we will denote the set [image: there is no content]:[image: there is no content] by [image: there is no content]. A pair [image: there is no content] is blocking for a b-matching M if (1) u and w are mutually acceptable; (2) u is unsaturated or prefers w to one of the W-agents of [image: there is no content]; and (3) w is unsaturated or prefers u to one of the U-agents of [image: there is no content]. A b-matching M is said to be stable if it does not admit a blocking pair. As previously, we are interested in finding a stable b-matching of largest size. Let us also note that if for each u in U we have [image: there is no content], then the problem is known under the name Hospitals-Residents problem or one-to-many stable matching problem.

Alternating paths and cycles are defined for b-matchings in an analogous way as for matchings, but we do not require paths and cycles to be simple, i.e., an alternating path P w.r.t. a b-matching M is defined as any sequence of edges [image: there is no content] such that the edges alternate between M-edges and edges of E∖M, and an alternating cycle C w.r.t. M is defined as an alternating path (w.r.t. M) that ends and begins with the same vertex, i.e., the sequence of edges has the form [image: there is no content]. As before, for any two b-matchings M and [image: there is no content], the symmetric difference [image: there is no content] can be partitioned into maximal alternating paths and cycles (i.e., no two alternating paths from the partition can be combined to form one alternating path). A given stable b-matching M might not be a 3/2-approximation of [image: there is no content], where [image: there is no content] denotes a stable b-matching of maximum size, only if the underlying graph contains a dangerous path defined as follows. If M is a stable b-matching, then a path P=(w,[image: there is no content],[image: there is no content],u) is called dangerous with respect to M if u and [image: there is no content] are U-agents, w and [image: there is no content] are W-agents, ([image: there is no content],[image: there is no content]) is in M, (w,[image: there is no content]),([image: there is no content],u) are not in M, w and u are unsaturated in M, [image: there is no content] and [image: there is no content] are saturated in M, and ([image: there is no content],[image: there is no content]) is not a blocking pair for the b-matching [image: there is no content]=(M∖([image: there is no content],[image: there is no content]))∪{(w,[image: there is no content]),([image: there is no content],u)}. Since (w,[image: there is no content]) is not blocking for M, w is not better for [image: there is no content] than any of the W-agents currently belonging to M([image: there is no content]), and analogously, u is not better for [image: there is no content] than any of the U-agents currently belonging to M([image: there is no content]). Thus if P is dangerous, then either w and [image: there is no content] are equally good for [image: there is no content] and then P is called a masculine dangerous path, or u and [image: there is no content] are equally good for [image: there is no content] and then P is called a feminine dangerous path.

An approximation algorithm for finding stable b-matchings is constructed analogously to the algorithm for finding stable matchings. U-agents play the role of men and W-agents play the role of women. For convenience, we shall refer to a U-agent as "he" and to a W-agent as "she". We adapt the terminology from the one-to-one setting to the current one as follows.


	If a U-agent u is in [image: there is no content], and there is at least one unsaturated W-agent [image: there is no content]∉M(u) different from w such that w and [image: there is no content] are equally good for u, then we say that [image: there is no content] is a satellite of u w.r.t. w and u is satellitic w.r.t. w.


	W-agent w belonging to [image: there is no content] such that u is satellitic w.r.t. w is said to be co-satellitic.


	If [image: there is no content] is such that w is unsaturated and there is at least one unsaturated W-agent [image: there is no content]≠w such that w and [image: there is no content] are equally good for u, then e is called special, and consequently, (u,[image: there is no content]) is also called special.


	If a U-agent u has at least one unsaturated W-agent [image: there is no content] incident with him, then he iscalled subsatellitic.


	A saturated and not co-satellitic W-agent [image: there is no content] such that u is subsatellitic is said to be co-subsatellitic w.r.t. [image: there is no content] if [image: there is no content]∉M(w) and u and [image: there is no content] are equally good for her.


	By a worst U-agent belonging to [image: there is no content] we will mean any U-agent [image: there is no content] such that there is no other U-agent [image: there is no content]∈M(w) who is worse for w than u.










Algorithm ASBM (short for Approximate Stable b-Matching)

Each U-agent u’s preference list [image: there is no content] is organized in such a way that if [image: there is no content] contains a tie t, then unsaturated W-agents in t come before saturated W-agents in t. At the beginning, all W-agents are unsaturated and ties on U-agents’s lists are broken arbitrarily, and in the course of running the algorithm, whenever W-agent w becomes saturated for the first time, we move her to the end of every tie she belongs to.

while there exists an unsaturated U-agent u with a nonempty list [image: there is no content] or a nonempty list [image: there is no content]

  if [image: there is no content]≠∅, then

    [image: there is no content]W-agent at the top of u’ s list [image: there is no content]

    if [image: there is no content] is not special, then remove w from [image: there is no content]

    if w is unsaturated, then [image: there is no content]

    else if w is co-satellitic, then

        let [image: there is no content] be a satellite of a U-agent [image: there is no content]∈M(w) w.r.t. w

        if ([image: there is no content],[image: there is no content]) is not special, then remove [image: there is no content] from L[image: there is no content]

        M←M∪{[image: there is no content],([image: there is no content],[image: there is no content])}∖(w,[image: there is no content])

    else if w prefers u to a worst U-agent in [image: there is no content], then

        let [image: there is no content] denote any worst U-agent belonging to [image: there is no content]

        [image: there is no content]∖(w,[image: there is no content])

        if w is co-subsatellitic w.r.t. [image: there is no content], then add w to the end of list L[image: there is no content]′

    else if w is co-subsatellitic w.r.t. u, then add w to the end of list [image: there is no content].

  else

    [image: there is no content]W-agent at the top of u’ s list [image: there is no content]

    remove w from [image: there is no content]

    if w is co-subsatellitic w.r.t. u, then

        let [image: there is no content] denote a subsatellitic U-agent in [image: there is no content] equally good for w as u

        [image: there is no content]∖(w,[image: there is no content])

        if w is co-subsatellitic w.r.t. [image: there is no content], then add w to the end of L[image: there is no content]′







5. Correctness of Algorithm ASBM

The correctness of Algorithm ASBM is proved in a very similar way as the correctness of Algorithm GS Modified.

Lemma 3.


	If a W-agent becomes saturated, she will stay saturated.


	A co-satellitic W-agent w accepts every proposal. Once a saturated W-agent is not co-satellitic, she cannot become co-satellitic later.


	A W-agent [image: there is no content] can reject u only if w is saturated and a) u is satellitic w.r.t. w (w is co-satellitic), or b) w is not co-satellitic, u is one of the worst U-agents belonging to [image: there is no content], and w receives a proposal from [image: there is no content] who is better for w than u, or c) w is not co-satellitic and u is one of the worst U-agents belonging to [image: there is no content], u is subsatellitic, and w is co-subsatellitic w.r.t. [image: there is no content] who proposes from L[image: there is no content]′


	A saturated W-agent w who is not co-satellitic can accept a U-agent [image: there is no content] only if [image: there is no content] is at least as good for w as a worst U-agent [image: there is no content]; moreover if [image: there is no content] is equally good for w as u, then w accepts [image: there is no content] only if w is co-subsatellitic w.r.t. [image: there is no content] and [image: there is no content] proposes from L[image: there is no content]′.




The proof of Lemma 3 is very similar to that of Lemma 1 and follows directly from the description of Algorithm ASBM.

Theorem 2. Let M denote a b-matching computed by Algorithm ASBM. Then M is a [image: there is no content]-approximation of an optimal stable b-matching.

Proof. We will show that the underlying graph does not contain blocking pairs and dangerous paths with respect to M. The non-existence of a dangerous path for the stable matching found guarantees the approximation ratio [image: there is no content].

Suppose that [image: there is no content] is a blocking pair. Agent u is either unsaturated or there exists [image: there is no content]∈M(u) worse for u than w. It means that at some point u proposed to w from [image: there is no content] when edge [image: there is no content] was not special. If u’s proposal to w was rejected, then at that point w was saturated and not co-satellitic, and the worst [image: there is no content]∈M(w) was at least as good as u for w (by Lemma 3), and thus (also by claim 4 of Lemma 3) w could not later become matched to some [image: there is no content] who is worse for w than u. Therefore u got accepted then and later got rejected. Since at the moment of that proposal edge [image: there is no content] was not special, u was not satellitic w.r.t. w (and clearly could not become satellitic later.) By claim 3 of Lemma 3, W-agent w was not co-satellitic at the moment of rejecting u, and the worst U-agent belonging to [image: there is no content] was u. Therefore by claim 4 of Lemma 3, w could not later become matched to some [image: there is no content] who is worse for her than u. A contradiction.

Suppose now that the graph contains a masculine dangerous path ([image: there is no content],w,u,[image: there is no content]) such that [image: there is no content]. Thus u is satellitic w.r.t. w and w is co-satellitic. It means that at some point [image: there is no content] proposed to w from L[image: there is no content] when edge ([image: there is no content],w) was not special. Then w was either co-satellitic, because she is co-satellitic now, or unsaturated. Therefore [image: there is no content] got accepted. Later on he was clearly rejected. However, by claim 3 ofLemma 3 and the description of the algorithm ABSM, this is impossible, because a co-satellitic w rejects only U-agents who are satellitic w.r.t. w.

Finally, suppose that the graph contains a feminine dangerous path ([image: there is no content],w,u,[image: there is no content]) such that [image: there is no content]. Thus w is co-subsatellitic w.r.t. [image: there is no content], and u is subsatellitic. At some point [image: there is no content] proposed to w from L[image: there is no content] when edge ([image: there is no content],w) was not special. If he got rejected, then w was not co-satellitic, and a worst U-agent [image: there is no content]∈M(w) was equally good for her as [image: there is no content] and hence as u. By the description of the algorithm, at that point w was co-subsatellitic w.r.t. [image: there is no content], and [image: there is no content] added w to the end of list L[image: there is no content]′. If he was accepted (i.e., when he was proposing from L[image: there is no content] and edge ([image: there is no content],w) was not special), then later he was rejected, and by the description of the algorithm, he also must have added w to the end of list L[image: there is no content]′. When [image: there is no content] proposed to w from L[image: there is no content]′, w was still co-subsatellitic w.r.t. [image: there is no content] (because w is co-subsatellitic w.r.t. [image: there is no content] now), hence [image: there is no content] was accepted (because [image: there is no content] proposing from L[image: there is no content]′ is not subsatellitic) and could not have got rejected later if there were still subsatellitic U-agents matched with w who were equally good as [image: there is no content] for w. A contradiction. □



6. Data Structures and Running Time

Each agent a (either a U-agent or a W-agent) has a preference list [image: there is no content], which is a list of lists, i.e., we have a list for each tie. For each list we have access to both its first and last element.

Each agent has a pointer to their position in every tie they belong to (here a 1-element list is also considered a tie). Whenever W-agent w gets saturated for the first time, w goes over her whole list [image: there is no content] and moves herself to the end of every tie she belongs to, as explained in the description of Algorithm ASBM. This operation takes O(|[image: there is no content]|) time.

Every W-agent w stores information about U-agents currently belonging to [image: there is no content] in a priority queue. U-agents belonging to [image: there is no content] who are equally good for w are kept in one list, thus the priority queue contains lists. Each such list is associated with a priority value, which is the position the U-agents on that list have on the initial list [image: there is no content], i.e., the U-agents that are at the top tie of list [image: there is no content] have priorityequal to 1. We implement a priority queue as a balanced tree with an additional pointer to the maximum element. We will use the following operations:


	finding the maximum element (takes [image: there is no content] time)


	deleting a given element (takes [image: there is no content] time, where n denotes the number of elements in apriority queue)


	inserting a given element (takes [image: there is no content] time)


	finding an element having a certain priority value (takes [image: there is no content] time).




After deleting or inserting an element we update the pointer to the maximum element, which takes [image: there is no content] time.

Each U-agent u keeps track of W-agents currently belonging to [image: there is no content] in a list.

Each U-agent u has the counter of the number of unsaturated W-agents incident with him, and whenever a saturated W-agent moves herself to the end of the ties, U-agents also decrease respective counters. Therefore checking if u is subsatellitic takes constant time.

Each W-agent w has a separate list [image: there is no content] of satellitic U-agents w.r.t. w belonging to [image: there is no content]. Every time w gets matched to some new U-agent u who is satellitic with respect to w, she adds u to [image: there is no content]. When we want to check if w is co-satellitic, we go over [image: there is no content] and for each u∈[image: there is no content] check if u is still satellitic w.r.t. w. Checking if a U-agent u is satellitic w.r.t. w can be done as follows. W-agent w has a pointer to her position in a tie t on [image: there is no content]. We also have access to the first element of t. If the first element of t is unsaturated, then it means that u is satellitic w.r.t. w. This way we can also find a satellite of a satellitic U-agent in [image: there is no content]. If u is not satellitic w.r.t. w, we remove u from [image: there is no content], otherwise we do an appropriate exchange. Once u is removed from [image: there is no content], he will not be added to [image: there is no content] again. It is so since once u has no unsaturated W-agents equally good for him as w on his list, it will stay so. Hence the overall time Algorithm ASBM spends on [image: there is no content] is O(|[image: there is no content]|).

Each list describing a tie within the priority queue of U-agents belonging to [image: there is no content] is organized in such a way that subsatellitic U-agents proceed U-agents that are not subsatellitic. Whenever a U-agent u ceases to be subsatellitic, we move him to the end of every list in every priority queue he is in. Moving u to the end of every such list takes [image: there is no content] time. Every u ceases to be subsatellitic at most once in the course of running the algorithm. Therefore the total time spent on moving U-agents who ceased to be subsatellitic to the ends of priority queues does not exceed [image: there is no content]. This way, to see if w is co-subsatellitic w.r.t. u, we look at the list in the priority queue containing U-agents in [image: there is no content] that are equally good for w as u and see if the first U-agent on this list is subsatellitic.

Each U-agent u makes a proposal to every W-agent on [image: there is no content] at most twice and to every W-agent on [image: there is no content] at most once. The second statement follows from the observation that whenever an agent u proposes from [image: there is no content], he does not have any unsaturated W-agents on [image: there is no content]. After each such proposal, Algorithm ASBM performs at most two insertions and at most one deletion on a suitable priority queue. Each insertion and each deletion into a priority queue containing U-agents belonging to [image: there is no content] takes at most [image: there is no content] time.

Summing all the arguments together, we get that the running time of Algorithm ASBM is [image: there is no content], where m denotes the number of edges in G. If [image: there is no content], then we can swap the roles of U-agents and W-agents. Therefore we can state the following.

Theorem 3. The running time of Algorithm ASBM is [image: there is no content], where [image: there is no content] and m denotes the number of the edges.
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