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Abstract: We build an abstract model, closely related to the stable marriage problem and
motivated by Hungarian college admissions. We study different stability notions and show
that an extension of the lattice property of stable marriages holds in these more general
settings, even if the choice function on one side is not path independent. We lean on Tarski’s
fixed point theorem and the substitutability property of choice functions. The main virtue
of the work is that it exhibits practical, interesting examples, where non-path independent
choice functions play a role, and proves various stability-related results.
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1. Introduction

In this paper, we study different generalizations of Gale and Shapley’s marriage and college
admissions model. In the original model, there are n men and n women, and each of them has a
preference order on the members of the other gender. Gale and Shapley proved [1] that there always
exists a stable solution, and it can be found with the so-called deferred acceptance algorithm. The output
of this algorithm is a man-optimal solution (or, if we change the role of the genders, a woman-optimal
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one). In these stable marriage schemes, one side of the marriage market receives the best and the other
side the worst possible partners. An observation attributed to Conway generalizes man and woman
optimality. It states that stable marriages form a complete lattice for the partial order defined by the men.
That is, if S1 and S2 are two stable marriage schemes and each man chooses the better out of his partners,
then these choices determine another stable marriage scheme, denoted by S1 ∨ S2. If men choose their
less preferred partners, we get the stable scheme S1 ∧ S2.

This similarly applies to colleges and students. It is important for both the marriage and the college
models that each agent on the market has strict preference orders. If we allow ties in the preference
orders, then there are three well-known extensions of stability: we can talk about weakly stable, strongly
stable and superstable solutions.

The motivation of this work is a fourth notion that we call “score-stability”. This is the objective of the
centralized mechanism that constructs the college admissions scheme in Hungary. We use the following
rough model for the Hungarian college admissions problem. Each student submits a set of applications
to different colleges and declares a linear preference order over these applications. Each college has a
strict quota on the number of admissible students. There is a score assigned to each application based
on the entrance exams. After all this information is known, each college declares a score limit, and each
student is accepted at the first college on her preference list, where her score is not below the appropriate
limit. These score limits have to be stable; that is, no college receives more students than its quota.
Moreover, each college would receive more students than its quota if it lowers its score limit, while the
other ones keep theirs.

Our models can also be described with substitutable choice functions, as in the paper of
Kelso-Crawford [2], but our choice functions are not necessarily path independent. A well-known
result of Blair in [3] generalizes the case of strict preferences, by proving that if both sides of the
matching market has path-independent substitutable choice functions, then stable solutions form a lattice
under a natural partial order. It seems that in the literature, most of the practical, interesting stability
notions involve a path independent choice function (because, if authors define a choice function with
subset-ordering, that implies path independence). A counterexample to this is the Hungarian college
entrance mechanism, which outputs a stable solution, even though the choice functions are certainly
not path independent. We shall generalize Blair’s theorem for models involving non-path-independent
choice functions. It turns out that if we drop the path-independent property, then it is not at all clear
what exactly a stable solution is. For this reason, we study four kinds of stabilities: dominating stability,
three-stability (which is defined by a three-partition of the contract set), four-stability (which comes from
a four-partition of the contract set) and score-stability. This last notion is also generalized to so-called
“loser-free” choice functions, allowing us to work with more flexible models describing diverse market
situations, like company-worker admissions, with no strict preference ordering on the company’s side.

We compare the above four different stability notions. We shall examine the connections between
the definitions in regard to the path-independent property. Aygün and Sönmez [4] showed that if F , G
are substitutable and path-independent choice functions, then three-stable and dominating stable sets are
equivalent, but if F and G are not path independent, then none of the directions is true. We extend this
by considering the other two stabilities (four-stability and score-stability), as well.
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Our model has features similar to that of Azevedo and Leshno [5] about stable cutoffs, but when
they considered a continuum number of students, the probability of ties between students was zero. In
their discrete model, colleges had a strict preference order over students (so the choice function is path
independent); hence, a college refuses someone only if its quota is full. However, in our model, a college
may refuse someone while it still has free seats.

In Section 2, we define some basic notations about stable matchings. Section 3 describes four different
stability concepts, including the Hungarian college admissions model. In Section 4, we utilize Tarski’s
fixed point theorem to give algorithms for finding the two extreme solutions, while we study the lattice
property in Section 5, where it turns out that domination stability is not so useful; however, using four-
stability, it is relatively easy to extend Blair’s theorem. We conclude in Section 6, and the Appendix
contains the proofs of the theorems, statements and lemmas missing from the previous sections.

2. Preliminaries

In the stable marriage model, there are n men: M = m1, . . .mn; and women: W = w1, . . . wn; each
of them having a strict preference order on the members of the other gender. Let G be a bipartite graph
with color classes M and W , and let E—the set of edges in G—denote the possible marriages.

In this work, contract and edge are synonyms of one another. They both describe a possible marriage
or admission. The notion of a contract was introduced in [6]. Our model originally does not include
money transfer or wages; the set of contracts is the set of edges of some underlying bipartite graph,
G. However, we may allow multiple edges between two vertices of G, and by this, we can model
discrete prices on the contracts, since discrete monetary transfers are equivalent to the possibility of
multiple contracts.

The notation w <m w′ means that man m prefers woman w′ to w. A subset, S, of contracts is a
matching or marriage scheme in G if no vertex of G is adjacent to more than one edge in S. A matching
S ⊆ E can also be described as an involution µ : M ∪ W → M ∪ W , such that if m and w are
married (that is, (m,w) ∈ S), then µ(m) = w and µ(w) = m, and for an unmatched agent, a, we
define µ(a) = a. A marriage scheme S is called stable if, for any pair, (m,w) /∈ S, µ(m) >m w or
µ(w) >w m holds. Men’s preferences define a partial order on stable marriage schemes: S ≥M S ′, if
µ(mi) ≥mi

µ′(mi), for all mi ∈ M and S >M S ′, if S ≥M S ′ and there exists a man mi such that
µ(mi) >mi

µ′(mi). Similarly, there is another partial ordering, ≥W , defined by the women. It is well
known that a marriage scheme is unanimously better for men, if and only if it is unanimously worse
for women.

Definition 1. We call a stable matching S male-optimal (female-optimal) if it is better for the men
(women) than any other stable matching: S ≥M S ′ (S ≥W S ′) for every stable matching, S ′.
A stable matching, S, is male-pessimal (female-pessimal) if S ≤M S ′ (S ≤W S ′) for every stable
matching, S ′.

The Gale–Shapley (or deferred acceptance) algorithm consists of rounds. In each round, every
unengaged man proposes to the most-preferred woman to whom he has not yet proposed. Each woman
then considers all her suitors and keeps her most preferred one and refuses the others. In the next round,
all rejected men continue proposing to their next choice. The algorithm terminates if no new proposal
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occurs. This happens after at most const · n2 steps, since every man proposes to every women at most
once. The outcome of the algorithm is always a stable marriage scheme.

Theorem 1. [1] The stable marriage scheme given by the deferred acceptance algorithm is male-optimal
and female-pessimal.

Knuth in [7] attributes the observation to John Conway that stable marriages form a distributive lattice.

Theorem 2 (Conway). Assume that S1 and S2 are two stable marriage schemes. Let every men choose
the better of his partners in S1 and S2. This way, we get a stable matching that we denote by S1 ∨ S2.

If the women choose their better partner, we get stable matching S1 ∧ S2. It follows that stable
marriages form a lattice. Our models are based on the choice functions that we describe next. We shall
see that “traditional” models nicely fit this non-traditional framework.

Definition 2. Set function F : 2E → 2E is called a choice function if F (A) ⊆ A holds for any subset,
A, of ground set E.

For convenience, for a choice function, F , let F (A) = A\F (A) denote the set of unselected elements.
We list some important properties of set functions.

Definition 3. A set function, F : 2E → 2E , is monotone if F (A) ⊆ F (B) whenever A ⊆ B ⊆ E holds.
A set function, F : 2E → 2E , is antitone if F (A) ⊇ F (B) whenever A ⊆ B ⊆ E holds.
A choice function, F : 2E → 2E , is substitutable (sometimes called comonotone) if F (A) ⊆ F (B) for
any A ⊆ B (that is, if F is a monotone function).

The substitutable property was originally defined by [2] with prices, differently from our definition.
It was showed in, e.g., [6], that substitutability is equivalent with the property that if an agent chooses
from an extended set of contracts, the set of rejected contracts expands.

Definition 4. A choice function, F : 2E → 2E , is path independent, if F (A) ⊆ B ⊆ A implies
F (A) = F (B) for any subsets, A and B, of E.

Path independence is called “irrelevance of rejected contracts (IRC)” in the paper of Aygün and
Sönmez [4]:

Definition 5. [4] Contracts satisfy the irrelevance of rejected contracts (IRC) for choice function F if
∀Y ⊂ X, ∀z ∈ X \ Y z /∈ F (Y ∪ {z})⇒ F (Y ) = F (Y ∪ {z})

Clearly, if the set of contracts is finite, this is equivalent to our path independence definition.
There is an alternative way to define path independence (see e.g., [8]):

Theorem 3. For a substitutable choice function, F , the path independence of F is equivalent, so that
F (A ∪B) = F (F (A) ∪ F (B)) hold for any sets, A and B, of choices.
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Sometimes, the choice function is defined by a strict preference order over all subsets of E, such that
F (A) is that subset ofA that is the first in the order. In that case, the choice function will be automatically
path independent, since if the best set in A is S and S ⊆ B ⊆ A, then the best set in B is S, as well. We
will see, however, that typical scoring choice functions are not path independent. Therefore, we shall
study path functions that are not necessarily independent more generally.

We can define the direct sum of two choice functions: ifX∩Y = ∅ and F1 : 2
X → 2X , F2 : 2

Y → 2Y ,
F : 2X∪Y → 2X∪Y ; then, F = F1+F2 means that for everyA ⊆ X∪Y , F (A) = F1(A∩X)∪F2(A∩Y ).
For example, on the graph of possible marriages, w1 chooses from the contracts, w1mi, and w2 chooses
from the contracts, w2mi (so these two sets are disjoint). The sum of all women’s choice function will
choose from all of the contracts.

2.1. Examples for Choice Functions

Here, we list some typical choice functions. Some of them are coming from practical applications,
while some others are mostly theoretical, illustrating the flexibility of substitutable choice functions. Let
v be an agent ( i.e., a vertex of G = (V,E)), and let E(v) be the set of possible contracts involving v
( i.e., the edges from v).

1. Agent v’s preferences are strict and always choose the best one: F (X) = the best member of X .

2. Preferences are strict, and we allow polygamy ( i.e., a college can have more than one student).
The choice function picks the best k contracts for some fixed k: F (X) = the best k members of
X . If |X| ≤ k, then F (X) = X .

3. We allow ties in the preference list. Here, v chooses the best partner if it is unique and chooses the
empty set if there is more than one best partner.

4. We allow ties in the preference list. Agent v chooses the best partner if it is unique, and it chooses
the set of best partners if there are two or more.

5. Let Qk be the following choice function on E(v): for A ⊆ E(v), if |A| ≤ k, then Qk(A) = A,
and if |A| > k, then Qk(A) = ∅.

6. Hungarian (H-scoring) choice function: Every contract has a certain integral score: in the college
admissions model, this is the number of points that the corresponding student reached at the
particular college’s entrance exam. There is also a quota, q. If X is a given set of contracts,
then v picks score t, such that there are k contracts in X having a score of at least t and k ≤ q, and
there are more than q contracts receiving a score of at least t− 1. If no such t exists, then v picks
t = 0. The choice function selects the contracts from X having a score of at least t. For example,
if v is offered four contracts with scores of three, two, two and one and the quota is q = 2, then v
chooses only the best contract with a score of three ( i.e., t = 3).

7. Permissive (L-scoring) choice function: Agent v has a quota, q, but it might choose more than q
contracts. Namely, v chooses the best k2 ≥ q contracts in a way that it chooses the best k ≤ q

using the previous H-scoring method (with score limit t), and if k < q, then v adds the next group
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of applicants with score t − 1. If the H-scoring function chooses exactly k = q applicants, then
v keeps them and does not add new students. Score-stability defined with this choice function
was called L-stable in [9]. In the previous example, v would set the score limit at two and pick
three applicants with scores of three, two and two.

8. The weighted scoring choice function is similar to the H-scoring choice function, except every
contract also has a cost. Agent v has a budget, k, instead of a quota, q. For a given X set of
contracts, v determines t in such a way that the total cost of contracts having a score of at least t
is not more than k, but the total cost of contracts having a score of at least t− 1 is more than k. If
no such t exists, then t = 0. Now, v chooses those contracts from X that have a score of at least t.
For example, if v has four applicants according to the table below:

a1 a2 a3 a4

scores 4 3 2 1
cost 9 5 5 1

and the budget is 10, then v chooses only a1. (Agent v cannot skip some applicants and choose a
cost of 9 + 1.)

9. Strict hierarchical choice function: Agent v has a linear preference list over contracts, and there is
a downward closed set system, I, of subsets of E(v) (that is, if A ∈ I, B ⊆ A, then B ∈ I). Let
k be the greatest number, such that the set of k best contracts of set X belongs to I. Now, C(X)

is the set of these k best applicants.

10. Weak hierarchical choice function: Agent v has a weak preference order (ties are allowed) over the
contracts, and there is a downward closed set system, I, of subsets of E(v). Let k be the greatest
number, such that the set of k best contracts of set A is in I, and among equally good contracts,
we choose all or none. Now, C(A) is the set of these k best applicants.

Statement 1. If the costs are increasing (a contract with a lower score is more expensive), then the
weighted scoring choice function is path independent.

Proof. From set A, the college’s preference order is c1 ≥ c2 · · · ≥ cn (contract c1 has the best score; cn
has the worst). If F (A) ⊆ B ⊆ A and F (A) = {c1, c2 . . . ck}, then by definition, the college cannot add
the next best applicant, ck+1, to F (A). Other contracts in B \F (A) are more expensive than ck+1, so the
college cannot choose any of them. Therefore, F (B) = F (A).

Definition 6. Assume that each contract, c, has some score, s(c). A choice function, F , is loser-free if
any rejected contract has a lower score than any accepted contract. That is, s(c′) < s(c) holds whenever
c ∈ F (X) and c′ ∈ X \ F (X).

Note that the above Examples 1, 2, 4 and 7 are path independent. All of the above examples are
substitutable and loser-free.

Remark 1. Any weighted scoring choice function is weak hierarchical, and any weak hierarchical is
loser-free. However, not every loser-free choice function is weak hierarchical:
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Example 1. If a > b > c and F (A) = A if |A| ≤ 2 and F ({a, b, c}) = {a}, then F is loser-free
and substitutable. However: F ({a, b}) = {a, b}, so {a, b} is supposed to be a set in I; however,
F ({a, b, c}) 6= {a, b}, so this function is not hierarchical.

Not every weak hierarchical function is a weighted scoring choice function:

Example 2. The set of contracts is E = {a, b, c, d}; the preference order is a > b > c > d, and
I = {∅, {a}, {b}, {c}, {d}, {a, b}{c, d}}. Therefore, for example, F ({a, b, c}) = {a, b}. However, if we
want to describe it with weights: the weight limit is Q. Sets {a, b} and {c, d} are under Q, but {a, c}
and {b, d} are “heavier” than Q. Therefore, {a, b, c, d} are under and above 2Q at the same time. This
is a contradiction.

3. Stability Concepts

In this section, we formulate different stability concepts, which we shall study later.

3.1. Dominating Stability

In the original stable marriage model, a matching is stable, if it dominates every other contract; so,
for every e = (m,w) /∈ S, either µ(m) >m e or µ(w) >w e. A natural generalization of the notion is
dominating stability. In the article of Hatfield and Milgrom [6], they defined stable allocations similar
to our dominating stability definition. They said that a doctor-hospital allocation is stable if there is no
blocking contract set.

Unfortunately, it turns out that for non-path-independent choice functions, a dominating stable
solution might not exist. Although this is the direct generalization of the original stability notion of
Gale and Shapley, it seems that in practical applications, this notion does not help too much.

Definition 7. We say that a contract set, X , is F -dominated by S if F (S ∪X) ∩X = ∅.

This means if the agent can choose from the union of sets S and X , he will choose S or a subset of
S. Based on this, we introduce the dominating function:

Definition 8. For choice function F : 2X → 2X , let dominating function:

DF (A) := {x ∈ X : x /∈ F (A ∪ {x})}

denote the set of contracts F -dominated by A.

Note that DF (A) ∩ A = F (A).

Statement 2. If F is a substitutable choice function, then DF is monotone.

Proof. Let A ⊆ B. If x ∈ DF (A) then x /∈ F (A ∪ {x})⇒ x ∈ F (A ∪ {x}). Since F is substitutable,
x ∈ F (B ∪ {x})⇒ x /∈ F (B ∪ {x}) so x ∈ DF (B).

Examples for choice functions and corresponding dominating functions:
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Example 3. F1 = Q1: There are two students interested in the same college, with equal scores, but the
quota is one. If someone applies alone, he is accepted, but if both of them apply, the college rejects both.
F2 = Q2: There are two students applying for the same college, with equal scores. The quota is two, so
everybody is accepted.
F3: There are two students applying for the same college. a is better then b, and the quota is one.
Therefore, the college chooses a.

∅ {a} {b} {a, b}
F1 ∅ {a} {b} ∅
DF1 ∅ {b} {a} {a, b}
F2 ∅ {a} {b} {a, b}
DF2 ∅ ∅ ∅ ∅
F3 ∅ {a} {b} {a}
DF2 ∅ {b} ∅ {b}

The dominating function has some properties that will be useful later.

Lemma 1. If F is substitutable and path independent, then F (A) = S ⇔ DF (S) ∩ A = A \ S. This
means the set, A \ S, is dominated by S if and only if each contract, c ∈ A \ S, is dominated by S.

Lemma 2. If F is substitutable, path independent and F (A) = S, then DF (A) = DF (S).

Definition 9. Subset S of E is dominating stable, if DF (S) ∪ DG(S) = E \ S.

Therefore, every e /∈ S is either F -dominated or G-dominated by S.

Remark 2. If S is dominating stable, then F (S) = S = G(S), so the set, S, is acceptable for both sides.

Proof. Suppose that s ∈ S \F (S). Then, by definition, s ∈ DF (S), butDF (S) ⊆ E \S; a contradiction.
For G, a similar proof applies.

Example 4. Men and women have strict preferences. F is the common choice function of men, and G
is the common choice function of women, which choose the single best option for every player. If S is
dominating stable, then from F (S) = S = G(S), set S is a matching, and for every e = mw /∈ S,
contract e /∈ F (S ∪ {e}) or e /∈ G(S ∪ {e}), so that one of m or w does not want to choose mw instead
of his/her current marriage. Therefore, in this case dominating stability is equivalent to the original
stable marriage definition of Gale and Shapley.

Note that even for substitutable F and G, a dominating stable solution does not always exists.

Example 5. Let F and G be the following functions, defined on a set of three contracts: {a, b, c}. F
chooses everything, and G prefers a to b, b to c and c to a.
Now, F is substitutable and path independent, and G is substitutable, but not path independent.

∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
F ∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
G ∅ {a} {b} {c} {a} {b} {c} ∅
DF ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
DG ∅ {b} {c} {a} {b, c} {c, a} {a, b} {a, b, c}
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Suppose that S is dominating stable. Since G(S) = S, the cardinality of S is at most one. However,
then, DF (S) ∪ DG(S) = DG(S) 6= E \ S, because every contract dominates only one other contract.

A similar example appeared in [4].

3.2. Three-Stability

Fleiner defined the following stability concept, for a two-sided market, where the choice functions of
each side over the contracts are F and G:

Definition 10. [8] Subset S of E is three-stable, if there exists subsets A and B of E, such that
F (A) = S = G(B) and A ∪ B = E, A ∩ B = S. Pair (A,B) with this property is called a three-stable
pair, and S is a three-stable set.

The explanation of the name, three-stable, is that we partition the set E of contracts into three parts,
as showed in the Figure 1, S, A \ S and B \ S, where S is stable, A \ S is F -dominated by S and B \ S
is G-dominated by S.

In the original marriage model, F and G select the one best partner for the men and women. It is
easy to see that every three-stable set, S, is a matching, and it is stable, since men prefer contracts in S
to A \ S and women prefer S to B \ S.

On the other hand, if S is a stable matching, then it is also a three-stable set with the pair (A,B),
where we define A \ S as the set of contracts that the men prefer less than the contracts of S and
B := S ∪ (E \ A).

Example 6. Figure 2 illustrates a small example for a possible market. There are two possible contracts,
a and b, and F = Q1, G = Q1; then, only S = ∅ is three-stable, and it can be achieved with two (A,B)

three-stable pairs, where A = {a, b}, B = ∅ or A = ∅, B = {a, b}

Figure 1. Three-partition of the edge-set.
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3.3. Four-Stability

We introduce the notion of four-stability: it is kind of similar to three-stability, but while a double
dominated contract, e, can belong to both A and B in the three-stable sometimes, now, we put e in
a fourth contract-set. Therefore, while three-stability is a more natural definition, four-stability has
nicer properties and is more useful, because it is closely related to score-stability. Moreover, for
path-independent choice functions, for any four-stable set, the corresponding (A,B) pair is unique.

Definition 11. The choice functions of the two sides of the market are F and G. Subset S of E is
four-stable, if there exists subsets A and B of E, such that F (A) = S = G(B) and A ∩ B = S and
DF (A) = E \B,DG(B) = E \ A.

Figure 3. Four-partition of the edge-set.
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This concept is called four-stable because we partition the set E of contracts into four parts, as seen
in Figure 3: S is stable; A \ S is F -dominated by S; B \ S is G-dominated by S; and the contracts in
E \ (A ∪B) are both F - and G-dominated.

Example 7. We consider the same example as for three-stability: There are two possible contracts, a
and b, and F = Q1, G = Q1. Now, there are three four-stable solutions:
S = ∅, where A = {a, b}, B = ∅ or A = ∅, B = {a, b}
S = {a}, A = {a}, B = {a}
S = {b}, A = {b}, B = {b}

Remark 3. If F and G are substitutable choice functions and S is three-stable or four-stable, then
F (S) = S = G(S).

Proof. Since F (A) = S and F (S) ⊆ F (A) = A \ S, F (S) = S. Similarly, G(B) = S implies
G(S) = S.

Statement 3. If F and G are substitutable and F is path independent, then for a four-stable set, S, there
exists a unique (A,B) pair.

3.4. Score-Stability

In this part, we describe the stability notion used in the Hungarian college admission scheme. For this
reason, we shall call the agents colleges and applicants, and application is a synonym for contract. The
mathematical model of the Hungarian college admissions system is close to stable matchings. Our
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model is a simplified version of the one that is used in practice. Biró, Kiselgof [9], Azevedo and
Leshno [5] also examined the math behind stable score limits.

We shall generalize the model for loser-free choice functions, in particular for weighed scoring choice
functions that have possible practical applications.

Assume that we have n applicants A1, A2, . . . , An and m colleges C1, C2, . . . Cm. Let E be the set of
all contracts. It is convenient to think that E is the set of edges of the bipartite graph with color classes
{A1, . . . , An} and {C1, . . . , Cm}, where each edge,AiCj , of the graph corresponds to a contract between
applicant Ai and college Cj . There, every applicant has a strict preference order over the colleges she
applies to, and each college assigns some score s(AiCj) (an integer between one and M ) to each of its
applicants. Moreover, each college, C, has a quota, q(C), on admissible applicants. According to the
law, no college can accept more applicants than its quota; moreover if an applicant, Ai, with a certain
score, s(AiCj), is not acceptable to some college, Cj , then any applicant with the same or lower score
has to be unacceptable for Cj .

To determine the admissions after all information is known, each college has to declare a score limit.
Let the score limits for colleges C1, C2, . . . Cm be t1, t2, . . . tm, respectively. Each applicant will become
a student at her most preferred college where she has a high enough score. More precisely, applicant Ai

is assigned to college Cj if s(AiCj) ≥ tj ( i.e., score s(AiCj) of Ai at Cj is not less than threshold tj for
Cj) and s(AiCj′n) < tj′ for j′ >i j ( i.e., score s(AiCj′) of Ai at Cj′ is less than the score limit, tj′ , if Ai

likes Cj′ more than Cj). The vector of declared score limits (t1, t2, . . . , tm) is called a score vector. The
stability notion below is defined according to the requirements of Hungarian law.

Definition 12. Score vector (t1, t2, . . . tm) is valid if no college exceeds its quota with these score limits.
Score vector (t1, t2, . . . tm) is critical if for every college, Cj , either tj = 0 or score vector
(t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) would assign more than q(Cj) students to Cj (that is, no single
college can decrease its score limit without exceeding its quota).
A score vector, s, is score-stable if s is valid and critical.

The above college admissions model determines a natural choice function for applicants and another
one for the colleges. Therefore, for subset X ⊆ E of contracts, Fi(X) denotes the most preferred
contract from X of applicant Ai, and F (X) is the common choice function of all applicants. Therefore,
F = F1 + F2 + . . . Fn. Similarly, Gj(X) denotes the set of contracts that college Cj would choose if it
can select freely. More precisely, let Xj denote the set of contracts with Cj in X , and let Cj declare a
score limit, tj , such that no more than q(Cj) contracts from Xj has score of at least tj , but either tj = 0

or more than q(Cj) contracts has a score of at least tj − 1. Let Gj(X) be the set of all contracts in Xj

above the score limit, tj . Define choice function G : 2E → 2E as the common choice function of all
colleges, G = G1 +G2 + . . . Gm.

It is easy to see that choice function F of the applicants is path independent, but G for the colleges
is not.

For example, G = Q1 is a typical scoring choice function; there are two equally good contracts, a, b,
and the quota is one. However, G({a, b}) = ∅ ⊆ {a} ⊆ {a, b} and G({a}) 6= G({a, b}), so it is not
path independent.
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3.5. Generalized Score-Stability

We can generalize the above framework, keeping the main property needed to ensure the existence of
a stable solution, namely the loser-free property that allows us to extend the model in a way that is fairly
generalized and has economically interesting choice functions.

Let F be direct sum of substitutable choice functions of the applicants, and G is a direct sum of
loser-free, substitutable choice functions of the colleges. Every college, Cj , has a choice function, Gj ,
over the contracts involving it, and G = G1 + . . . Gm.

We say a set {Ai1 , Ai2 , . . . Aik} of applicants is feasible for college Cj if Gj(X) = X for the contract
set X = {Ai1Cj, Ai2Cj, . . . AikCj}; otherwise, it is infeasible. Each contract, c, has a score, s(c).

Lemma 3. A choice function G : 2E → 2E is loser-free if and only if there exists a function
PG : 2E → NE , such that for every set A ⊆ E of contracts, PG gives the score-limit, for which the
accepted contracts above the score limit are exactly the set accepted by G(A).

Proof. If G is loser-free, the set of accepted contracts from A are all above a score limit; let the maximal
score limit they reach be PG(A). On the other hand, if we have a given score limit by PG, no one can be
missed out, while others with the same score get in; so, G must be loser-free.

Let P : NE → 2E be a function, that codes the scores of the applicants: P (t) is the set of contracts
above the score limit given by score vector t. P (t) = {AC ∈ E : s(AC) ≥ t(C)}. Therefore, P (0) = E

and P is antitone on the scores: if t1 ≤ t2, then P (t1) ⊇ P (t2).
Note that P (PG(A)) ∩ A = G(A) for every A ⊆ E.

There exists a score vector T (a highest possible score of +1 for every college), where P (T ) = ∅.
From contracts above the score limit, the students choose F (P (t)), and contract set G(F (P (t))) is
acceptable for the colleges. Therefore, score vector t is valid if and only if G(F (P (t))) = F (P (t)).
The score vector, t, is critical if for any 1 ≤ j ≤ m, the new score vector (t1, t2, . . . , tj−1,

tj − 1, tj+1, . . . , tm) is not valid for college Cj , or tj = 0. We call t stable if it is both valid and critical.

Lemma 4. If t is valid, but t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) is not, then the only college that
can get an infeasible set of students at score vector t′ is college Cj .

Proof. The set of offered places increases at college Cj and stays unchanged at other colleges. For
applicant Ai, if she rejected a college, Ck, earlier (where Ck 6= Cj), she will also reject Ck when she has
more choices, so colleges other than Cj cannot have too many students.

With score limit t, the set of students going to college Ck is F (P (t)) ∩ E(Ck); denote it by Z.
Additionally, with score limit t′, it is Z ′. As we have seen, Z ′ ⊆ Z, and from the substitutability,
Gk(Z) = Z implies Gk(Z

′) = Z ′.

Definition 13. We call a score vector t Cj-valid, if it is acceptable for college Cj , i.e.,
Gj(F (P (t))) = F (P (t)) ∩ E(Cj)).

The following two lemmas help to understand how the set of the valid score vectors look:
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Lemma 5. Let t and t′ be two score vectors, and t is Cj-valid. For college Cj , score limit t′j ≥ tj , but
t′i ≤ ti for every college Ci 6= Cj . Then, t′ is also Cj-valid.

Lemma 6. Let t1 and t2 be two valid score vectors, and tmin is their pointwise minimum
(tmin

j = min(t1j , t
2
j) for every 1 ≤ j ≤ m). Then, tmin is also valid.

4. Algorithms

In this section, we show algorithms to find three-stable, four-stable and score-stable allocations. As
we will see, these stable solutions always exist, if F and G are substitutable (and G is also loser-free
in the case of score-stability). Moreover, these algorithms give us the men-optimal/women-optimal
solutions. We show a close connection between Tarski’s fixed theorem and the Gale–Shapley algorithm.

4.1. Tarski’s Fixed Point Theorem

Recall that a lattice is a partially ordered set, L, with the property that any two elements, x, y, of L
have a greatest lower bound x ∧ y and a least upper bound x ∨ y. A lattice, L, is complete if any subset,
X , of L has a greatest lower bound

∧
X and a least upper bound

∨
X . Function f : L→ L′ from lattice

L to lattice L′ is monotone if x ≤ y implies f(x) ≤ f(y) for any elements, x, y, of L.

Theorem 4 (Tarski’s fixed point theorem [10]). Let L be a complete lattice and f : L → L be a
monotone function on L. Then, set Lf = {x ∈ L : f(x) = x)} of fixed points of f is a nonempty,
complete lattice on the restricted partial order.

If lattice L is finite in Theorem 4, there is a straightforward algorithm to find the least and greatest
fixed points. Let zero be the smallest element in lattice L. Therefore, 0 ≤ f(0) and from monotonity
0 ≤ f(0) ≤ f(f(0)) ≤ f(f(f(0))) ≤ . . . . Since the lattice is finite, there exists an i, where
f i(0) = f i+1(0). Therefore, f i(0) is a fixed point.

Statement 4. The above fixed point a = f i(0) is the least of all fixed points of f .

Proof. Let x be an arbitrary fixed point of f . Since f is monotone, 0 ≤ x ⇒ f(0) ≤ f(x) = x and
f j(0) ≤ f j(x) = x for every j ≥ 1. We get that a = f i(0) ≤ x.

Similarly, we can start with the greatest element one. From 1 ≥ f(1) ≥ f(f(1)) ≥ f(f(f(1))) . . . ,
we see that there is a j, such that f j(1) = f j+1(1).
This f j(1) is the greatest of all fixed points of f .

4.2. Generalized Gale–Shapley Algorithm for Three-Stable and Four-Stable Sets

For three-stable sets, we can generalize the Gale–Shapley algorithm to the case where both choice
functions are substitutable, but they do not have to be path independent. It is a special case of the
monotone function iteration that finds a fixed point of a monotone function. The following algorithm is
the same as in [6]:

Let F be the choice function of men/students, and G is the choice function of women/colleges. In
the male-proposing version, let X1 = E; men choose from all contracts and propose to Y1 = F (E) =
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E \ F (E). Women choose G(F (E)) and reject G(F (E)). In the second step, men choose from all
contracts, except for the rejected ones: X2 = E \ G(Y1) = E \ G(F (X1)). They choose F (X2).
The women take these contracts and the previously rejected contracts and choose from Y2 = F (X2) ∪
G(F (X1) = E \ F (X2). Since G is substitutable, if a contract was rejected earlier, it will be rejected in
this step, as well.

Here, this algorithm differs from the original Gale–Shapley, since there, women choose only from
their current proposals. However, if G is path independent, then G(Y2) ⊆ F (X2) ⊆ Y2 implies G(Y2) =
G(F (X2)); so, putting back already refused proposals to the choice set does not change the outcome.

A general step of the algorithm: for a given Xi, let Yi = E \ F (Xi), and let Xi+1 = E \G(Yi).
Define the following function, f :

f(Xi, Yi) = (E \G(Yi), E \ F (E \G(Yi)))

We can define a partial order on pairs (A′, B′) ≤ (A,B), if A′ ⊆ A and B′ ⊇ B.
Observe that f is monotone for this ordering. The iteration of this monotone function gives us a

fixed pair (Xi, Yi), which corresponds to a three-stable pair (A,B). If we start our iteration from pair
(X1, Y1) = (E,F (E)), we get the male-optimal matching; if we start from (X1, Y1) = (∅, ∅), we get the
female-optimal one.

There is an alternative algorithm similar to the previous one:
Define function f ′ : 2E × 2E → 2E × 2E by:

f ′(A,B) := (E \ (G(B)), E \ (F (A))

If F and G are substitutable, then f ′ is monotone for order ≤, since, if B decreases, then G(B)

decreases; so E \G(B) increases. Similarly, if A increases, then E \ F (A) decreases.
As before, three-stable pairs are exactly the fixed points of f ′. We start the iteration from

(A1, B1) = (E, ∅) for the men-optimal or with (A1, B1) = (∅, E) for the women-optimal solution.

For four-stability, we define monotone function f ′′ as follows:

f ′′(A,B) := (E \ (DG(B)), E \ (DF (A)))

If F,G are substitutable, then DF ,DG are monotone; therefore, f ′′ is monotone for order ≤. Fixed
points of f ′′ are four-stable pairs (A,B), since A = E \ (DG(B)), B = E \ (DF (A))).

If we start the iteration of f ′′ from (A1, B1) = (E, ∅), we get a four-stable pair with the largest
possible A and smallest possible B; so, it is men-optimal. Starting pair (A1, B1) = (∅, E) leads to the
women-optimal solution.

4.3. Algorithms for Score-Stability

In this section, we describe algorithms for the generalized score-stability, hence also
for score-stability.

1. The score-decreasing algorithm: colleges start from a valid score vector t0 (e.g., tC :=

(M + 1, . . . ,M + 1)). First, if there is a college, Ci, that can lower its score limit without getting too
many students, then Ci will decrease its score limit to the lowest score, such that Ci still gets a feasible
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set of students. Here, Ci chooses from free students and students who prefer Ci to their college; so, it
chooses score limit PGi

(E \ DF (P (t)). Then, we find another college, and iterate this score-decreasing
step. (It is convenient to check C1 first, then C2, then all colleges one-by-one. After Cm, we return to
C1 again.) The algorithm terminates if no college wants to lower its score limit any more. As soon as no
college can decrease its score limit, the score vector is stable. Let sC denote the stable score vector that
we get by running the score-decreasing algorithm on tC .

Theorem 5. If stable score vector t is the output of the score-decreasing algorithm with input t0, where
t0 is valid, then t is stable and is t, the maximum of all the stable score vectors that are not greater than
t0. Consequently, sC is the maximum of all stable score vectors. Furthermore, sC is applicant-pessimal.

2. The score-increasing algorithm: colleges start with some critical score vector, t0 (e.g.,
tA = (0, . . . , 0)), and keep on raising their score limits. If there is a college, Ci, that has an infeasible
set of students, then it raises the score limit to the lowest score where it becomes feasible. Therefore, it
chooses PGi

(F (P (t)). Then, another college, Cj , increases the score limit and all colleges one-by-one.
The algorithm stops if no college wants to raise its score limit. Let sA be the stable score vector the
score-increasing algorithm outputs from input tA.

Theorem 6. If score vector t is the output of the score-increasing algorithm with input t0, where t0 is
critical, then t is stable, and it is the minimum of all the stable score vectors that are not less than t0.
Consequently, sA is the minimum of all stable score vectors. Moreover, sA is applicant-optimal.

Theorem 7. The score-decreasing and score-increasing algorithms run in polynomial time; the
decreasing terminates in O(m2n) steps, and the increasing stops in O(mn) steps.

5. The Lattice Property

Tarski’s Theorem implies the following corollary for three-stability.

Theorem 8. [8] If F,G : 2E → 2E are substitutable choice functions, then three-stable pairs form a
nonempty complete lattice for partial order ≤.

Define function f : 2E × 2E → 2E × 2E by:

f(A,B) := (E \ (G(B)), E \ (F (A)) = (E \ (B \G(B)), E \ (A \ F (A))

It is straightforward to see that three-stable pairs are exactly the fixed points of f . Therefore, since f is
monotone, three-stable pairs form a lattice.

A similar theorem can be proven for the four-stable (A,B) pairs:

Theorem 9. If F,G : 2E → 2E are substitutable choice functions, then the four-stable pairs form a
nonempty complete lattice for partial order ≤.

Function
f ′′(A,B) := (E \ (DG(B)), E \ (DF (A)))

is monotone, and its fixed points are exactly the four-stable pairs; so, we can use Tarski’s theorem again.
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5.1. Generalization of Blair’s Theorem

In this subsection, we show a lattice property of stable sets (rather than stable pairs).

Definition 14. Define a new partial order: for choice function F , let S ′ ≤F S if F (S ∪ S ′) = S.

Observation 1. [3] If F is substitutable and path independent, then ≤F is indeed a partial order; in
particular, A ≤F B ≤F C implies A ≤F C.

Blair proved the lattice property of dominating stable sets assuming the path-independent property
of the choice functions [3]. As we will see in Theorem 15, if F and G are both path independent, the
dominating stability, three-stability and four-stability are equivalent, so Blair’s theorem holds for each
of these notions.

Theorem 10 (Blair). [3] If F,G : 2E → 2E are substitutable, path-independent choice functions, then
the dominating stable sets form a lattice for partial order ≤F .

We generalize the above lattice property for four-stability, and there is a close connection between
score-stability and four-stability. Now, we require path independency on only one side.

Theorem 11 (Generalization of Blair’s theorem). If F and G are substitutable choice functions and F
is path independent, then: The four-stable sets form a lattice for partial order ≤F ; If S is a four-stable
set, then, there is a unique four-stable pair (A,B) that corresponds to S; furthermore, S ≤F S ′ if and
only if (A,B) ≤ (A′, B′).

If only one of F and G is path independent, dominating stable sets do not form a lattice. Moreover,
dominating stable sets do not necessarily exist, as we have seen is Subsection 3.1.

Example 8. Given one college, C1, and two applicants, A1, A1, and two contracts, a = A1C1

and b = A2C1. The college has a quota of one, and both applicants want to go to C1; so, G = Q1,

F = Q2. The dominating stable solutions are {a} and {b}; however, a and b are uncomparable, since
F ({a, b}) = {a, b}. Therefore, the dominating stable sets do not form a lattice.

Remark 4. If F and G are substitutable choice functions, but none of them is path independent, then the
lattice property does not always hold for four-stability. It is also false that for stable set S there is only
one corresponding (A,B) pair.

Example 9. We have two contracts, a and b. The choice function is Q1 for both sides. In this situation,
we have four four-stable pairs:

A = ∅ B = {a, b} S = ∅
A = {a} B = {a} S = {a}
A = {b} B = {b} S = {b}
A = {a, b} B = ∅ S = ∅

Now, ∅ ≤F {a} and ∅ ≤F {b}, but {a} and {b} are uncomparable. Therefore, these two sets do not
have a supremum.
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5.2. The Lattice of Stable Score Vectors

A graph, G, is simple if G has neither parallel edges nor loops. Therefore, between a given student
and college, only one contract is permitted. In some applications, for example in the college enrollment
system, the underlying graph is simple: one cannot apply to the same department, in the same year, twice.
For the sake of generalizations that involve for example loser-free choice functions, the underlying graph
in our model may not be simple.

Assume that F and G are substitutable choice functions and G is also loser-free. Define the following
function f : NE → NE:

f(t) = PG(E \ DF (P (t)))

Therefore, we take all contracts above score limit t (this is P (t)) and add those contracts that are not
dominated by P (t). Then, f(t) is the score limit that the colleges choose for this set.

If t1 ≤ t2, then P (t1) ⊇ P (t2). Since DF is monotone, E \ DF (P (t1))) ⊆ E \ DF (P (t2))). For a
greater set, PG gives a higher score limit; so, PG(E \ DF (P (t1))) ≤ PG(E \ DF (P (t2))). Therefore, f
is a monotone function, indeed.

Statement 5. If the underlying graph, G, is simple, and choice functions F and G are substitutable,
G is loser-free; then, score vector t is stable if and only if t = PG(E \ DF (P (t))).

Tarski’s fixed point theorem implies the following corollary:

Theorem 12. If graph G is simple, choice functions F and G are substitutable and G is loser-free, then
the score-stable sets form a non-empty lattice.

Moreover, we can achieve a connection with four-stability for every bipartite graph.

Statement 6. If choice functions F and G are substitutable, G is loser-free and F is path independent,
then the following two statements are equivalent: (i) S = F (P (t)) for some score vector t, such that
f(t) = t. (ii) The contract set S is four-stable.

As a corollary of Statements 5 and 6, we get the following theorem:

Theorem 13. If choice functions F and G are substitutable, G is loser-free and the applicants’ choice
function F is path independent, then every score-stable set is also four-stable. Furthermore, if we require
that graph G is simple, then score-stability is equivalent with four-stability.

Example 10. Figure 4 illustrates a counterexample for Theorem 13 if the underlying graph is not simple.

Figure 4. A counterexample.
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There is one college and one student, and the student applies both for math and physics, but prefers
math. She achieved a zero score on both. The college has a common quota of one for these two faculties.
If the score limit is one, the college accepts nobody.

If the score limit is zero, the college accepts both contracts a and b, and the applicant prefers
a, so only a realizes. This is valid and stable. Therefore, the only score-stable solution is t = 0,
S = F (P (t)) = {a}. There are two four-stable sets: S = ∅ with A = ∅, B = {a, b}

Stable score vectors form a lattice, even if the graph is not simple; so, a stronger version of Theorem 12
is also true:

Theorem 14. If choice functions F and G are substitutable and G is loser-free, then the score-stable
sets form a non-empty lattice.

In the Appendix, we prove Theorem 14 by taking a pointwise minimum of t1 and t2 and starting from
there. The score-decreasing algorithm terminates at stable score vector t1 ∧ t2.

Remark 5. If we consider L-stable score vectors, they also form a lattice, since the permissive scoring
choice function used in L-stability is also loser-free.

6. Connection between Different Stability Notions

For a given two-sided model with choice functions F and G for each side, we have defined four kinds
of stability:

1. Subset S of E is three-stable, if there exists subsets A and B of E, such that F (A) = S = G(B)

and A ∪B = E, A ∩B = S.

2. Subset S of E is four-stable, if there exists subsets A and B of E, such that F (A) = S = G(B)

and A ∩B = S and DF (A) = E \B and DG(B) = E \ A.

3. Subset S of E is dominating stable, if DF (S) ∪ DG(S) = E \ S.

4. If F is substitutable, G is substitutable and loser-free; we defined generalized score-stability in
Subsection 3.5

Theorem 15. If F and G are substitutable and path independent, then S is three-stable ⇔ S is
four-stable⇔ S is dominating stable.

Theorem 16. If F and G are substitutable choice functions, F is path independent, (but G may not be);
then, every four-stable set is three-stable.

Compared to other stability concepts, three-stability, four-stability and dominating stability are
defined on every substitutable choice functions, F and G, but for score stability, we need substitutability
on one side and a substitutable, loser-free function on the other side.

As we showed in Theorem 13, if choice function F is substitutable and path independent and G is
substitutable loser-free, then every score-stable set is also four-stable.
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Theorem 17. If F is substitutable and path independent andG is substitutable and loser-free, then every
score-stable solution is three-stable.

Theorems 13, 15, 16 and 17 are summarized in Figure 5 below. In the notations, 3 stands for
three-stable, 4 for four-stable, d for dominating stable and s for score-stable sets.

Figure 5. Graphs of the connections.
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If the graph is simple: If F and G are path independent, all four properties are equivalent; If F is
path independent, four-stablility is equivalent to score-stability; If F and G are not path independent,
similarly to the upper picture, only score-stable⇒ three-stable is true.

Statement 7. For all the other directions in Theorems 13, 15, 16 and 17, if one implication “if S is
x-stable, then it is y-stable” does not appear in the upper diagram, then there exists a counterexample
for it.

7. Conclusions

We worked with four different stability definitions: dominating stable, three-stable, four-stable and
score-stable, from which the first three are rather theoretic, and score-stability can be applied to the
Hungarian college admission system. All of them, except for dominating stability, can be found with
simple algorithms and have some kind of lattice property, for the characteristic (A,B) pairs or for the
stable contract sets themselves. Moreover, under given conditions, the lattice of the four-stable and
score-stable sets are the same. We used Tarski’s theorem to prove the lattice property, except for the last
case: score-stability with non-simple graphs.
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Appendix

Proof of Lemma 1. If F (A) = S, then for every x ∈ A \ S, we have S ⊂ (S ∪ {x}) ⊆ A. Therefore, by
F path independence, F (S ∪ {x}) = S; so DF (S) ⊇ A \ S. Consequently, F (A) ∩ DF (S) = A \ S.
If DF (S) ∩A = A \ S, then F (S ∪ {x}) = x, for every x ∈ A \ S; so, from substitutability, x ∈ F (A).
Thus, F (A) ⊇ A \ S, which means F (A) ⊆ S.
By the path independence of F , we have F (A) ⊆ S ⊆ A⇒ F (A) = F (S) = S

Proof of Lemma 2. We have seen that DF is monotone; hence DF (S) ⊆ DF (A).
If x ∈ DF (A), then F (A ∪ {x}) ⊆ A ⊆ (A ∪ {x}); so F (A ∪ {x}) = F (A) = S by the
path independency.
Therefore, F (A ∪ {x}) ⊆ S ∪ {x} ⊆ A ∪ {x}; hence F (S ∪ {x}) = F (A ∪ {x}) = S. This means S
dominates any x ∈ DF (A), i.e., DF (A) = DF (S).

The proof of statement 3 is included in the proof of Theorem 11.

Proof of Lemma 5. If Ai is a student of Cj when the score vector is t ( i.e., AiCj ∈ F (P (t))), then Ai

can leave Cj at t′ if she does not reach t′j or got a better opportunity at another college.
If student Al does not go to college Cj at the score vector, t, (AlCj /∈ F (P (t))), then she will not go
to Cj under score vector t′, because if Al does not reach tj , then she does not reach the higher limit,
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t′j . If Al reaches tj , but chooses better college Ck instead, since t′k ≤ tk, she will stay in college Ck.
Therefore, the set of students assigned to Cj with t′ is the subset of the set of students going to Cj under
t. (F (P (t′)) ∩ E(Cj)) ⊆ (F (P (t)) ∩ E(Cj)) The choice function, Gj , of college Cj is substitutable.
Therefore, F (P (t)) ∩ E(Cj) is valid; then, a subset of it is also valid. Therefore, t′ is Cj-valid.

Proof of Lemma 6. Let the set of contracts above score vectors t1 and t2 be P (t1) = A and P (t2) = B.
Then, P (tmin) = A∪B. Suppose that t1j = tmin

j for college Cj . Since A ⊆ A∪B, from substitutability
F (A) ⊆ F (A ∪ B). Considering the set of contracts of college Cj , E(Cj) ∩ A = E(Cj) ∩ (A ∪ B),
i.e., Cj accepts the same set of contracts with score vector t1 as with tmin. Therefore, E(Cj) ∩ F (A) ⊇
E(Cj) ∩ F (A ∪ B). Since G is substitutable, if a set is valid, then its subset is also valid. G(E(Cj) ∩
F (A)) = E(Cj) ∩ F (A) so G(E(Cj) ∩ F (A)) = ∅. For a smaller set, G(E(Cj) ∩ F (A ∪ B)) = ∅; so,
(A ∪B) is also valid for college Cj .
In other words, if we change the score limit from t1 to tmin, college Cj keeps its score limit, while other
colleges may decrease it. Applicants may leave Cj , but no new students will arrive to Cj; so, score limit
tmin is Cj-valid. We can use the same argument for every college; therefore tmin is valid.

In the proofs of Theorems 5 and 6, we use the alternative versions of the score-decreasing/increasing
algorithms, where in every step, a college decreases/increases its score limit only by one. These modified
algorithms also find stable solutions, as one step of the score decreasing or score increasing can be
regarded as several steps of this modified algorithm. From Lemma 5, if score vector t is valid and
t′ = (t1, . . . tj−1, tj − k . . . tm) is also valid, then for every 1 ≤ k′ ≤ k, t′′ = (t1, . . . tj−1, tj − k′, . . . tm)
is valid (it is Cj-valid, because t′ is valid, and valid for other colleges, because t is valid).

From the maximal/minimal property of the output solution, we see that the output of the algorithm
does not depend on what order by which the colleges modify their score limits. Note that these algorithms
may use m(M +1) steps, for example, if we start decreasing from tC := (M +1, . . . ,M +1)), but only
(0, . . . , 0) is a stable score vector.

Proof of Theorem 5. From the algorithm, the fact that no college can decrease its score limit implies that
t is a stable vector.
Suppose that there exist a stable score vector t1 ≤ t0, where t1 6≤ t. Therefore, t = (t1, . . . tm) and
t1 = (t11, . . . t

1
m), and t1i > ti for some i. Define the set:

T = {x ∈ Nm : xj ≥ t1j ∀j ∈ {1, . . .m}}

The algorithm starts from t0 ∈ T and ends in t /∈ T ; so, there is a step, when the score vector leaves T :
from score vector w1 = (w1, w2, . . . t

1
k . . . wm) ∈ T , we move to w2 = (w1, w2, . . . t

1
k − 1 . . . wm) /∈ T .

Since this step is possible, both w1 and w2 are valid score vectors. We know that w1 ≥ t1. Using
Lemma 6, both t1 and w2 are valid; so, their minimum w3 = (t11, t

1
2, . . . t

1
k − 1 . . . t1m) is also valid.

Therefore, w3 is stable, and it can be reached from t1 by lowering the score limit of Ck. Therefore, t1 is
not critical, hence it cannot be stable; a contradiction.

Since every stable score vector are less than or equal to t0 = (M + 1, . . .M + 1), the biggest of
all stable score vectors is sC . Every student is accepted by fewer colleges than in any other stable
admissions; so, sC is applicant-pessimal. Figure 6 is showing a possible layout.
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Figure 6. Score-decreasing algorithm.
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Proof of Theorem 6. It follows from the algorithm that t is valid. Suppose that it is not stable, i.e., there
is a college, Cj , such that t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) is still valid.
If t0j ≤ tj − 1, look at the step where college Cj raises its score from tj − 1 to tj , moving from score
vector v1 to v2.

Since the score limits in the algorithm always increase, v1 ≤ t and v1j = tj − 1; therefore, v1 ≤ t′.
We can use Lemma 5: score limit t′ is valid, so v1 is also Cj-valid. However, then, the algorithm would
not have increased v1 to v2; a contradiction; Therefore, t is stable.

If t0j = tj , since t0 is critical, the score vector t′0 = (t01, t
0
2, . . . , t

0
j−1, t

0
j − 1, t0j+1, . . . , t

0
m) is not valid

for Cj . From t0 ≤ t, we get that t′0 ≤ t′. Using Lemma 5 again, if t′ was valid, then t′0 would be
Cj-valid. Therefore, t′ is not valid; therefore, t is indeed stable.

To show that t is minimal, suppose that there is a stable score limit, t1, such that t0 ≤ t1, but t � t1,
i.e., t1j < tj for some j. Let:

T ′ = {x ∈ Nn : xi ≤ t1i ∀i ∈ {1, . . .m}}

Since t /∈ T ′, but t0 ∈ T ′, there is a step such that when we leave T ′, we move from w1 to w2. There is a
college, Ci, where w1

i = t1i . For other colleges, w1
k ≤ t1k; so, by Lemma 5, w1 was Ci-stable. Therefore,

Ci does not want to increase its score limit.
Therefore, sA is the smallest of all stable score vectors; so, every student gets accepted at as many
colleges as possible, and they choose what is best for them. Therefore, sA is applicant-optimal. Figure 7
is showing a possible layout.
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Figure 7. Score-increasing algorithm.t
t
t

t

t

6
-

6

-

6
-

T ′

t1

t

w2

w1

t0

Proof of Theorem 7. In this proof, we return to the algorithm versions where colleges increase/lower
their score limits as much as they can. We call the set of realized contracts at some score
vector enrollment.
Each of the n students can go to one of the m colleges or remain unmatched. Therefore, there are at
most nm+1 possible enrollments. In the score-decreasing algorithm, the applicants always change to
better. In the score-increasing algorithm, the students’ positions get worse. Therefore, we cannot return
to an earlier enrollment in these algorithms.
If we order all enrollments according to the applicants’ preference order, the longest chain contains
n(m + 1) enrollments. It goes from “everyone gets the best college” to “everyone gets the worst
college”. In the score-decreasing algorithm, college Ci may lower its score limit without changing
the enrollment, taking the same students as before. If all m colleges do the same, we get the minimal
score vector for that given enrollment; next time it came to college Ci, it has to change to a different
enrollment or stop. Therefore, in the algorithm, there can be at most m consecutive steps without
changing the enrollment. Therefore, the number of steps is O(m2n).

In the score-increasing algorithm, every step will change the enrollment; hence, if Ci increase its
score limit, the set of students going to Ci was infeasible before this step and feasible after the step.
Thus, the number of steps is O(mn).

Proof of Theorem 11. (i) First, we show that for any given stable set S there is a unique four-stable
pair (A,B).
Suppose that there are two different stable pairs for S: (A,B) and (A′, B′).
We can assume that there exists a b for which b ∈ B, but b /∈ B′. Since S ⊆ B′, it follows that b /∈ S.
Moreover b ∈ F (A ∪ {b}), but b /∈ F (A′ ∪ {b}), because b ∈ F (A ∪ {b})⇔ b /∈ B.
By A′ \ S = F (A′) ⊆ F (A′ ∪ {b}), we get F (A′ ∪ {b}) ⊆ S ⊆ A′ ∪ {b}; hence F (A′ ∪ {b}) = S.
We know that (A′ ∪ {b}) \ S = F (A′ ∪ {b}) and A \ S = F (A).
Since F is substitutable, F (A′ ∪ A ∪ {b}) contains both sets, (A′ ∪ A ∪ {b}) \ S ⊆ F (A′ ∪ A ∪ {b});
so, F (A′ ∪ A ∪ {b}) ⊆ S.
From F (A′ ∪ {b}) = S, we get F (A ∪ {b}) ⊆ F (A ∪ {b}) ∪ F (A′ ∪ {b}) ⊆ A ∪ {b}; so,
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F (A ∪ {b}) = F (F (A ∪ {b}) ∪ F (A′ ∪ {b})).
Using that F is path independent, from Theorem 3, b ∈ F (A∪{b}) = F (F (A∪{b})∪F (A′ ∪{b})) =
F (A ∪ {b}) ∪ (A′ ∪ {b})) = F (A′ ∪ A ∪ {b}) ⊆ S. Therefore, b ∈ S; a contradiction.
Let S and S ′ be two different stable sets. Let four-stable pairs (A,B) and (A′, B′) correspond to stable
sets S and S ′, respectively.

(ii) (A,B) ≤ (A′, B′)⇒ S ≤F S
′.

From the ordering of the four-stable pairs, S ⊆ A ⊆ A′ and S ′ ⊆ A′; so, S ∪ S ′ ⊆ A′.
Since F is path independent, from S ′ = F (A′) ⊆ S ∪ S ′ ⊆ A′, we get that F (S ∪ S ′) = S ′.

(iii) S ≤F S
′,⇒ (A,B) ≤ (A′, B′) .

Suppose that B′ * B. Consequently, ∃ b, such that b /∈ B, but b ∈ B′. From Lemma 2,
DF (A) = DF (S); so:
b /∈ B ⇒ b ∈ DF (A) = DF (S)⇒ b /∈ F (S ∪ {b})
b ∈ B′⇒ b /∈ DF (A

′) = DF (S
′)⇒ b ∈ F (S ′ ∪ {b})

We know that F (S ∪ S ′) = S ′; therefore, F (S ∪ S ′ ∪ {b}) ⊆ S ′ ∪ {b} ⊆ S ∪ S ′ ∪ {b}. Since F is path
independent, F (S ∪ S ′ ∪ {b}) = F (S ′ ∪ {b}) 3 b; hence b ∈ F (S ∪ {b}); a contradiction.
Similarly, from B′ ⊆ B, we get DF (B

′) ⊆ DF (B) by the monotonicity of DF and E \ A′ ⊆ E \ A;
hence A′ ⊇ A.

(iv) The stable sets form a lattice.
We have seen that there is an order preserving bijection between the stable sets and stable pairs. As
stable pairs form a lattice, stable sets do, as well.

Proof of Statement 5. Let J = {e /∈ P (t) : e ∈ F ({e} ∪ P (t))} be the set of contracts that F prefers to
F (P (t)). In other words, J = (E \ DF (P (t))) \ P (t); therefore, E \ DF (P (t)) = F (P (t)) ∪ J . (See
Figure 8.)

Suppose t is a fixed point. Let B = E \ DF (P (t)), and we use that: P (PG(B)) ∩ B = G(B). From
this, P (t) ∩ (E \ DF (P (t))) = P (PG(E \ DF (P (t)))) ∩ (E \ DF (P (t))) = G(E \ DF (P (t))).

Since P (t) ∩ (E \ DF (P (t))) = F (P (t)), we get that G(F (P (t)) ∪ J) = F (P (t)), and since G is
substitutable, G(F (P (t))) ⊆ G(F (P (t)) ∪ J) = J . Therefore, G(F (P (t))) = F (P (t)); so, t is valid.

To prove that t is critical, assume that college Cj lowers its score limit by one. Let
t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm). Then, at college Cj , the accepted P (t) increases with

some contracts.
Now, we use that the graph is simple. If AiCj ∈ P (t), then applicant Ai will also be accepted

under t′. If Ai is not accepted at college Cj with score vector t, but she has a score of at least tj − 1,
then she will go to Cj if and only if CjAi ∈ J , because she got only one new chance. Therefore,
F (P (t′)) ∩ E(Cj) = (F (P (t)) ∪ J) ∩ E(Cj).

Other colleges cannot have new students; so, they stay valid.
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From F (P (t)) ∪ J , the scoring function, PGj
, for college Cj chooses score limit tj; therefore, it also

chooses tj from F (P (t′). Therefore, t′ is not valid.

Now, assume that t is valid and critical. Therefore, G(F (P (t))) = F (P (t)); so, G(F (P (t)) ∪ J)
accepts contracts in F (P (t)) (because contracts in J do not reach score limit t). Therefore,
PG(E \DF (P (t))) ≤ t.

As before, t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm). Function P is antitone; so
P (t) ⊆ P (t′). SinceDF is monotone,DF (P (t)) ⊆ DF (P (t

′)); so, E \DF (P (t)) ⊇ E \DF (P (t
′)) ⊇

F (P (t′)). As t is critical, F (P (t′)) is infeasible for college Cj; so, E \ DF (P (t)), too, and we get
PGj

(E \DF (P (t))) ≥ tj . This is valid for every college; therefore, PG(E \DF (P (t))) = t.
We did not use that G is simple in the second direction and in the “valid” part of the first direction; so,

these parts remain true for general bipartite graphs.

Figure 8. Four-partition.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

@
@

@
@

@

@
@
@

@
@

@
@

@
@

@

HH

A
A

��

�
�

F (P (t))

J
P (t) E \ DF (P (t)) = B

Proof of Statement 6. (i)⇒ (ii) If t is a fixed point, t = PG(E \ DF (P (t))), then let B = E \ DF (P (t).

As we have seen in the proof of Statement 5, F (P (t)) = P (t) ∩ (E \ DF (P (t)) = G(E \ DF (P (t))) =

G(F (P (t)) ∪ J); so, S = G(B).
This gives DG(B)∩B = G(B) = J . From the contracts outside B, the set, B, must dominate contracts
under score limit t, since if colleges do not accept contracts from J , then they will not accept other
contracts with the same or lower scores. (It cannot happen that for some college, Cj , all contracts
in J have a score of tj − 2 or less and some e /∈ B has a score of tj − 1, because in that case, PGj

would have chosen tj − 1 and t would not be stable.) Therefore, DG(B) ⊇ E \ P (t). Therefore,
A = E \ DG(B) ⊆ P (t).
Since F is path independent and S = F (P (t)) ⊆ A ⊆ P (t), we get that F (A) = S.
From Lemma 2, DF (A) = DF (P (t)) = E \B; so, S is indeed four-stable.

(i)⇐ (ii)
If S is four-stable, then there exists A,B, such that F (A) = S,G(B) = S. Let the score limit be
t = PG(B). We want to know what P (t) is. It is sure that P (t)∩B = S, because P (PG(B))∩B = G(B),
and since DG(B) = E \ A and DG(B) ⊇ E \ P (t), so A = E \ DG(B) ⊆ P (t).
Since DF (A) = E \ B, substitutability implies that dominated contracts will not be chosen from P (t),
since A ⊆ P (t) ⊆ A ∪ (E \ B). Therefore, F (P (t)) ⊇ P (t) \ A. Then, F (P (t)) ⊆ A ⊆ P (t). From
the path-independent property, S = F (A) = F (P (t)).
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Using Lemma 2 again, DF (P (t)) = DF (A) = E \ B, E \ DF (P (t)) = B and PG(E \ DF (P (t))) =

PG(B) = t; therefore, t is a fixed point.

Proof of Theorem 14. We know from Theorems 5 and 6 that there exist a greatest and a least stable score
vector. Let t1 and t2 be two arbitrary stable score vectors. We want to show that they have a join and
a meet. Using Lemma 6, tmin = min(t1, t2) is valid. Let us start the score-decreasing algorithm from
tmin; from the algorithm, we get a stable score vector, t. From Theorem 5, t is the biggest among all the
stable score vectors smaller than or equal to tmin. Therefore, t = t1 ∧ t2, because for every stable vector,
such that t′ ≤ t1, t2, t′ ≤ tmin; therefore, t′ ≤ t.
We finish by showing the existence of t1 ∨ t2. There exists a common upper bound of t1 and t2, for
example sC . Since the lattice is finite, there has to be at least one least common upper bound. Suppose
there exist two least common upper bounds: a and b. Since t1 is a lower bound of a and b, t1 ≤ a ∧ b;
similarly, t2 ≤ a ∧ b. Therefore, we found a common upper bound of t1 and t2 smaller than a; a
contradiction.

Proof of Theorem 15. Three-stable⇒ dominating
There are A and B, such that F (A) = S = G(B). From Lemma 1, DF (S) ⊇ A \ S. The same goes for
G(B); so, DG(S) ⊇ B \ S. Their union is
DF (S) ∪ DG(S) ⊇ ((A \ S) ∪ (B \ S)) = E \ S.
Additionally, S does not dominate itself; so, DF (S) ∪ DG(S) = E \ S.

Dominating⇒ four-stable
We know that DF (S) ∪ DG(S) = E \ S. Let A = E \ DG(S) and B = E \ DF (S).
A ⊆ S ∪ DF (S), so F (A) = S. From Lemma 2, DF (A) = DF (S) = E \ B. Similarly,
DG(B) = DG(S) = E \ A. With this (A,B) pair, S is four-stable.

Four-stable⇒ three-stable
There exists subsets A and B of E, such that F (A) = S = G(B) and A ∩ B = S, and
DF (A) = E \B,DG(B) = E \ A.
Let D = E \ (A ∪B) and A′ = A ∪D,B′ = B.
Now, A′ ∪ B′ = E, A′ ∩ B′ = A ∩ B = S, and from Lemma 2, DF (S) = DF (A) = E \ B =

(A \ S) ∪D = A′ \ S. From Lemma 1, F (A′) = S, G(B′) = G(B) = S; so, with the (A′, B′) pair, S
is three-stable.

Proof of Theorem 16. In the third part of the proof of Theorem 15, we did not use that G was
path independent.

Proof of Theorem 17. Let S ⊆ E be the enrollment realized from stable score vector t. Define A as the
set of contracts above score vector t. Let B be the union of S and the set of contracts under score limit t.
From all the accepted contracts above score vector t, the applicants choose contract set S; so, F (S) = S.
If colleges choose from contract set B, just like from all contracts, they would set score limit to t; so,
G(B) = S. It is easy to see that A ∪B = E,A ∩B = S; therefore, S is three-stable.
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Proof of Statement 7. In Figures 2 and 4 and in the following Figures 9 to 13, the upper nodes symbolize
the colleges, the lower nodes the applicants and the edges between them are the possible contracts. If
we write a > b to a node, that means the given applicant prefers contract a to b. In all examples, every
student gets a score of zero everywhere, except in Figure 13, where contract b has a score of one; so, b is
better for the college.
If a node has only one incident edge, it always chooses that, if it is available.

Figure 9. Example graph 3.
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Figure 10. Example graph 4.
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Figure 12. Example graph 6.
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Figure 13. Example graph 7.
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Table 1 describes the choice functions, usually as a direct sum of the choice functions of individual
colleges/applicants. Notation Q1(a, b) means a college chooses from equally good contracts a and b and
its quota is one. We use the abbreviation “path ind.” for path independence. Table 2 shows the stable sets
for each notion for the seven examples.

Table 1. The choice functions for the seven examples.

Figure Simple F Path ind. G Path ind.

2 no Q1 no Q1 no
4 no a > b yes Q1 no
9 yes (a > c) + (b > d) yes Q1(a, b) +Q2(c, d) no
10 yes a+Q1(b, c) no Q1(a, b) + c no
11 yes a+Q1(b, c, d) no Q1(a, b) + c+ d no
12 yes (a > c) + (b > d) yes Q1(a, b) +Q1(c, d) no
13 no a > b yes b > a yes

Table 2. Stable sets in case of different stability notions.

Figure Three-Stable Four-Stable Dominating Stable Score-Stable t Fixed

2 ∅ ∅, {a}, {b} {a}, {b} ∅ ∅
4 ∅, {a} ∅, {a} {a}, {b} {a} ∅, {a}
9 {a, d}, {c, d} {a, d} {a, d} {a, d} {a, d}
10 {a}, {c} {a, c} {a, c} {a} {a},
11 ∅, {a} {a} {b}, {a, c}, {a, d} {a} {a}
12 ∅, {a, d} ∅, {a, d} {a, d}, {b, c} ∅, {a, d} ∅, {a, d}
13 {a}, {b} {a}, {b} {a}, {b} {a} {a}, {b}
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