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Abstract: We address the numerical solution of Lyapunov, algebraic and differential
Riccati equations, via the matrix sign function, on platforms equipped with general-purpose
multicore processors and, optionally, one or more graphics processing units (GPUs).
In particular, we review the solvers for these equations, as well as the underlying
methods, analyze their concurrency and scalability and provide details on their parallel
implementation. Our experimental results show that this class of hardware provides sufficient
computational power to tackle large-scale problems, which only a few years ago would have
required a cluster of computers.
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1. Introduction

Matrix equations are frequently encountered in control theory applications, like model-order
reduction or linear-quadratic optimal control problems, involving dynamical linear systems that represent
a variety of physical phenomena or chemical processes [1]. In this paper, we address the solution
of Lyapunov equations and algebraic/differential Riccati equations (AREs/DREs), involving dense
coefficient matrices, via the matrix sign function [2]. This iterative method exhibits a number of
appealing properties, such as numerical reliability, high concurrency and scalability and a moderate
computational cost of O(n3) floating-point arithmetic operations (flops) per iteration, where n denotes
the number of the states of the dynamical linear system. Therefore, the solution of matrix equations with
n of O(1000) and larger asks for the use of high performance architectures, often parallel computers, as
well as efficient concurrent implementations.

The PLiC (Parallel Library in Control) and PLiCMR (Parallel Library in Control and Model
Reduction) packages [3,4] offer numerical tools, based on the matrix sign function, for the solution
of very large-scale matrix equations (n of O(10, 000) and larger) on message-passing architectures.
However, the interface to the routines in these packages is complex, especially by the need to initially
distribute the data matrices and collect the results at the end of the computation. Furthermore, the use of
these libraries requires access to a message-passing platform (e.g., a cluster of computers).

The last few years have witnessed a rapid evolution in the number and computational power of
the processing units (cores) featured in general-purpose CPUs, and an increasing adoption of GPUs
as hardware accelerators in scientific computing. A number of efforts have demonstrated the remarkable
speed-up that these systems provide for the solution of dense and sparse linear algebra problems.
Among these, a few works targeted the numerical solution of matrix equations, which basically can
be decomposed into primitive linear algebra problems, using this class of hardware [5–9]. In this paper,
we review the rapid solution of Lyapunov equations, AREs and DREs, on multicore processors, as well
as GPUs, making the following specific contributions:

• We collect and update a number of previous results distributed in the literature [5–9], which show
that the matrix sign function provides a common and crucial building block for the efficient parallel
solution of these three types of matrix equations on multicore CPUs, hybrid CPU-GPU systems
and hybrid platforms with multiple GPUs.
• We extend the single-precision (SP) experiments previously reported in [5–7] with

double-precision (DP) data. This is especially relevant, as DP solutions are required in practical
control theory applications. While modifying the original codes to operate with DP data was
relatively straight-forward, several parameters of the implementations needed to be carefully
optimized to compensate for the higher cost of the communications when DP matrices were
involved. Among other parameters, algorithmic block-sizes, the depth of look-ahead strategies
and the adoption of multilevel blocking techniques are architecture- and precision-dependent
parameters that had to be experimentally retuned to attain high performance.
• We experimentally compare the efficiency of the solvers using two generations of GPUs with

diverging approaches to exploit ample data-parallelism. In particular, the NVIDIA K20 features
a high number of cores (2496) and low frequency (706 MHz), while each GPU in the NVIDIA
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S2050 presents a lower number of cores (448), but operates at higher frequency (1150 MHz). None
of our previous work [5–9] reported data with the newer NVIDIA K20.
• We follow the general design framework for the solution of Lyapunov equations and DREs on

multi-GPU platforms, extending these ideas to implement and evaluate a new ARE solver that
leverages the presence of multiple GPUs in a hybrid platform.
• Overall, we provide a clear demonstration that commodity hardware, available in current

desktop systems, offers sufficient computational power to solve large-scale matrix equations, with
n ≈ 5,000–10,000. These methods are thus revealed as appealing candidates to replace and
complement more cumbersome message-passing libraries for control theory applications.

The rest of the paper is structured as follows. In Section 2, we revisit the matrix sign function,
which is the parallel building block underlying our Lyapunov equation and ARE solvers described
in the first two subsections there; the third subsection then addresses the solution of the DRE using
the matrix-sign function-based Lyapunov solver just introduced. Several implementation details for
the different solvers/equations are provided in Section 3. One of the major contributions of this
paper, namely the experimental evaluation of double-precision implementations of these solvers, using
state-of-the-art multi-core and many-core platforms, follows in Section 4, and a few concluding remarks
close the paper in Section 5.

2. Matrix Sign Function-Based Solvers

The sign function method [2] is an efficient numerical tool to solve Lyapunov, Sylvester and Riccati
equations, with dense coefficient matrices, on parallel message-passing computers [3,4], as well as on
hardware accelerators [10]. The convenience of the sign function method is based on two properties:
First, it is composed of well-known basic linear algebra operations that exhibit a high degree of
concurrency. Moreover, high performance implementations for parallel architectures of these operations
are included in linear algebra libraries, like BLAS (Basic Linear Algebra Subprograms) and LAPACK
(Linear Algebra PACKage), and their extension for GPUs, CUBLAS (CUDA BLAS) from NVIDIA
and for message-passing platforms, e.g., ScaLAPACK (Scalable LAPACK). Second, it is an iterative
algorithm that presents a fast convergence rate that is asymptotically quadratic.

Several schemes have been proposed in the literature to compute the sign function. Among them,
the Newton iteration, illustrated in Algorithm 1—GESINE below, exhibits a remarkable simplicity
and efficiency.

Algorithm 1: GESINE:
A0 ← A

k ← 0

repeat

Ak+1 ←
(
Ak + A−1

k

)
/2

k ← k + 1

until
√
‖Ak − Ak−1‖1 < τs‖Ak‖1
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The most time-consuming operation in Algorithm 1—GESINE is the inversion of Ak. Given a square
matrix, A, of order n, this operation renders the cost of the algorithm as 2n3 flops per iteration. The
cubic computational cost in the matrix dimension is inherited by all solvers described next.

To avoid stagnation of the iteration, we set τs = n ·
√
ε, where ε stands for the machine precision,

and perform one additional iteration step after the stopping criterion is satisfied. Due to the
asymptotic quadratic convergence rate of the Newton iteration, this is usually enough to reach the
attainable accuracy.

2.1. Solution of Lyapunov Equations

Algorithm 2—GECLNC, presented below, illustrates a variant of the sign function method for the
solution of a Lyapunov equation of the form:

AX +XAT = −BBT (1)

where A ∈ Rn×n is c-stable (i.e., all its eigenvalues have a negative real part), B ∈ Rn×m and X ∈ Rn×n

is the desired solution.

Algorithm 2: GECLNC:
A0 ← A, S̃0 ← BT

k ← 0

repeat

Compute the rank-revealing QR (rank-revealing QR (RRQR)) decomposition

1√
2ck

[
S̃k, ckS̃kA

−T
k

]
= Qs

[
Us

0

]
Πs

S̃k+1 ← UsΠs

Ak+1 ← 1√
2

(
Ak/ck + ckA

−1
k

)
k ← k + 1

until
√
‖Ak − I‖1 < τl

On convergence, after k̃ iterations, S̃ = 1√
2
S̃k̃ is a full (row-)rank approximation of S, so that

X = STS ≈ S̃T S̃.
In practice, the scaling factor, ck, is used to accelerate the convergence rate of the algorithm, (i.e., to

reduce the number of required iterations). In our case, we set:

ck = ‖Ak‖/‖A−1
k ‖

Furthermore, we choose τl = τs and perform an extra step after the convergence criterion is
satisfied. Note that the number of columns of S̃k is doubled at each iteration and, in consequence, the
computational and storage costs associated with its update increase with each iteration. This growth can
be controlled by computing a RRQR (rank-revealing QR) factorization, which introduces a relatively low
overhead. This approach reports important gains when the number of iterations needed for convergence
is large, or when the number of columns of B is large. The RRQR decomposition can be obtained by
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means of the traditional QR factorization with column pivoting [11], plus a reliable rank estimator. Note
that Qs is not accumulated, as it is not needed in subsequent computations. This reduces the cost of
computing the RRQR significantly.

2.2. Solution of Algebraic Riccati Equations

The sign function method can also be employed to compute the stabilizing solution of an algebraic
Riccati equation (ARE) of the form:

F TX +XF −XGX +Q = 0 (2)

where F , G, Q ∈ Rn×n and the solution, X ∈ Rn×n, is symmetric and satisfies that F −GX is c-stable.
In particular, the solution to the ARE can be obtained from the c-stable invariant subspace of the

Hamiltonian matrix [12]:

H =

[
F −G
−Q −F T

]
(3)

which can be extracted by first obtaining the matrix sign function of H:

sign(H) = Y =

[
Y11 Y12

Y21 Y22

]
(4)

and then solving the over-determined system:[
Y11

Y12 + In

]
X =

[
In − Y21

−Y11

]
(5)

Algorithm 3—GECRSG below summarizes the above steps to solve the ARE in Equation (2) with
this method.

Algorithm 3: GECRSG:

H0 ←

[
F −G
−Q −F T

]

Apply Algorithm 1—GESINE to compute Y =

[
Y11 Y12

Y21 Y22

]
← sign(H0)

Solve

[
Y11

Y12 + In

]
X =

[
In − Y21

−Y11

]
for X

2.3. Solution of Differential Riccati Equations

The matrix sign function can also be applied in combination with the Rosenbrock method for the
solution of an autonomous symmetric differential Riccati equation (DRE) [13] of the form:

Ẋ(t) = Q(t) +X(t)A(t) + A(t)TX(t)−X(t)S(t)X(t) ≡ F (t,X(t))

X(t0) = X0

(6)
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where t ∈ [t0, tf ], A(t) ∈ Rn×n, Q(t) = Q(t)T ∈ Rn×n, S(t) = S(t)T ∈ Rn×n and X(t) =

X(t)T ∈ Rn×n. Here, we assume that the coefficient matrices are piecewise continuous locally bounded
matrix-valued functions, which ensures the existence and uniqueness of the solution to Equation (6);
see, e.g., Theorem 4.1.6 in [1].

The application of the Rosenbrock method of order one to an autonomous symmetric DRE of the
form Equation (6) yields:

ÃT
kXk+1 +Xk+1Ãk = −Q−XkSXk −

1

h
Xk (7)

where Xk ≈ X(tk) and Ãk = A − SXk − 1
2h
I; see [14,15] for details. In addition, we assume:

Q = CTC, C ∈ Rp×n, S = BBT , B ∈ Rn×m, Xk = ZkZ
T
k , Zk ∈ Rn×zk , with p, m, zk � n. If we

denote Nk = [CT Zk(ZT
k B)

√
h−1Zk ], then the Lyapunov Equation (7) results in:

ÃT
kXk+1 +Xk+1Ãk = −NkN

T
k (8)

where Ãk = A−B(Zk(ZT
k B))T − 1

2h
I . The procedure that is obtained from this elaboration is presented

in Algorithm 4—ROS1. Observing that rank(Nk) ≤ p + m + zk � n, we can use the sign function
method to solve Equation (8), as illustrated in Algorithm 2—GECLNC (see Section 2.1).

Algorithm 4: ROS1:
t0 ← a

for k ← 0 to d b−a
h
e

Ãk ← A−B(Zk(ZT
k B))T − 1

2h
I

Nk ← [CT Zk(ZT
k B)

√
h−1Zk ]

Apply Algorithm 2—GECLNC to obtain Zk+1, a low-rank approximation to
the solution of ÃT

kXk+1 +Xk+1Ãk = −NkN
T
k

tk+1 ← tk + h

end for

Note that, since we obtain the low rank factor of the solution of Equation (8), the cost associated with
the updates of both Ãk and Ñk is drastically decreased, and thus, the most time-consuming operation in
Algorithm 4—ROS1 is the solution of Equation (8), i.e., the execution of Algorithm 2—GECLNC.

3. High Performance Implementations

In this section, we briefly review several high performance implementations for the solution of the
matrix equations in the study. In particular, we describe Lyapunov, ARE and DRE solvers based
on Algorithm 2—GECLNC, Algorithm 3—GECRSG and Algorithm 4—ROS1, respectively. These
algorithms require the computation of the sign function and, therefore, inversion of a large dense matrix,
which in all cases represents the most expensive operation from the computational point of view.

In the next two subsections, we describe an efficient and reliable numerical method for matrix
inversion and the parallelization techniques applied in each platform: multi-core, hybrid CPU-GPU



Algorithms 2013, 6 863

systems and hybrid multi-GPU platforms. In Section 3.3, we then discuss some additional details on the
parallel solution of matrix equations.

3.1. Matrix Inversion

Traditional matrix inversion via Gaussian elimination requires the computation of the LU factorization
of the matrix and the solution of two triangular linear systems. This method presents two drawbacks
when implemented in parallel architectures: the process is partitioned into three consecutive stages, and
the solution of the linear systems involves triangular matrices (impairing load-balance).

Algorithm 5: GJEBLK:

Partition A→

(
ATL ATR

ABL ABR

)
, where ATL is 0× 0 and ABR is n× n

while m(ATL) < m(A) do

Determine block size b

Repartition

(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 , where A11 is b× b

 A01

A11

A21

 ← GJEUNB


 A01

A11

A21




A00 ← A00 + A01A10

A20 ← A20 + A21A10

A10 ← A11A10

A02 ← A02 + A01A12

A22 ← A22 + A21A12

A12 ← A11A12

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


end while

On the other hand, matrix inversion via the Gauss-Jordan elimination method (GJE) is mathematically
equivalent and presents the same arithmetic cost to/as the Gaussian-based counterpart, but computes
the inverse in a single stage, does not require to operate with triangular matrices and casts the
bulk of the computations in terms of coarse-grain highly parallel operations (matrix-matrix products).
Algorithm 5—GJEBLK, presented above, illustrates a blocked version of the matrix inversion GJE-based
algorithm using a FLAME (Formal Linear Algebra Methods Environment) notation [16]. There, m(A)

stands for the number of rows of the matrix. We believe the rest of the notation to be intuitive; for further
details, see [16]. A description of the unblocked version called from inside the blocked one can be found
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in [17]; for simplicity, we hide the application of pivoting during the factorization, but details can be
found there, as well.

3.2. Parallel Implementations of the Gauss-Jordan Elimination Algorithm

Three high performance implementations were developed for the matrix inversion, one for each
class of target platform: general-purpose multicore processor, hybrid CPU-GPU systems and hybrid
multi-GPU platforms. Using these implementations, we can obtain parallel and efficient solvers for each
matrix equation and architecture under study.

Multicore processors. The multicore routines rely on high-performance multi-threaded
implementations of BLAS that efficiently exploit the hardware concurrency (superscalar/pipelined
processing of instructions, SIMD (Single Instruction Multiple Data) floating-point units, multiple
cores, etc.) on this type of architecture. The key to success here is the use of a highly-efficient
implementation of the matrix-matrix product to perform the updates of the corresponding blocks in
Algorithm 5—GJEBLK, as well as a correct evaluation of the algorithmic block size. Some additional
performances can be regained by replacing the unblocked algorithm that factorizes the panel at each
iteration by a blocked implementation.

Hybrid CPU-GPU systems. These implementations exploit the massively parallel architecture of
the GPU to reduce the time-to-response of costly data-parallel computations (e.g., large matrix-matrix
products), while operations that feature a reduced computational cost or present fine-grain parallelism
are executed on the CPU.

In matrix inversion via GJE (see Algorithm Algorithm 5—GJEBLK), all operations are performed on
the GPU, except for the factorization of panel [A01;A11;A21]

T , which is done on the CPU. Assuming
that the complete matrix initially lies in the GPU memory, this panel is transferred to the CPU at the
beginning of each iteration and processed there, and the results are sent back to the GPU. This version
benefits from the use of architecture-specific parallel BLAS, like Intel’s MKL (Math Kernel Library)
for the CPU and NVIDIA’s CUBLAS for the GPU. Additionally, these implementations include several
common optimization techniques:

• Padding adds rows at the bottom of the matrix until their number is a multiple of 32. Padding
slightly increases the memory requirements, but not the computational cost, as we do not
access/operate with the elements in these rows. On the other hand, the GPU-memory accesses
are notoriously accelerated due to coalescing.
• Look-ahead advances the computation of operations in the critical path. In our case, a key element

in this path is the column panel factorization performed at each step of the algorithm. To advance
this computation, we partition the update of [A02;A12;A22]

T into two parts: the first b columns of
this block (which will form blocks [A01;A11;A21]

T in the next iteration) are first updated. Next,
while this part is transferred to the CPU and factorized there, the rest of the elements of the matrix
are updated in the GPU.
• Recursive blocking detaches the block sizes used by the GPU and CPU. While the GPU usually

attains high performance using a large algorithmic block-size, the CPU requires a smaller value for
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this parameter. Furthermore, the unblocked algorithm that factorizes [A01;A11;A21]
T is replaced

by a blocked implementation, which uses an inner algorithmic block-size.

More details on these techniques can be found in [18].
Hybrid multi-GPU systems. Hybrid CPU-GPU implementations offer remarkable performance, but

the dimension of the problems that can be tackled with them is constrained by the size of the GPU
memory (typically, 4–6 Gbytes). Hybrid implementations that combine a CPU with multiple GPUs
partially overcome this problem, since, as the number of GPUs grows, the aggregated size of the memory
is also increased. The use of several GPUs also increments the computational power of the platform and,
thus, can potentially reduce the execution time.

The implementations for this type of platform extend the hybrid CPU-GPU codes, while dealing with
several difficulties, particularly, load balancing and data transfers. In general, the data layout exerts a
relevant impact on load-balance and data transfers. However, the special properties of the GJE algorithm
allow us to rely on a simple block cyclic data distribution, as shown in Figure 1. The matrix is partitioned
there into blocks of columns, which are then distributed cyclically among the GPUs.

Figure 1. Data distribution between graphics processing units (GPUs) for the multi-GPU
implementation (example with four GPUs).

GPU 1 GPU 2 GPU 3 GPU 4

Additionally, in the multi-GPU codes, some operations that are performed are merged, reducing
the number of invocations to BLAS kernels and avoiding the computation of small to moderate
matrix-matrix products that offer a poor performance on the GPUs. In particular, the update of
[A00A02;A10A12;A20A22]

T can be performed with a single matrix-matrix product. These and other
features of this version are detailed in [19].

3.3. Parallel Matrix Equations Solvers

The optimization of the matrix equation solvers is not restricted to the matrix inversion routines and,
by extension, the calculation of the matrix sign function. All the phases of Algorithm 2—GECLNC,
Algorithm 3—GECRSG and Algorithm 4—ROS1 were carefully optimized for the different platforms.
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In the case of the Lyapunov solver, high performance linear algebra kernels from BLAS and LAPACK
were employed to execute most of the additional computations that appear in Algorithm 2—GECLNC

(QR factorization, matrix-matrix products, computation of the scaling factor, convergence test, etc.).
OpenMP directives were also employed to parallelize other minor computations, like matrix addition and
matrix scaling.

The ARE solvers build matrix H in parallel and employ OpenMP directives to efficiently compute
the matrix addition and scaling required for the update of Hk+1. Besides, multi-threaded routines from
BLAS and LAPACK were used to solve the over-determined system in the last stage of the method.

In the DRE solvers, the computation of the low rank factor for the solution, Zk+1, dramatically reduces
the computational cost of all steps. Thus, the total cost of the algorithm basically boils down to that
required by the solver of the Lyapunov equations. Once more, multi-threaded BLAS and LAPACK
kernels and OpenMP directives were employed to parallelize some minor computations, like matrix
additions and matrix norm computations. The updates of Ãk and Ñk require several matrix-matrix
products, matrix additions and scalings that are computed on the CPU. Although matrix-matrix products
of large matrices are suitable for the GPU architecture, the dimensions ofB and ZT are usually too small
to amortize the cost of data transfers.

4. Experimental Results

We evaluate the performance of the implementations using two problems from the Oberwolfach
Model Reduction Benchmark Collection [20]. For the STEEL problem, we employ two instances,
STEELS and STEELL. For both cases, m = 7 and p = 6. The order of the system is n = 1, 357 for
STEELS and n = 5, 177 for STEELL; for the FLOW METER the dimensions are n = 9, 669, m = 1,
p = 5.

Experiments are performed on two different platforms. The first platform, Kepler, is equipped with
an Intel Sandy Bridge-E i7-3930K processor at 3.2 GHz, 24 GB of RAM, and is connected to an NVIDIA
Tesla K20 via a PCI-e bus. The second platform, S2050, consists of two Intel Xeon QuadCore E5440
processors at 2.83 GHz, with 16 GB of RAM, connected to an NVIDIA Tesla S2050 (four NVIDIA
M2050 GPUs) via two PCI-e buses. Platform Kepler is employed to evaluate the multicore and hybrid
CPU-GPU kernels, while the multi-GPU kernels are evaluated in S2050. (More details on the platforms
are offered in Table 1.)

Table 1. Hardware platforms employed in the experimental evaluation.

Platform Processors #proc.
#cores Frequency L2 cache Memory

(per proc.) (GHz) (MB) (GB)

Kepler
Intel i7-3930 1 6 3.2 1.5 24
NVIDIA K20 1 2,496 0.71 – 5

S2050
Intel E5440 2 4 2.83 6 16
NVIDIA S2050 4 448 1.15 – (3 × 4)12
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A multi-threaded version of the Intel MKL library (version 10.3.9) provides the necessary LAPACK
and BLAS kernels for the CPU and NVIDIA CUBLAS (version 5.0) for the GPU computations.
Experiments are performed in double precision arithmetic.

Table 2 shows the results obtained for the Lyapunov equation solvers. (Hereafter, the subindices,
CPU, GPU, or MGPU, identify the target platform as CPU, hybrid CPU-GPU and hybrid multi-GPU,
respectively). The use of the GPU reports important gains for all the problems evaluated. The difference
between the performance of GECLNC GPU and GECLNC CPU grows with the problem dimension. In
particular, GECLNC GPU is 30% faster than GECLNC CPU for the solution of the smallest problem,
but 4.4× faster for FLOW METER, the largest problem tackled. The comparison among GECLNC GPU

and GECLNC MGPU shows that the multi-GPU kernel offers high performance for smaller problems,
which decays for larger problems. This can be explained by two main characteristics of the NVIDIA
devices employed. On the one hand, the number of computational units in NVIDIA K20 is larger than
the aggregated number of computational cores in the four GPUs of NVIDIA S2050. This difference, of
about 500 computational units, renders NVIDIA K20 more suitable for large problems. On the other
hand, the cores in NVIDIA S2050 work at a higher frequency, which is a key factor for moderate/small
problems. As a result, GECLNC MGPU is 25% and 12% faster than GECLNC GPU for benchmarks
STEELS and STEELL, respectively, but 12% slower for FLOW METER. In summary, the GPU-based
variants reported gains between 1.85× and 4.4×.

Table 2. Execution time (in seconds) for the solution of Lyapunov equations.

GECLNC CPU GECLNC GPU GECLNC MGPU

STEELS 1.35 0.99 0.73

STEELL 26.92 8.01 6.79

FLOW METER 154.30 34.86 40.53

Table 3 summarizes the results for the solution of algebraic Riccati equations. Note that the codes to
build the matrix, H0 (column 2), and solve the over-determined system (column 3) are similar for the
three implementations evaluated. Columns 4–9 report the time dedicated to compute the sign function
and the total execution time for each variant. In this case, GECRSG GPU obtains the best result for
problems STEELS and STEELL, and clearly outperforms the CPU and multi-GPU implementation. The
large computational cost of the solution of the ARE and the large number of computational units in
the NVIDIA K20 explains this behavior. The storage requirements of problem FLOW METER exceed
the memory in NVIDIA K20, and consequently, the corresponding equation cannot be solved with
GECRSG GPU. On the other hand, the solution of this benchmark is accelerated by a factor of 4.5×
using GECRSG MGPU.

Finally, Table 4 shows the execution time obtained for the solution of differential Riccati equations
using the matrix sign function-based Lyapunov solver. We solve the DREs in the time interval [0, 1],
using a step size of length 4t = 0.1. Two values are reported for each implementation: the time to
compute the sign function (Fsign) and the total execution time. Most of the time, approximately 97%
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is dedicated to the sign function method (i.e., the Lyapunov solver). The ROS1 GPU implementation
attains the best execution time for problems STEELS and STEELL, while it is slightly slower than
ROS1 MGPU for the larger problem. In all the cases, ROS1 GPU clearly outperforms the multi-core
variant, due to the large computational cost of the algorithm and its large parallelism.

Table 3. Execution time (in seconds) for the solution of algebraic Riccati equations.

H0 System
GECRSG CPU GECRSG GPU GECRSG MGPU

Fsign Total Fsign Total Fsign Total

STEELS 0.03 0.28 15.38 17.04 5.34 6.64 15.48 16.17

STEELL 0.45 12.03 505.96 545.36 109.26 129.68 162.75 188.86

FLOW METER 1.37 72.79 2945.08 3173.54 – – 533.25 689.26

Table 4. Execution time (in seconds) for the solution of differential Riccati equations.

ROS1 MC ROS1 GPU ROS1 MGPU

Fsign Total Fsign Total Fsign Total

STEELS 5.23 5.28 3.93 3.98 2.53 2.70

STEELL 189.98 190.66 45.05 45.73 21.19 23.01

FLOW METER 1952.50 1954.77 404.54 406.82 258.56 251.75

5. Conclusions

We have addressed the solution of three types of Lyapunov matrix equations, algebraic Riccati
equations and differential matrix equations, that arise in control theory applications. A collection of
implementations were evaluated for each solver targeting three different target platforms: multicore
CPU, a hybrid system equipped with a multicore CPU and a GPU and a platform composed of a multicore
CPU connected to several GPUs. All the routines make intensive use of high performance kernels from
linear algebra libraries, like Intel’s MKL and NVIDIA’s CUBLAS, and parallel interfaces, like OpenMP.

Numerical results employing three benchmarks, extracted from the Oberwolfach Model Reduction
Benchmark Collection, show the efficiency attained by the parallel solvers. The hybrid implementations
that exploit the use of a single GPU report remarkable performance, being more than four-times faster
than their corresponding multicore counterparts for large problems. However, their applicability is
limited by the size of the GPU memory. This limitation is partially overcome in the multi-GPU
implementations, where the amount of aggregated memory is larger.
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