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Abstract:

 We develop an efficient multicore algorithm, PMS6MC, for the [image: there is no content]-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. PMS6MC is based on PMS6, which is currently the fastest single-core algorithm for motif discovery in large instances. The speedup, relative to PMS6, attained by our multicore algorithm ranges from a high of 6.62 for the (17,6) challenging instances to a low of 2.75 for the (13,4) challenging instances on an Intel 6-core system. We estimate that PMS6MC is 2 to 4 times faster than other parallel algorithms for motif search on large instances.
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1. Introduction

Motifs are patterns found in biological sequences. These common patterns in different sequences help in understanding gene functions, and lead to the design of better drugs to combat diseases. Several versions of the motif search problem have been studied in the literature. In this paper, we consider the version known as the Planted Motif Search (PMS), or [image: there is no content] motif search problem. In PMS, given n input strings and two integers l and d, we aim to find all the strings M of length l (also referred to as l-mers) that are substrings of every input sequence (We use the terms sequence and string interchangeably in this paper) with at most d mismatches. The d-neighborhood of an l-mer s is defined to be the set of all the strings that differ from s in at most d positions. So, for an l-mer M to be motif for n input strings, there has to be a substring in each of those n input strings that is in the d-neighborhood of M.

The PMS problem is known to be NP-hard [2]. Consequently, PMS is often solved by approximation algorithms that do not guarantee to produce every motif present in the input. Exact algorithms for PMS, on the other hand, have exponential worst-case complexity but find every motif. MEME (Multiple EM for Motif Elicitation) [3], which is one of the most popular approximation algorithms for PMS, is based on the expectation minimization technique. MEME outputs the probability that each character is present in each motif and one can take the characters with highest probability in each position to construct the desired motif with an acceptable range of error. GibbsDNA [4] also calculates the same probability matrix of each character in different motif positions using Gibbs sampling. CONSENSUS [5] first aligns the input sequences using statistical measures and then tries to extract the motifs. Randomized algorithms are also proposed for PMS. Buhler and Tompa [6] proposed an algorithm where they group the input l-mers based on k randomly chosen positions out of the total l positions. With a high probability, many instances of the desired motif belong to the group that has a large number of these k-mers. Local search strategies such the one proposed by Price et al. [7], which searches d-neighborhood of some l-mers from the input, also have been used to find motifs. MULTIPROFILER [8] and ProfileBranching [7] are two algorithms that use local search. Some approximation algorithms for PMS first map the PMS problem to a graph problem and then apply well-studied approximation techniques to solve that graph problem. The WINNOWER algorithm [9], proposed by Pevzner and Sze, constructs a graph in which each node represents an l-mer and two nodes are connected by an edge iff those two l-mers differ in at most [image: there is no content] positions. The problem of finding motifs then reduces to that of finding large cliques in this graph. Although exact algorithms have worst-case exponential complexity, for many small instances of interest they are able to find all motifs within a reasonable amount of time using a modern computer. MITRA [10] is an exact algorithm for PMS that uses a modified trie called Mismatch trie to spell out the motifs one character at a time. SPELLER [11], SMILE [12], RISO [13], and RISOTTO [14] all use some form of suffix tree to direct motif discovery with RISOTTO being the fastest of these. CENSUS [15] first creates a trie with all l-mers from the input. The trie is then traversed keeping track of the number of mismatches with the currently generated motif in the nodes. Entire branches of the trie can be pruned off if the number of mismatches becomes more than d. Voting algorithms such as [16] use an indicator array of size equal to the number of all possible strings of length l. For each l-mer in the d-neighborhood of every l-mer from the input, the corresponding entry in the array is set. The entries that have been set by every input sequence or has “votes" from every input sequence are the motifs. As the number of possible strings of length l grows exponentially with l, this approach becomes infeasible even for small values of l. Kauska and Pavlovic [17] designed an algorithm to output motif stems i.e., a superset of motifs using regular expression. However, the number of possible motifs that can be generated from this superset might be very large. They also don’t provide a mechanism to select the actual motifs. As a result, the stemming approach is difficult to assess. The PMS series of algorithms (PMS1-PMS6, PMSP, and PMSPrune) solve PMS instances relatively fast using a reasonable amount of storage for data structures. PMS1, PMS2 and PMS3 [18] first sorts the d-neighborhood of input l-mers using radix sort and then intersects them to find the motifs. PMS4 [19] proposes a very general technique to reduce the run time of any exact algorithm by examining only k input sequences out of total n input sequences. It relies on the fact that if there is a motif, it will be present in those k input sequences as well. PMSP [20] extends this idea further by only examining the d-neighborhood of the l-mers from the first input sequence. PMSPrune [20] improves upon PMSP by using dynamic programming branch-and-bound algorithm while exploring the d-neighborhoods. Pampa [21] uses wildcards to first determine the motif patterns and then does a exhaustive search within possible mappings of the pattern to find the motifs. PMS5 [22] improves other algorithms from PMS series by efficiently computing the intersection of the d-neighborhood of l-mers without generating the entire d-neighborhoods for all the l-mers. PMS6 [23], which is the fastest algorithm in the series, is almost two times as fast as PMS5. This algorithm gets its speedup over PMS5 by grouping l-mers whose d-neighborhood computation follows a similar process.

Since exact algorithms for motif search are compute intensive, it is natural to attempt parallelization that reduce the observed run time. Dasari, Desh and Zubair [24] have proposed a multi-core motif search algorithm that is based on the voting approach. They followed this work with another parallel algorithm for Graphics Processing Units (GPUs) [25]. Their GPU algorithm is based on examining the branches of a suffix tree in parallel.

In this paper, we develop a multi-core version of PMS6 by generating and processing many d-neighborhoods in parallel. In Section 2 we introduce some notations and definitions used throughout the paper and also describe the PMS6 algorithm in detail. The techniques used to develop PMS6MC are described in Section 3. The performance of PMS6MC is compared to that of other parallel motif search algorithms and PMS6 in Section 5.



2. PMS6


2.1. Notations and Definitions

We use the same notations and definitions as in [22]. An l-mer is simply any string of length l. r is an l-mer of s iff (a) r is an l-mer and (b) r is a substring of s. The notation [image: there is no content] denotes an l-mer r of s. The Hamming distance, [image: there is no content], between two equal length strings s and t is the number of places where they differ and the d-neighborhood, [image: there is no content], of a string s, is [image: there is no content]. Let N[image: there is no content]=|[image: there is no content](s)|. It is easy to see that N[image: there is no content]=∑i=0dli(|Σ|-1)i, where Σ is the alphabet in use. We also define [image: there is no content] to be [image: there is no content]. For a set of triples C, we define [image: there is no content] as [image: there is no content]. We note that x is an [image: there is no content] motif of a set S of strings if and only if (a) [image: there is no content] and (b) every [image: there is no content] has an l-mer (called an instance of x) whose Hamming distance from x is at most d. The set of [image: there is no content] motifs of S is denoted [image: there is no content].



2.2. Overview

PMS6, which is presently the fastest exact algorithm to compute [image: there is no content] for large [image: there is no content], was proposed by Bandyopadhyay, Sahni and Rajasekaran [23]. This algorithm (Algorithm 1) first computes a superset, [image: there is no content], of the motifs of S. This superset is then pruned to [image: there is no content] by the function [image: there is no content], which examines the l-mers in [image: there is no content] one by one determining which are valid motifs. This determination is done in a brute force manner.







	Algorithm 1: PMS6 [23].



	PMS6(S,l,d)
 // Determine a superset of motifs Q′
 for each x∈ls1
 {
   for k=1 to k=⌊n-12⌋
      {
          Q←∅;
          Classes←∅;
        for each y∈ls2k and z∈ls2k+1
        {
          Compute n1,⋯,n5 for (x,y,z);
          if C(n1,⋯,n5)∉Classes
          {
            Create the class C(n1,⋯,n5)
            with (x,y,z);
            Add C(n1,⋯,n5) to Classes;
            }
            else add (x,y,z) to class C(n1,⋯,n5);
          }
          for each class C(n1,⋯,n5) in ClassesQ←Q∪Bd(C(n1,⋯,n5))
          if k=1 then Q′=Q
          else Q′=Q′∩Q;
          if |Q′|<threshold break;
       }
       // Prune Q′outputMotifs(Q′,S,l,d);
 }






To compute [image: there is no content], PMS6 examines triples [image: there is no content], where x is an l-mer of [image: there is no content] and y and z are l-mers of [image: there is no content] and [image: there is no content], respectively for some fixed k. These triples are first partitioned into equivalence classes based on the number of positions in the l-mers of a triple that are of each of 5 different types (see below). Next, we compute the [image: there is no content] for all triples by classes. This two step process is elaborated below.


	Step 1: Form Equivalence Classes. Classify each position i of the triple [image: there is no content], into one of the following five types [22]:


	Type 1: [image: there is no content].


	Type 2: [image: there is no content].


	Type 3: [image: there is no content].


	Type 4: [image: there is no content].


	Type 5: [image: there is no content].

The triples [image: there is no content] of l-mers such that x∈l[image: there is no content], y∈l[image: there is no content] and z∈l[image: there is no content] are partitioned into classes [image: there is no content] where [image: there is no content] denotes the type j positions in the triple [image: there is no content] (for [image: there is no content].





	Step 2: Compute [image: there is no content] for all triples by classes. For each class [image: there is no content], the union, [image: there is no content], of [image: there is no content] for all triples in that class is computed. We note that the union of all [image: there is no content]s is the set of all motifs of x, [image: there is no content], and [image: there is no content].






2.3. Computing [image: there is no content](C([image: there is no content],⋯,[image: there is no content]))

Let [image: there is no content] be a triple in [image: there is no content] and let w be an l-mer in [image: there is no content]. Then [image: there is no content] is the number of positions of Type i, [image: there is no content] for the triple [image: there is no content]. Each [image: there is no content] may be decomposed as below for all w∈[image: there is no content][image: there is no content] [22]:


	[image: there is no content] = number of Type 1 positions i such that [image: there is no content].


	[image: there is no content]([image: there is no content]) = number of Type 2 positions i such that [image: there is no content]([image: there is no content]).


	[image: there is no content]([image: there is no content]) = number of Type 3 positions i such that [image: there is no content]([image: there is no content]).


	[image: there is no content]([image: there is no content]) = number of Type 4 positions i such that [image: there is no content]([image: there is no content]).


	[image: there is no content]([image: there is no content], [image: there is no content]) = number of Type 5 positions i such that [image: there is no content])([image: there is no content],[image: there is no content]).




As the distance of w has to be less than or equal to d from each of x, y and z, the following equations result.


	[image: there is no content]-[image: there is no content]+[image: there is no content]-[image: there is no content]+n3-[image: there is no content]+n4-[image: there is no content]+[image: there is no content]-[image: there is no content]≤d


	[image: there is no content]-[image: there is no content]+[image: there is no content]-[image: there is no content]+n3-[image: there is no content]+n4-[image: there is no content]+[image: there is no content]-[image: there is no content]≤d


	[image: there is no content]-[image: there is no content]+[image: there is no content]-[image: there is no content]+n3-[image: there is no content]+n4-[image: there is no content]+[image: there is no content]-[image: there is no content]≤d


	[image: there is no content]≤[image: there is no content]


	[image: there is no content]+[image: there is no content]≤[image: there is no content]


	[image: there is no content]+[image: there is no content]≤n3


	[image: there is no content]+[image: there is no content]≤n4


	[image: there is no content]+[image: there is no content]+[image: there is no content]≤[image: there is no content]


	All variables are non-negative integers.




Given a 10-tuple solution to this ILP, we may generate all l-mers w in [image: there is no content] as follows:


	Each of the l positions in w is classified as being of Type 1, 2, 3, 4, or 5 depending on the classification of the corresponding position in the l-mers x, y, and z (see Section 2.2).


	Select [image: there is no content] of the [image: there is no content] Type 1 positions of w. If i is a selected position, then, from the definition of a Type 1 position, it follows that [image: there is no content]. Also from the definition of [image: there is no content], these many Type 1 positions have the same character in w as in x, y, and z. So, for each selected Type 1 position i, we set [image: there is no content]. The remaining Type 1 positions of w must have a character different from [image: there is no content] (and hence from [image: there is no content] and [image: there is no content]). So, for a 4-character alphabet there are 3 choices for each of the non-selected Type 1 positions of w. As there are n[image: there is no content] ways to select [image: there is no content] positions out of [image: there is no content] positions, we have 3q[image: there is no content][image: there is no content] different ways to populate the [image: there is no content] Type 1 positions of w, where q=[image: there is no content]-[image: there is no content].


	Select [image: there is no content] positions I and [image: there is no content] different positions J from the [image: there is no content] Type 2 positions of w. For each [image: there is no content], set [image: there is no content] and for each [image: there is no content], set [image: there is no content]. Each of the remaining [image: there is no content]-[image: there is no content]-N1,b Type 2 positions of w is set to a character different from the characters in x, y, and z. So, if k is one of these remaining Type 2 positions, [image: there is no content]. We set [image: there is no content] to one of the 2 characters of our 4-letter alphabet that are different from [image: there is no content] and [image: there is no content]. Hence, we have 2r[image: there is no content][image: there is no content][image: there is no content]-[image: there is no content][image: there is no content] ways to populate the [image: there is no content] Type 2 positions in w, where r=[image: there is no content]-[image: there is no content]-[image: there is no content].


	Type 3 and Type 4 positions are populated using a strategy similar to that used for Type 2 positions. The number of ways to populate Type 3 positions is 2sn3[image: there is no content]n3-[image: there is no content][image: there is no content], where s=n3-[image: there is no content]-[image: there is no content] and that for Type 4 positions is 2un4[image: there is no content]n4-[image: there is no content][image: there is no content], where u=n4-[image: there is no content]-[image: there is no content].


	To populate the Type 5 Positions of w, we must select the [image: there is no content] Type 5 positions, k, that will be set to [image: there is no content], the [image: there is no content] Type 5 positions, k, that will be set to [image: there is no content], and the [image: there is no content] Type 5 positions, k, that will be set to [image: there is no content]. The remaining [image: there is no content]-[image: there is no content]-[image: there is no content]-[image: there is no content] Type 5 positions, k, of w are set to the single character of the 4-letter alphabet that differs from [image: there is no content], [image: there is no content], and [image: there is no content]. We see that the number of ways to populate the [image: there is no content] Type 5 positions is [image: there is no content][image: there is no content][image: there is no content]-[image: there is no content][image: there is no content][image: there is no content]-[image: there is no content]-[image: there is no content][image: there is no content].




The preceding strategy to generate [image: there is no content] generates 3q2r2s2u[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]-[image: there is no content][image: there is no content]n3[image: there is no content]n3-[image: there is no content][image: there is no content]n4[image: there is no content]n4-[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]-[image: there is no content][image: there is no content][image: there is no content]-[image: there is no content]-[image: there is no content][image: there is no content]l-mers w for each 10-tuple ([image: there is no content],⋯,[image: there is no content]). While every generated l-mer is in [image: there is no content], some l-mers may be the same. Computational efficiency is obtained by computing [image: there is no content] for all [image: there is no content] in the same class [image: there is no content] concurrently by sharing the loop overheads as the same loops are needed for all [image: there is no content] in a class. Algorithm 2 gives the pseudocode to compute [image: there is no content] by classes.

As an example, lets say we have 3 input strings [image: there is no content]=ACTG, [image: there is no content] and [image: there is no content] and we are asked to find [image: there is no content] motifs i.e., motifs of length 3 with at most 1 mismatch. Also, the l-mer [image: there is no content] is denote by [image: there is no content]. In this particular case, [image: there is no content] and hence [image: there is no content](1)=CTG for example. For the triplet ([image: there is no content](0),[image: there is no content](0),[image: there is no content](0), i.e., for the triplet [image: there is no content] we have [image: there is no content]. Hence it belongs to the class [image: there is no content]. For the triplet ([image: there is no content](1),[image: there is no content](0),[image: there is no content](0)i.e., [image: there is no content] we have [image: there is no content] and it belongs to class [image: there is no content]. After evaluating all 8 triplets, we will end up having class C(0,0,0,1,2)={([image: there is no content](1),[image: there is no content](0),[image: there is no content](0)),([image: there is no content](0),[image: there is no content](1),[image: there is no content](1))}. We then need to find B1([image: there is no content](1),[image: there is no content](0),[image: there is no content](0)) and B1([image: there is no content](0),[image: there is no content](1),[image: there is no content](1)) to compute [image: there is no content]. To computer B1([image: there is no content](1),[image: there is no content](0),[image: there is no content](0)), we need to compute [image: there is no content]. We can evaluate that [image: there is no content], [image: there is no content] and [image: there is no content] and subsequently we have [image: there is no content]. Similarly, we can see that B1([image: there is no content](0),[image: there is no content](1),[image: there is no content](1))=B1(ACT)∩B1(CTA)∩B1(GTC)=ϕ and hence [image: there is no content]. Run-time may be reduced by pre-computing data that do not depend on the string set S. So, for a given pair [image: there is no content], there are [image: there is no content] 5-tuples ([image: there is no content],⋯,[image: there is no content]). For each of the 5-tuples, we can pre-compute all 10-tuples ([image: there is no content],⋯,[image: there is no content]) that are solutions to the ILP. For each 10-tuple, we can pre-compute all combinations (i.e., selections of positions in w). The pre-computed 10-tuple solutions for each 5-tuple are stored in a table with [image: there is no content] entries and indexed by [[image: there is no content],⋯,[image: there is no content]] and the pre-computed combinations for the 10-tuple solutions are stored in a separate table. By storing the combinations in a separate table, we can ensure that each is stored only once even though the same combination may be needed by many 10-tuple solutions.







	Algorithm 2: Compute [image: there is no content]([image: there is no content],⋯,[image: there is no content]) [23].



	ClassBd(C(n1,n2,n3,n4,n5))
 Bd←∅
 Find all ILP solutions with parameters n1,n2,n3,n4,n5
 for each solution (N1,a,⋯,N5,c)
 {
   curComb ← first combination for this solution;
   for i = 0 to (# combinations)
   {
     for each triplet (x,y,z) in C(n1,⋯,n5)
     {
       Generate ws for curComb;
       Add these ws to Bd;
     }
     CurComb ← next combination in Gray code order;
   }
 }
 return Bd






We store pre-computed combinations as vectors. For example, a Type 1 combination for [image: there is no content]=3 and [image: there is no content]=1 could be stored as [image: there is no content] indicating that the first and third Type 1 positions of w have a character different from what x, y, and z have in that position while the character in the second Type 1 position is the same as in the corresponding position of x, y, and z. A Type 2 combination for [image: there is no content]=4,[image: there is no content]=2 and [image: there is no content]=1 could be stored as [image: there is no content] indicating that the character in the first Type 2 position of w comes from the third l-mer, z, of the triplet, the second Type 2 position of w has a character that is different from any of the characters in the same position of x and z and the third and fourth Type 2 positions of w have the same character as in the corresponding positions of x. Combinations for the remaining position types are stored similarly. As indicated by our pseudocode of Algorithm 2, combinations are considered in Gray code order so that only two positions in the l-mer being generated change from the previously generated l-mer. Consequently, we need less space to store the combinations in the combination table and less time to generate the new l-mer. An example of a sequence of combinations in Gray code order for Type 2 positions with [image: there is no content]=4,[image: there is no content]=1,[image: there is no content]=1 is {0012, 0021,0120,0102,0201,0210,1200,1002,1020, 2010, 2001, 2100}. Note that in going from one combination to the next only two positions are swapped.



2.4. The Data Structure Q

We now describe the data structure Q that is used by PMS6. This is a reasonably simple data structure that has efficient mechanisms for storing and intersection. In the PMS6 implementation of [23], there are three arrays in Q; a character array, [image: there is no content], for storing all l-mers, an array of pointers, [image: there is no content],which points to locations in the character array and a bit array, [image: there is no content], used for intersection. There is also a parameter [image: there is no content] which determines how many characters of l-mers are used for indexing into [image: there is no content] array. As there are 4 possibilities for a character, for p characters [image: there is no content] can vary from 0 to [image: there is no content]. The number of characters, p, to be used for indexing into [image: there is no content], is set when Q is initialized. During the first iteration of PMS6, for [image: there is no content], l-mers in [image: there is no content] are stored in [image: there is no content]. After all [image: there is no content]s are computed, [image: there is no content] is sorted in-place using Most Significant Digit radix sort. After sorting, duplicate l-mers are adjacent to each other. Also, l-mers that have the same first p characters and hence are in the same bucket are adjacent to each other as well in [image: there is no content]. By a single scan through [image: there is no content], duplicates are removed and the pointers in [image: there is no content] are set to point to different buckets in [image: there is no content]. During the remaining iterations, for [image: there is no content], all [image: there is no content]s generated are to be intersected with Q. This is done by using the bit array [image: there is no content]. First, while computing [image: there is no content], each l-mer is searched for in Q. The search proceeds by first mapping the first p characters of the l-mer to the corresponding bucket and then doing a binary search inside [image: there is no content] within the region pointed to by the bucket pointer. If the l-mer is found, its position is set in [image: there is no content]. Once all l-mers are marked in the [image: there is no content], [image: there is no content] is compacted by removing the unmarked l-mers by a single scan through the array. The bucket pointers are also updated during this scan.

For larger instances, the size of [image: there is no content] is such that we don’t have sufficient memory to store [image: there is no content] in Q. For these larger instances, in the [image: there is no content] iteration, we initialize a Bloom filter using the l-mers in [image: there is no content] rather than storing these l-mers in Q. During the next iteration (k = 2), we store, in Q, only those l-mers that pass the Bloom filter test (i.e., the Bloom filter’s response is “Maybe"). For the remaining iterations, we do the intersection as for the case of small instances. Using a Bloom filter in this way reduces the number of l-mers to be stored in Q at the expense of not doing intersection for the second iteration. Hence at the end of the second iteration, we have a superset of [image: there is no content] (Algorithm 1) of the set we would have had using the strategy for small instances. Experimentally, it was determined that the Bloom filter strategy improves performance for challenging instances of size (19,7) and larger. As in [22], PMS6 uses a partitioned Bloom filter of total size 1GB. From Bloom filter theory [26] we can determine the number of hash functions to use to minimize the filter error. However, we need to minimize the run time rather than the filter error. Experimentally, [23] determined that the best performance was achieved using two hash functions with the first one being bytes 0–3 of the key and the second being the product of bytes 0–3 and the remaining bytes (byte 4 for (19,7) instances and bytes 4 and 5 for (21,8) and (23,9)instances).




3. PMS6MC


3.1. Overview

PMS6MC exploits the parallelism present in the PMS6 algorithm. First, there is outer-level parallelism where the motif search for many x’s from [image: there is no content] can be carried out in parallel (i.e., several iterations of the outer for loop of Algorithm 1 are run in parallel). Second, there is inner-level parallelism where the individual steps of the inner for loop of Algorithm 1 are done in parallel using multiple threads. Outer-level parallelism is limited by the amount of memory available. We have designed PMS6MC to be flexible in terms of its memory and thread requirements. The total number of threads can be set depending on the number of cores and available memory of the system. The threads are grouped into thread blocks. Each thread block operates on a different x from [image: there is no content]. So, for example, if we use a total of t threads and 4 thread blocks, then our code does 4 iterations of the outer for loop in parallel with each iteration (or thread block) being assigned to [image: there is no content] threads. The threads assigned to a thread block cooperate to find the motifs corresponding to a particular x. The threads use the [image: there is no content] primitive function to synchronize. This function can be implemented using the thread library synchronization mechanism available under different operating systems. We denote thread block i as [image: there is no content] while the threads within thread block i are denoted by [image: there is no content]. Figure 1 shows a diagram of the steps in PMS6MC.

Figure 1. PMS6MC flow diagram.
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3.2. Outer-Level Parallelism

In this, each thread block processes a different x from [image: there is no content] and calls the function [image: there is no content] (Algorithm 3). Once a thread block is done with its assigned x it moves on to the next x from [image: there is no content] which is not processed yet. Threads in a thread block execute the function [image: there is no content] to find if there is any motif in the d-neighborhood of x.







	Algorithm 3: PMS6MC outer level loop.



	PMS6MC(S,l,d)
 for each idle thread block T[i] in parallel do
 {
   select an x∈ls1 that hasn’t yet been selected;
   if there is no such x the thread block stops;
   findMotifAtThisX(x, i);
 }








3.3. Inner-Level Parallelization

Finding motifs in the d-neighborhood of a particular x from [image: there is no content] is done by finding the motifs of x and the strings [image: there is no content] and [image: there is no content] for [image: there is no content]. As described in Algorithm 1, this is a 4 step process. These steps are done cooperatively by all threads in a thread block. First, we find the equivalence classes for x and l-mers from [image: there is no content] and [image: there is no content]. For any triple [image: there is no content] from an equivalence class we know the number of l-mers w which are at a distance d from x, y and z from pre-computed tables. Hence, by multiplying the number of triples with the number of possible w’s we determine the total number of w’s for each equivalence class. We denote this number by |[image: there is no content](C)|. Next, we compute [image: there is no content] for these equivalence classes in decreasing order of |[image: there is no content](C)| in parallel by the threads in the thread block. This order helps in load balancing between different threads as each will be computing |[image: there is no content](C)| in parallel. This is akin to using the LPT scheduling rule to minimize finish time. store [image: there is no content]s in Q if [image: there is no content]; i.e., when finding motifs between x, [image: there is no content] and [image: there is no content]. This can be done during the previous step while computing [image: there is no content]. For [image: there is no content], we need to intersect the set of all [image: there is no content]s with Q. When the size of Q falls below a certain threshold, we need to execute the function [image: there is no content] to find out which l-mers in Q are valid motifs. The different steps for [image: there is no content] are given in Algorithm 4.

The data structure used in PMS6MC for Q is very similar to that used in PMS6. However, we use two character arrays [image: there is no content] and [image: there is no content] instead of one. This helps us to perform many operations on Q in parallel by multiple threads. We now describe the different steps used to finding motifs employing this modified structure for Q.







	Algorithm 4: Finding motifs in parallel.



	findMotifAtThisX(String x, Thread block i)
 for k=1 to ⌊n-12⌋
 {
   Classes[]←∅Q←∅
   findEquivalenceClasses(x, T[i], Classes[]);
   Sort Classes[] in decreasing order of |Bd(C)|;
   for each class C in order from Classes[] in parallel by threads T[i][j];
   {
     ComputeProcess Bd(C);
   }
   syncthreads(T[i]);
   ProcessQ(Q, k, T[i]);
   syncthreads(T[i]);
   if |Q|<threshold break;
 }
 outputMotifs(Q) in parallel by threads T[i][j];
 







3.3.1. Finding Equivalence Classes in Parallel:

Each thread works on a segment of the string [image: there is no content] in parallel. For all y that belong to the thread’s assigned segment of [image: there is no content] and for all z from [image: there is no content], the thread computes the number of type 1 through type 5 positions for the triple [image: there is no content]. Based on the number of type 1 through type 5 positions ([image: there is no content],⋯,[image: there is no content]), the triple is put into the corresponding equivalence class. Once all the threads finish, the equivalence classes formed by different threads need to be merged. As [image: there is no content]s for [image: there is no content] can only vary from 0 to l, the whole [image: there is no content] range of ([image: there is no content],⋯,[image: there is no content]) is divided among the threads in the thread block. Each thread then finds the equivalence classes present in its assigned range and gathers all the triples of these equivalences classes in parallel. The pseudocode for this step is given in Algorithm 5.







	Algorithm 5: Finding equivalence classes in parallel.



	findEquivalenceClasses(x, i, Classes[])
 for each y ∈ls2k and z ∈ls2k+1 in parallel by
 threads T[i][j]
 {
   Compute n1,⋯,n5 for (x,y,z);
   if C(n1,⋯,n5)∉Classes[j];
   {
     Create the class C(n1,⋯,n5) with (x,y,z);
     Add C(n1,⋯,n5) to Classes[j];
   }
   else add (x,y,z) to class C(n1,⋯,n5);
 }
 syncthreads(T[i]);
 Merge equivalence classes in Classes[] by threads T[i][j] in parallel;
 syncthreads(T[i]);








3.3.2. Computing [image: there is no content] in Parallel:

Once equivalence classes are formed, we determine |[image: there is no content](C)| by multiplying the number of triples with the number of solutions for equivalence classes using pre-computed tables. Once the number of l-mers is known, the offset in [image: there is no content] to store l-mers during the first iteration is also known. Hence, each thread can store l-mers from the designated offset without conflict with other threads. To ensure that each thread in a thread block is roughly doing the same amount of work, we first order the equivalence classes in terms of decreasing |[image: there is no content](C)|. This sorting can be done by a single thread as the number of equivalence classes is typically less than 1000 even for large instances. Thread j of the thread block selects the jth equivalence class to work on; when a thread completes, it selects the next available equivalence class to work on. This strategy is akin to the LPT scheduling strategy and is known to provide good load balance in practice. Each thread computes [image: there is no content] for the class C it is working on using the same strategy as used by PMS6 (see Section 2.3).

For [image: there is no content], we store the l-mers in [image: there is no content] from the designated offset. We also do some additional work which facilitates sorting Q in parallel during the next step. For each thread, we keep track of the number of l-mers having the same first character. This is done by maintaing a 2-D counter array [image: there is no content] indexed by thread number and the first character of the l-mer.

For [image: there is no content], the l-mer is searched for and marked in the [image: there is no content] when found (see Section 2.4). Although there might be a write conflict while setting the bit in the [image: there is no content], all threads can carry this step in parallel as threads that write to the same mark bit write the same value. Algorithm 6 gives the steps used to compute and process [image: there is no content].







	Algorithm 6: Compute and process [image: there is no content].



	ProcessBd(Bd(C), Q, k, i, j)
 if k=1
 {
   for each l-mer w∈Bd(C)counter[j][w[0]]++;
   Copy l-mers in Bd(C) to strs1[] from the offset for this class;
 }
 if k ≥ 2
 {
   For all l-mer w ∈ Bd(C), set markBuffer[] if w is present in Q;
 }








3.3.3. Processing Q in Parallel

The processing of Q depends on the iteration number. When [image: there is no content], we sort [image: there is no content], then remove the duplicates and set the bucket pointers. For the remaining iterations, we need to remove all unmarked l-mers from [image: there is no content] and update the bucket pointers.

The [image: there is no content] sort is done by first computing the prefix sum of [image: there is no content] so that the counter for a particular thread and a particular character equals the total number of l-mers processed that have either smaller first character or equal first character but processed by threads with a smaller index. Since the number of counters is small (256 different counters for 8-bit characters) we compute the prefix sums using a single thread. The pseudocode is given in Algorithm 7. Next, each thread in the thread block scans through the l-mers in [image: there is no content] that it had stored while generating [image: there is no content]. Depending on the first character of the l-mer, the l-mer is moved to [image: there is no content] starting from the offset indicated by prefix sum counter. This movement of l-mers is done by the threads in a thread block in parallel. Once the movement is complete, [image: there is no content] is divided into segments such that the first characters of all l-mers within a segment are the same. Following this segmenting, the threads sort the segments of [image: there is no content] in parallel using radix sort. Each thread works on a different segment. Since the first character of the l-mers in a segment are the same, the radix sort starts from the second character. Once the segments are sorted, we proceed to eliminate duplicates and set the bucket pointers. First the threads count the number of unique l-mers in each segment in parallel by checking adjacent l-mers. Again, each thread works on a different segment. The determined counts of unique l-mers are prefixed summed by a single thread to get the offsets required for moving the unique l-mers to their final positions. Using these offsets, the threads move unique l-mers with each thread moving the unique l-mers of a different segment from [image: there is no content] to [image: there is no content] in parallel. While moving an l-mer, the threads also check to see if first p characters of the current l-mer are the same as those of the previous l-mer; if not, the appropriate pointer in [image: there is no content] is set.







	Algorithm 7: Prefix sum of counters.



	PrefixCounters(counters[][])
 sum = 0;
 for i = 0 to 255 // There are 256 possibilities for the first character
 {
   counters[0][i]=counters[0][i]+sum;
   for j = 1 to threads
   {
     counters[j][i]=counters[j][i]+counters[j][i-1];
   }
   sum = counters[threads - 1][i];
 }






When [image: there is no content], we need to remove from Q all the l-mers that are not marked in [image: there is no content]. This is done in two steps. First, the [image: there is no content] is divided into segments and each thread does a prefix sum on different segments in parallel. This gives the number of marked l-mers in each segment. Next, we move the marked l-mers in each segment from [image: there is no content] to [image: there is no content]. For this, a prefix sum is performed by a single thread on the counters having the number of marked l-mers in different segments to get the offset in [image: there is no content] for moving the l-mers. With these offsets, the threads then move the marked l-mers from different segments in parallel. As before, when moving an l-mer, the thread checks to see if the first p characters of the current l-mer differs from the previous one and update the appropriate pointer in [image: there is no content]. There might be a problem in updating the bucket pointers in the boundary region of the segments as one bucket can extend across the boundary of two segments and hence two threads might update that bucket pointer. These boundary bucket pointers are fixed by a single thread after all l-mers are moved. Note that there can only be as many boundary buckets as there are segments which are very few in number. The pseudocode for the processing Q for different values of k is given in Algorithm 8.







	Algorithm 8:Processing Q.



	ProcessQ((Q, k, T[i])
 if k=1
 {
   prefixCounters(counters);
   Move l-mers from strs1[] to strs2[] by threads T[i][j] in parallel;
   syncthreads(T[i]);
   Sort segments in strs2[] in parallel by threads T[i][j];
   syncthreads(T[i]);
   Count unique l-mers in each segment in parallel by threads T[i][j];
   syncthreads(T[i]);
   Move unique l-mers to strs1[] and update bucket pointers in parallel by
 T[i]j[j];
  }
  if k≥2
  {
    Divide markBuffer into segments;
    Prefix sum markBuffer by threads T[i][j] in parallel;
    syncthreads(T[i]);
    Move marked l-mers from segments in strs1[] to strs2[] in parallel by Threads
 T[i][j];
    Update the bucket pointers while moving l-mers;
    syncthreads(T[i]);
    Fix the boundary buckets if necessary;
  }








3.3.4. [image: there is no content]

Once the size of Q drops below a certain threshold, we break out of the loop and call [image: there is no content] to determine the set of valid motifs in Q. This step can be done in parallel as checking the validity of l-mers to be motifs can be done independent of one another. So, each thread examines a disjoint set of l-mers from Q exhaustively checking if it is a motif as is done in PMS6; the threads operate in parallel.





4. Experimental Section

We evaluated the performance of PMS6MC on the challenging instances described in [22] as they are representatives of harder to solve instances and provide a uniform way to compare results from previous algorithms. For each [image: there is no content] that characterizes a challenging instance, we generated 20 random strings of length 600 each. Next, a random motif of length l was generated and planted at random positions in each of the 20 strings. The planted motif was then randomly mutated in exactly d randomly chosen positions. For each [image: there is no content] value up to (19,7), we generated 20 instances and for larger [image: there is no content] values, we generated 5 instances. The average run times for each [image: there is no content] value are reported in this section. Since the variation in run times across instances was rather small, we do not report the standard deviation. Even though we test our algorithm using only synthetic data sets, several authors (e.g., [22]) have shown that PMS codes that work well on the kind of synthetic data used by us also work well on real data.


4.1. PMS6MC Implementation

PMS6MC is implemented using the pthreads (POSIX Threads) library under Linux on an Intel 6-core system with each core running at 3.3 GHz. We experimented with different degrees of outer-level (number of thread blocks) and inner-level (number of threads in a thread block) parallelism for different challenging instances. For smaller instances (e.g., (13,4) and (15,5)), the performance is limited by the memory bandwidth of the system. Hence, increasing the degree of inner or outer level parallelism does not have much effect on the run time as most of the threads stall for memory access. For larger instances, the number of thread blocks is limited by the available memory of the system. Table 1 gives the number of thread blocks and the number of threads in a thread block for different challenging instances which produces the optimum performance.

Table 1. Degree of inner and outer level parallelism for PMS6MC.


	Challenging instances
	Outer-level blocks
	Threads per block
	Total threads





	(13,4)
	2
	6
	12



	(15,5)
	2
	6
	12



	(17,6)
	8
	6
	48



	(19,7)
	4
	12
	48



	(21,8)
	2
	12
	24



	(23,9)
	2
	12
	24













5. Results and Discussion


5.1. PMS6 and PMS6MC

We compare the run times of PMS6 and PMS6MC on an Intel 6-core system with each core running at 3.3 GHz. PMS6 takes 22 s on an average to solve (15,5) instances and 19 h on an average to solve (23,9) instances. PMS6MC, on the other hand, takes 8 s on an average to solve (15,5) instances and 3.5 h on an average to solve (23,9) instances. The speedup achieved by PMS6MC over PMS6 varies from a low of 2.75 for (13,4) instances to a high of 6.62 for (17,6) instances. For (17,6) instance we can use many threads while staying within memory constraints and hence we get a larger speedup. For (19,7) and larger instances PMS6MC achieves a speedup of over 5 as we can’t go beyond a certain number of threads due to memory limitations. The run times for various challenging instances are given in Table 2.

Table 2. Run times for PMS6 and PMS6MC.


	Algorithm
	(13,4)
	(15,5)
	(17,6)
	(19,7)
	(21,8)
	(23,9)





	PMS6
	22 s
	74 s
	6.82 min
	22.75 min
	2.25 h
	19.19 h



	PMS6MC
	8 s
	21 s
	1.03 min
	4.45 min
	25.5 min
	3.57 h



	PMS6/PMS6MC
	2.75
	3.52
	6.62
	5.11
	5.29
	5.38












5.2. PMS6MC and Other Parallel Algorithms

Dasari, Desh and Zubair proposed a voting based parallel algorithm for multi-core architectures using bit arrays [24]. They followed up with an improved algorithm based on suffix trees for GPUs and multi-core CPUs from intel [25]. We estimate the relative performance of PMS6MC and these parallel algorithms using published run times and performance ratios. Table 3 and the first 4 rows of Table 4 give the performance of PMS5 and PMSPrune as reported in [22] and that of PMS6 and PMS5 as reported in [23], respectively.

Table 3. Run times for PMS5 and PMSPrune [22].


	Algorithm
	(13,4)
	(15,5)
	(17,6)
	(19,7)





	PMS5
	117 s
	4.8 min
	21.7 min
	1.7 h



	PMSPrune
	45 s
	10.2 min
	78.7 min
	15.2 h



	PMS5/PMSPrune
	2.6
	0.47
	0.28
	0.11








Table 4. Total run time of different PMS algorithms.


	Algorithm
	(13,4)
	(15,5)
	(17,6)
	(19,7)
	(21,8)
	(23,9)





	PMS5
	39 s
	130 s
	11.35 min
	40.38 min
	4.96 h
	40.99 h



	PMS6
	22 s
	75 s
	6.72 min
	22.75 min
	2.25 h
	19.19 h



	PMS5/PMS6
	1.77
	1.73
	1.69
	1.77
	2.20
	2.14



	PMS6/PMSPrune
	1.46
	0.27
	0.17
	0.06
	-
	-



	PMSPrune/PMS6MC
	1.88
	13.04
	38.94
	85.17
	-
	-












We divide the ratio [image: there is no content] by [image: there is no content] to estimate the ratio [image: there is no content] (5th row of Table 4). Next, we divide the ratio [image: there is no content] (row 4 of Table 2) by our etimate of [image: there is no content] to get an estimate of [image: there is no content] (6th row of Table 4).

The first 4 rows of Table 5 give the run times of gSPELLER-x, mSPELLER-x, and PMSPrune as reported in [25]. The "x" indicates the number of CPU cores for mSPELLER and the number of GPU devices in the case of gSPELLER. We report the times for mSPELLER-16 and gSPELLER-4 as these were the fastest reported in [25]. From this data and that of Table 4 we can estimate the speedups shown in rows 5 through 8 of Table 4. We estimate that the speed up of PMS6MC using 6 cores compared to mSPELLER-16 using 16 cores varies from a low of 0.07 for (13,4) instances to 3.58 for (19,7) instances while the speed up for PMS6MC using only one CPU with respect to gSPELLER-4 using 4 GPUs varies from a low of 0.03 for (13,4) instances to a high of 1.97 for (19, 7) instances.

Table 5. Comparing mSPELLER and gSPELLER with PMS6MC.


	Algorithm
	(13,4)
	(15,5)
	(17,6)
	(19,7)
	(21,8)





	PMSPrune
	53 s
	9 min
	69 min
	9.2 h
	-



	mSPELLER-16
	2 s
	16.5 s
	2.5 min
	23.6 min
	3.7 h



	gSPELLER-4
	0.8 s
	7.2 s
	1.2 min
	13 min
	2.2 h



	PMSPrune/mSPELLER-16
	26.5
	32.73
	27.6
	23.38
	-



	PMSPrune/gSPELLER-4
	66.25
	75
	57.5
	42.46
	-



	mSPELLER-16/PMS6MC
	0.07
	0.40
	1.41
	3.64
	-



	gSPELLER-4/PMS6MC
	0.03
	0.17
	0.68
	2
	-













6. Conclusions

We have developed a multicore version of PMS6 that achieves a speedup that ranges from a low of 2.75 for (13,4) challenging instances to a high of 6.62 for (17,6) challenging instances on a 6-core CPU. Our multicore algorithm is able to solve (23,9) challenging instances in 3.5 h, while the single core PMS6 algorithm takes 19 h. We estimate that our multicore algorithm is faster than other parallel algorithms for the motif search problem on large challenging instances. For example, we estimate that PMS6MC can solve (19,7) instances 3.6 times faster than using our 6-core CPU mSPELLER-16 using the 16-core CPU of [25] and about two times faster than gSPELLER-4 can using four GPU devices.
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