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Abstract: Inspired by many deadlock detection applications, the feedback vertex set is
defined as a set of vertices in an undirected graph, whose removal would result in a graph
without cycle. The Feedback Vertex Set Problem, known to be NP-complete, is to search
for a feedback vertex set with the minimal cardinality to benefit the deadlock recovery. To
address the issue, this paper presents NewkLS FVS(LS, local search; FVS, feedback vertex
set), a variable depth-based local search algorithm with a randomized scheme to optimize
the efficiency and performance. Experimental simulations are conducted to compare the
algorithm with recent metaheuristics, and the computational results show that the proposed
algorithm can outperform the other state-of-art algorithms and generate satisfactory solutions
for most DIMACSbenchmarks.
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1. Introduction

Inspired by many deadlock detection applications, the Feedback Vertex Set Problem (FVSP) is known
to be NP-complete and plays an important role in the study of deadlock recovery [1,2]. For example,
the wait-for graph is a directed graph used for deadlock detection in operating systems and relational
database systems of an operating system. and each directed cycle corresponds to a deadlock situation
in the wait-for graph. In order to resolve all deadlocks, some blocked processes need to be aborted.
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A minimum feedback vertex set in this graph corresponds to a minimum number of processes that one
needs to abort. Therefore solving the FVSP with more efficiency and better performance can contribute
to an improved deadlock recovery.

To describe the FVSP, the following concepts are predefined. Assuming G = (V (G), E(G)) is a
graph, then the set of vertices is denoted by V (G), and the set of edges of G is denoted by E(G). For
S ⊆ V (G), the subgraph induced by S is denoted by G[S]. The set of vertices adjacent to a vertex,
i ∈ V (G), will be denoted by N(i) = {j ∈ V (G) : (i, j) ∈ E} and called the openneighborhood of
the vertex, i. Let G be a graph. A feedback vertex set, S, in G is a set of vertices in G, whose removal
results in a graph without cycle (or equivalently, every cycle in G contains at least one vertex in S).

The FVSP can be considered in both directed and undirected graphs.Let G be an undirected graph.
A Feedback Vertex Set Problem (FVSP), S, in G is a set of vertices in G, whose removal results in a
graph without cycle (or equivalently, every cycle in G contains at least one vertex in S). Let G be a
directed graph. A feedback vertex set (FVS), S, in G is a set of vertices in G, whose removal results in a
graph without directed cycle (or equivalently, every directed cycle in G contains at least one vertex in S).

Inspired by real world applications, several variants were proposed over the years. Some of them are
summarized by the following definitions.

(a) FVSP: Given a graph, G, the feedback vertex set problem is to find an FVS with the
minimum cardinality.

(b) The Parameterized Feedback Vertex Set Problem (DFVSP): Given a graph, G, and a parameter,
k, the Parameterized Feedback Vertex Set Problem is to either find an FVS of at most k vertices
for G or report that no such set exists.

(c) The Vertex Weighted Feedback Vertex Set Problem (VWFVSP): Given a vertex weighted graph,
G, the Vertex Weighted Feedback Vertex Set Problem is to find an FVS with the minimum weight.

The Parameterized Feedback Vertex Set Problem is the decision version of the feedback vertex set
problem. The FVSP and DFVSP were classic NP-complete problems that appeared in the first list of
NP-complete problems in Karp′s seminal paper [3]. When the edges or arcs instead of vertices are
considered, it becomes the corresponding edge or arc version. For example, the parameterized feedback
arc set problem is to find out whether there is a minimum of k arcs in a given graph, whose removal
makes the graph acyclic.

Let G be a graph. It is said that a vertex set, S, is an acyclic vertex set if G[S] is acyclic. An acyclic
vertex set, S, is maximal if G[S ∪ {v}] is not acyclic for any v ∈ V (G) \ S. Note that if G[S] is acyclic,
then V (G) \ S is a feedback vertex set.

Without loss of generality, only the feedback vertex set problem for an undirected graph is considered
in this paper, and the aim is to search for the largest subset, S ⊆ V (G), such that G[S] is acyclic.

The rest of this paper is organized as follows: Section 2 presents the related work of local search
heuristics. Then, Sections 3 and 4 propose the k-opt local search (KLS)-based local search algorithm
and the KLS with a randomized scheme algorithm in detail. Section 5 conducts the experiments of
both the proposed algorithms and the compared metaheuristics with the results for the performance and
efficiency evaluation. Finally, Section 6 discusses the contributions of this paper and draws a conclusion.
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2. Related Work

As a local improved technology, the local search is a practical tool and a common technique
looking for the near-optimal solutions for combinatorial optimization problems [4]. In order to obtain
high-quality solutions, it was applied to many metaheuristic algorithms, such as simulating annealing,
genetic algorithm, memetic algorithm and swarm intelligent algorithms, in many cases.

The local search is a common tool looking for near-optimal solutions in reasonable time for
combinatorial optimization problems. Usually, the current solution is iteratively replaced by an improved
solution from its neighborhood, until no better solution can be obtained. Then, the current solution is
called locally optimal.

The basic local search starts with a feasible solution, x, and repeatedly replaces x with an improved
one, x′, which is selected from the neighborhood of x. If no better neighbor solutions can be found in
its neighborhood, the local search immediately stops and returns as the final best solution found during
the search [4].

Since the basic local search is usually unable to obtain a good-quality solution and often far from the
optimal solution, various improved local searches were proposed, e.g., tabu search [5–7], variable depth
search [8,9], variable neighborhood search [10–12], reactive local search [13–16], k-opt local search
(KLS) [4,17], iterated local search [18], iterated k-opt local search [17] and phased local search [19].

In many cases, the local search can be applied into heuristic algorithms, such as simulated annealing,
ant colony and particle swarm optimizations. However, normally, it is hard to obtain the best solution,
or even an approximate solution with high quality, for a certain combinatorial optimization problem.
Therefore, various local search methods, such as phased local search [19] and variable depth local search,
were proposed. The variable depth local search was initially used to solve the Graph Partitioning Problem
(GPP) [20] and the Traveling Salesman Problem (TSP) [21]. Then, it was applied to other heuristic
algorithms [22–26]. In [26], it was applied to solve the maximum clique problem and successfully
obtained good solutions.

Different from the previous studies, the proposed local search algorithms are based on KLS and are
combined with a depth variable search, which can improve the performance and efficiency.

3. KLS-Based Local Search Algorithm

In the simple local search procedure, the current solution is changed by adding or removing one
vertex. The idea of KLS-based local search is to operate more vertices for each time. That is to say,
the current solution is changed by way of adding or removing more than one vertex. Furthermore, the
number of operated vertices is not limited in KLS. Therefore, it is a variable depth local search, also
called k-opt local search.

As a comparison, the KLS-based local search is explored to solve the feedback vertex set problem.
Then, a variable depth-based local search with a randomized scheme is proposed to solve this problem.
For a given graph, G, it can be observed that if S is acyclic, then V (G) \ S is a feedback vertex set.
Therefore, such a vertex set, S, with maximum cardinality corresponds to a feedback vertex set with
minimum cardinality. Hence, the goal is to find a vertex set, S ∈ V (G), with maximum cardinality, for
which G[S] is acyclic. The main framework of this algorithm is taken from KLS in [26].
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The following notations will be used to describe the algorithms.

• CF : the current vertex subset, CF , for which G[CF ] is acyclic.
• PA: the possible vertex set of addition. i.e., PA = {v|the subgraph induced by CF ∪ {v} is acyclic}
• f(v):the degree of v in the graph, G[CF ];
• f+(v): the degree of v in the graph, G[CF ∪ {v}], i.e., f+(v) = dG[CF∪{v}](v).

First, a vertex set, CF ⊆ V , is randomly generated as an initial acyclic vertex set. If CF is not
maximal, then a vertex, v ∈ PA, that minimizes f(v) is chosen to add to CF . On the contrary, if
CF is maximal, then a vertex, v ∈ CF , with the maximum degree is chosen to be dropped. In the
search process, some vertices are iteratively added or removed, ensuring that the vertex set, CF , is
acyclic at each iteration. In order to avoid cycling, when a vertex, v, is added (resp.dropped), v would
not be dropped (resp.added) immediately. The pseudocode of the procedure is shown in Algorithm 1
(k-opt-LS).

Algorithm 1 k-opt-LS(G,CF, PA)
Require:

G: a graph with the vertex set, {1, 2, · · · , n};
CF : the current acyclic vertex set;
PA: the possible vertex set of addition;

1: generate an acyclic vertex set, CF , randomly.
2: repeat
3: CFPrev ← CF ; D ← CFPrev; P ← {1, 2, · · · , n}; g ← 0; gmax ← 0

4: repeat
5: if PA ∩ P ̸= ∅ then
6: find a vertex, v, from PA ∩ P that minimizes f+(v). if multiple vertices are found, select

one randomly.
7: CF ← CF ∪ {v}; g ← g + 1; P ← P \ {v};
8: else
9: if CF ∩ P ̸= ∅ then

10: find a vertex, v, from CF ∩ P that maximizes f(v). if multiple vertices are found, select
one randomly.

11: CF ← CF \ {v}; g ← g − 1; P ← P \ {v};
12: if v is contained in CFPrev then
13: D ← D \ {v};
14: end if
15: end if
16: end if
17: until D = ∅
18: until gmax ≤ 0

In this local search algorithm, if PA = ∅, then the acyclic vertex set, CF , is maximal. In this case,
a vertex, v ∈ CF , will be dropped; otherwise, a vertex v ∈ V \ CF will be added. Algorithm 1 starts
with a random acyclic vertex set, CF ; then, a possibly better acyclic vertex set is obtained by adding
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or removing more than one vertex. Therefore, it is called the variable depth local search, and it can
be applied to other heuristic algorithms, such as simulated annealing. Compared with the simple local
search algorithm, where only one vertex would be added or removed to change the current solution,
the variable depth local search operates more vertices and provides more efficiency in searching for the
desired acyclic vertex set.

4. KLS with a Randomized Scheme for the FVSP

In Algorithm 1, when a vertex is added (resp.dropped), it is no longer dropped (resp.added) if it does
not exit the inner loop. Moreover, at each iteration, a vertex that minimizes f+(v) or minimizes f(v) is
selected. These conditions are too restricted, and they may trap the procedure into a local minimum. In
order to overcome these drawbacks, a variable Tv is used to store the moment of the last iteration, while
the vertex, v, was under operation, and c is used to record the iteration number of the inner loop. If v is
added (resp.dropped), then the chance is given to make v dropped (resp.added) for at most k times within
a given number of iterations. Moreover, at each iteration, a vertex is selected with a probability associated
with the degree of v. The modified version of Algorithm 1 is shown in Algorithm 2 (NewKLS FVS(LS,
local search; FVS, feedback vertex set)).

Algorithm 2 NewKLS FVS(G,CF, PA, k)
Require:

G: a graph with the vertex set, {1, 2, · · · , n};
CF : the current acyclic vertex set;
PA: the possible vertex set of addition;

1: generate an acyclic vertex set, CF , randomly.
2: repeat
3: CFPrev ← CF ; D ← CFPrev; g ← 0; gmax ← 0; c← 0; Ti ← 1 for i = 1, 2, · · · , n;
4: repeat
5: c← c + 1;
6: P ← {v|c− Tv ≥ k};
7: if PA ∩ P ̸= ∅ then
8: find a vertex, v, from PA ∩ P with a probability, ρ.
9: CF ← CF ∪ {v}; g ← g + 1; Tv ← c;

10: else
11: if CF ∩ P ̸= ∅ then
12: find a vertex v from CF ∩ P with a probability, ρ.
13: CF ← CF \ {v}; g ← g − 1; Tv ← c;
14: if v is contained in CFPrev then
15: D ← D \ {v};
16: end if
17: end if
18: end if
19: until D = ∅
20: until gmax ≤ 0
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5. Experimental Results

5.1. Experimental Setup and Benchmark Instances

All the algorithms are coded in Visual C++ 6.0 and executed in an Intel Pentium(R) G630 Processor
2.70 MHz with 4 GB of RAM memory on a Windows 7 Operating System.

Two sets of testing instances are used in the experiments. One instance is a set of random graphs,
which are constructed with parameter n and p with order (the vertex number) n, inserting an edge with
probability p. This probability is called the edge density (or edge probability). The graph, G(n, p),
is used to represent a graph constructed with parameter n and p. Then, the proposed algorithm is
compared with other algorithms on random graphs, G(400, 0.5) and G(800, 0.5). The other instance
is the well-known DIMACSbenchmarks for graph coloring problems (see [27]), consisting of 59 graph
coloring problem instances. Table 1 gives the characteristics of these instances, including the number of
vertices (|V |), the number of edges (|E|) and the graph density (density).

Table 1. Benchmark instances and their characteristics.

No. Instance |V | |E| density

1 anna.col 138 986 0.104
2 david.col 87 812 0.217
3 DSJC125.1.col 125 736 0.095
4 DSJC125.5.col 125 3,891 0.502
5 DSJC125.9.col 125 6,961 0.898
6 fpsol2.i.1.col 496 11,654 0.095
7 fpsol2.i.2.col 451 8,691 0.086
8 fpsol2.i.3.col 425 8,688 0.097
9 games120.col 120 1,276 0.179
10 homer.col 561 3,258 0.021
11 huck.col 74 602 0.223
12 inithx.i.1.col 864 18,707 0.050
13 inithx.i.2.col 645 13,979 0.067
14 inithx.i.3.col 621 13,969 0.073
15 jean.col 80 508 0.161
16 latin square 10.col 900 307,350 0.760
17 le450 5a.col 450 5,714 0.057
18 le450 5b.col 450 5,734 0.057
19 le450 5c.col 450 9,803 0.097
20 le450 5d.col 450 9,757 0.097
21 le450 15b.col 450 8,169 0.081
22 le450 15c.col 450 16,680 0.165
23 le450 15d.col 450 16,750 0.166
24 le450 25a.col 450 8,260 0.082
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Table 1. Cont.

No. Instance |V | |E| density

25 le450 25b.col 450 8,263 0.082
26 le450 25c.col 450 17,343 0.172
27 le450 25d.col 450 17,425 0.172
28 miles250.col 128 774 0.096
29 miles500.col 128 2,340 0.288
30 miles750.col 128 4,226 0.519
31 miles1000.col 128 6,432 0.791
32 miles1500.col 128 10,396 1.279
33 mulsol.i.1.col 197 3,925 0.203
34 mulsol.i.2.col 188 3,885 0.221
35 mulsol.i.3.col 184 3,916 0.233
36 mulsol.i.4.col 185 3,946 0.232
37 mulsol.i.5.col 186 3,973 0.231
38 myciel3.col 11 20 0.364
39 myciel4.col 23 71 0.281
40 myciel6.col 95 755 0.169
41 myciel7.col 191 2,360 0.130
42 queen5 5.col 25 320 1.067
43 queen6 6.col 36 580 0.920
44 queen7 7.col 49 952 0.81
45 queen8 8.col 64 1,456 0.722
46 queen8 12.col 96 2,736 0.6
47 queen9 9.col 81 2,112 0.652
48 queen10 10.col 100 2,940 0.594
49 queen11 11.col 121 3,960 0.546
50 queen12 12.col 144 5,192 0.504
51 queen13 13.col 169 6,656 0.469
52 queen14 14.col 196 8,372 0.438
53 queen15 15.col 225 10,360 0.411
54 queen16 16.col 256 12,640 0.387
55 school1.col 385 19,095 0.258
56 school1 nsh.col 352 14,612 0.237
57 zeroin.i.1.col 211 4,100 0.185
58 zeroin.i.2.col 211 3,541 0.16
59 zeroin.i.3.col 206 3,540 0.168

5.2. Computational Results on k-opt-LS and NewKLS FVS
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5.2.1. Impact of the Tabu Tenure

In order to observe the impact of the tabu tenure of the algorithm, NewKLS FVS, the algorithm for
the tabu tenure, k, is tested from 100 to 1,000 on four chosen graphs. Table 2 reports the best and worst
solutions, respectively, for the algorithm, NewKLS FVS, with different values of the parameter, k.

Table 2. Results with with different values of the parameter k.

Instance k Best Worst Average

inithx.i.1.col 100 572 550 553
200 575 552 561
300 575 553 561
400 575 552 562
500 575 543 555
600 572 548 558
700 573 549 553
800 569 546 553
900 592 541 563
1,000 570 546 556

le450 25a.col 100 157 154 155
200 156 153 155
300 157 155 155
400 157 155 155
500 156 155 155
600 157 154 155
700 157 154 155
800 156 154 155
900 157 155 155
1,000 157 154 155

G(400,0.5) 100 15 13 13
200 15 12 13
300 15 13 13
400 15 13 13
500 15 13 13
600 15 13 14
700 15 13 14
800 15 13 14
900 15 12 14
1000 15 12 14

G(800,0.5) 100 17 13 14
200 15 13 14
300 16 13 14
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Table 2. Cont.

Instance L Best Worst Average

400 17 13 14
500 16 13 14
600 16 14 15
700 17 13 15
800 16 15 15
900 18 13 15
1,000 17 14 15

From the results above, it can be seen that the parameter, k, is important for the algorithm. For
example, for the graph, inithx.i.1.col (resp.le450 25a.col, G(400,0.5), G(800,0.5)), k = 900 is the most
suitable one.

5.3. Comparison of NewKLS FVS with Other Algorithms

In order to verify the efficiency and performance of the proposed algorithm, the performance of
the proposed heuristic for the feedback vertex set problem is also compared to that of several others.
Note that the proposed problem can be solved approximately by various heuristics, including simulated
annealing (SA) and variable neighborhood search (VNS).

(1) Simulated annealing: The simulated annealing algorithm was introduced to solve combinatorial
optimization problems proposed by Kirkpatrick [28]. Since then, it has been widely investigated
to solve many combinatorial optimization problems. Simulated annealing allows a transition to
go opposite towards achieving the goal with a probability. As a result, the simulated annealing
algorithm has some opportunities to jump out of the local minima. As preparation, for a given
graph, G, and a positive integer, k, a partition (S1, S2) of V (G) is found, such that G[S1] is
acyclic. Then, the parameters, T0 (initial temperature), Ts (stop temperature) and α (cooling
down coefficient), are required as input. For convenience, the edge numbers of G[S1] and G[S ′

1]

are denoted by e(S1) and e(S ′
1), respectively. After the preparation, the algorithm begins with a

randomly generated partition (S1, S2) of V (G). Then, a partition (S ′
1, S

′
2) is chosen that is obtained

by swapping two elements from S1 and S2. If e(S ′
1) is fewer than e(S1), then (S ′

1, S
′
2) is accepted.

Otherwise, it is accepted according to the simulated annealing rule. At the end of each iteration,
the temperature would cool down. Usually, let T = αT , where α ∈ (0, 1). If G[S1] is acyclic,
the procedure terminates successfully, and an acyclic induced subgraph with order k would be
returned. When the temperature reaches Ts, the procedure also terminates. The pseudocode is
presented in Algorithm 3, where u(0, 1) denotes a random number in (0, 1).
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Algorithm 3 SA(G, k, T0, Ts, α,t)
1: while Stop condition is not met do
2: Generate a partition (S1, S2) of V (G) with |S1| = k;
3: T ← T0;
4: while T > Ts do
5: Generate a new partition (S ′

1, S
′
2) by swapping two elements from S1 and S2;

6: if e(S ′
1) is fewer than e(S1) then

7: (S1, S2)← (S ′
1, S

′
2);

8: else
9: if u(0, 1) < ee(S′

1)−e(S1) then
10: (S1, S2)← (S ′

1, S
′
2);

11: end if
12: end if
13: T ← αT ;
14: end while
15: end while

(2) Variable neighborhood search: Hansen and Mladenović [10,29,30] introduced the variable
neighborhood search (VNS) method in combinatorial problems. In [5], it was applied to solve
the maximum clique problem. It constructs different neighborhood structures, which are used to
perform a systematic search. The main idea of variable neighborhood search is that when it does
not find a better solution for a fixed number of iterations, the algorithm continues to search in
another neighborhood until a better solution is found.

DenoteNk, (k = 1, 2, · · · , kmax) as a finite set of pre-selected neighborhood structures andNk(X)

as the set of solutions in the kth neighborhood of X . The steps of the basic VNS are presented in
Algorithm 4 (see [5]).

To solve the feedback vertex set problem, the neighborhood structure is described as follows. Let
(S1, S2) be the current partition, for a positive integer, k, with k < min{|S1|, |S2|}; define Bk(S)

as the set of the k-subset of S. The kth neighborhood of P is defined by:

Nk(S1, S2) = {(S1 ∪ U2 \ U1, S2 ∪ U1 \ U2)|U1 ∈ Bk(Vr), U2 ∈ Bk(Vb)} (1)

The proposed algorithms operate the partition, S1, S2. They change the current partition to another
solution, S ′

1, S
′
2, by swapping exactly k vertices between S1 and S2. Therefore, the neighborhood

of (S1, S2) is the set of all the solutions obtained from (S1, S2) by swapping exactly k vertices
between S1 and S2. The parameter, kmax, called the radius of the neighborhood, controls the
maximum k of the procedure.

The algorithms, k-opt-LS, NewKLS FVS, VNS and SA, are carried out on several random graphs and
DIMACS benchmarks for the maximum feedback vertex set. In the VNS algorithm, the value of Kmax

is set to be one and two, which are called VNS1 (if Kmax = 1) and VNS2 (if Kmax = 2), respectively.
In the SA algorithm, the initial temperature is set to be T0 = 1, 000, and the cooling down coefficient
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α = 0.9997. Tables 3–7 show the results of these algorithms, and each is carried out for 15 runs with a
CPU-time limit of 30 min.

Algorithm 4 VNS(G, r)
1: Initialize Nk, k = 1, 2, · · · , kmax, initial solution X and stop criteria;
2: while Stop condition is not met do
3: k ← 1;
4: Generate a partition Nk = (S1, S2) of V (G) with |S1| = r;
5: while k < kmax do
6: Generate a point, X ′ ∈ Nk(X) ;
7: Apply the local search method with X ′ as the initial solution; denote by X ′′ the obtained

solution;
8: if X ′′ is better than incumbent then
9: X ← X ′′; k ← 1;

10: else
11: k ← k + 1;
12: end if
13: end while
14: r ← r + 1

15: end while

Table 3. Results for NewKLS FVS (LS, local search; FVS, feedback vertex set) and a
CPU-time limit of 30 min for 15 runs.

Instance Best Worst Average Instance Best Worst Average

anna.col 126 126 126 miles1000.col 20 20 20
david.col 66 66 66 miles1500.col 10 10 10
DSJC125.1.col 58 58 58 mulsol.i.1.col 121 121 121
DSJC125.5.col 15 15 15 mulsol.i.2.col 133 133 133
DSJC125.9.col 6 6 6 mulsol.i.3.col 129 129 129
fpsol2.i.1.col 366 364 365 mulsol.i.4.col 130 130 130
fpsol2.i.2.col 370 370 370 mulsol.i.5.col 131 131 131
fpsol2.i.3.col 344 344 344 myciel3.col 8 8 8
games120.col 47 46 46 myciel4.col 16 16 16
homer.col 520 520 520 myciel6.col 61 61 61
huck.col 52 52 52 myciel7.col 122 122 122
inithx.i.1.col 602 554 569 queen5 5.col 7 7 7
inithx.i.2.col 549 548 548 queen6 6.col 9 9 9
inithx.i.3.col 529 529 529 queen7 7.col 11 11 11
jean.col 63 63 63 queen8 8.col 13 13 13
latin square 10.col 13 13 13 queen8 12.col 16 16 16
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Table 3. Cont.

Instance Best Worst Average Instance Best Worst Average

le450 5a.col 114 108 111 queen9 9.col 14 14 14
le450 5b.col 114 109 111 queen10 10.col 16 16 16
le450 5c.col 104 94 98 queen11 11.col 18 18 18
le450 5d.col 104 97 101 queen12 12.col 20 19 19
le450 15b.col 129 126 127 queen13 13.col 21 21 21
le450 15c.col 66 63 64 queen14 14.col 23 22 22
le450 15d.col 67 65 65 queen15 15.col 25 24 24
le450 25a.col 157 154 155 queen16 16.col 26 25 25
le450 25b.col 141 138 140 school1.col 77 75 75
le450 25c.col 78 76 76 school1 nsh.col 71 67 69
le450 25d.col 72 70 70 zeroin.i.1.col 139 139 139
miles250.col 81 80 80 zeroin.i.2.col 160 160 160
miles500.col 43 43 43 zeroin.i.3.col 156 156 156
miles750.col 27 27 27

Table 4. Results for k-opt-LS and a CPU-time limit of 30 min for 15 runs.

Instance Best Worst Average Instance Best Worst Average

anna.col 126 126 126 miles1000.col 20 20 20
david.col 66 66 66 miles1500.col 10 10 10
DSJC125.1.col 58 57 57 mulsol.i.1.col 121 121 121
DSJC125.5.col 15 15 15 mulsol.i.2.col 133 133 133
DSJC125.9.col 6 6 6 mulsol.i.3.col 129 129 129
fpsol2.i.1.col 364 362 362 mulsol.i.4.col 130 130 130
fpsol2.i.2.col 370 369 369 mulsol.i.5.col 131 131 131
fpsol2.i.3.col 344 344 344 myciel3.col 8 8 8
games120.col 47 46 46 myciel4.col 16 16 16
homer.col 520 520 520 myciel6.col 61 61 61
huck.col 52 52 52 myciel7.col 122 121 121
inithx.i.1.col 601 554 566 queen5 5.col 7 7 7
inithx.i.2.col 548 546 547 queen6 6.col 9 9 9
inithx.i.3.col 529 528 528 queen7 7.col 11 11 11
jean.col 63 63 63 queen8 8.col 13 13 13
latin square 10.col 13 12 12 queen8 12.col 16 16 16
le450 5a.col 112 107 109 queen9 9.col 14 14 14
le450 5b.col 111 106 108 queen10 10.col 16 16 16
le450 5c.col 106 95 99 queen11 11.col 18 18 18
le450 5d.col 104 97 100 queen12 12.col 20 19 19
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Table 4. Cont.

Instance Best Worst Average Instance Best Worst Average

le450 15b.col 126 123 124 queen13 13.col 21 21 21
le450 15c.col 65 60 62 queen14 14.col 23 22 22
le450 15d.col 65 60 63 queen15 15.col 25 24 24
le450 25a.col 153 149 151 queen16 16.col 26 25 25
le450 25b.col 139 136 137 school1.col 76 72 73
le450 25c.col 76 73 74 school1 nsh.col 69 66 67
le450 25d.col 70 67 68 zeroin.i.1.col 137 137 137
miles250.col 80 80 80 zeroin.i.2.col 160 159 159
miles500.col 43 43 43 zeroin.i.3.col 155 154 154
miles750.col 27 27 27

Table 5. Results for variable neighborhood search 1 (VNS1) with kmax = 1 and a CPU-time
limit of 30 min for 15 runs.

Instance Best Worst Average Instance Best Worst Average

anna.col 111 107 108 miles1000.col 16 14 14
david.col 57 55 56 miles1500.col 10 9 9
DSJC125.1.col 42 40 41 mulsol.i.1.col 38 35 36
DSJC125.5.col 12 11 11 mulsol.i.2.col 49 46 47
DSJC125.9.col 6 6 6 mulsol.i.3.col 48 44 45
fpsol2.i.1.col 76 72 74 mulsol.i.4.col 48 44 46
fpsol2.i.2.col 120 113 116 mulsol.i.5.col 49 45 46
fpsol2.i.3.col 114 108 110 myciel3.col 8 8 8
games120.col 37 36 36 myciel4.col 16 16 16
homer.col 327 319 322 myciel6.col 42 41 41
huck.col 48 46 46 myciel7.col 56 53 54
inithx.i.1.col 125 118 121 queen5 5.col 7 7 7
inithx.i.2.col 136 126 131 queen6 6.col 9 9 9
inithx.i.3.col 131 123 127 queen7 7.col 11 11 11
jean.col 58 56 57 queen8 8.col 12 12 12
latin square 10.col 7 6 6 queen8 12.col 15 14 14
le450 5a.col 62 58 59 queen9 9.col 14 13 13
le450 5b.col 61 58 59 queen10 10.col 15 14 14
le450 5c.col 41 38 39 queen11 11.col 16 15 15
le450 5d.col 41 39 39 queen12 12.col 17 17 17
le450 15b.col 53 51 52 queen13 13.col 19 18 18
le450 15c.col 30 27 28 queen14 14.col 19 19 19
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Table 5. Cont.

Instance Best Worst Average Instance Best Worst Average

le450 15d.col 29 27 28 queen15 15.col 21 20 20
le450 25a.col 59 57 57 queen16 16.col 22 21 21
le450 25b.col 57 55 55 school1.col 27 25 25
le450 25c.col 31 29 29 school1 nsh.col 27 25 25
le450 25d.col 30 29 29 zeroin.i.1.col 47 44 45
miles250.col 64 62 63 zeroin.i.2.col 66 61 64
miles500.col 32 31 31 zeroin.i.3.col 66 61 63
miles750.col 21 20 20

Table 6. Results for VNS2 with kmax = 2 and a CPU-time limit of 30 min for 15 runs.

Instance Best Worst Average Instance Best Worst Average

anna.col 110 107 109 miles1000.col 15 14 14
david.col 58 56 56 miles1500.col 10 9 9
DSJC125.1.col 42 40 41 mulsol.i.1.col 39 36 37
DSJC125.5.col 12 11 11 mulsol.i.2.col 50 46 48
DSJC125.9.col 6 6 6 mulsol.i.3.col 49 46 47
fpsol2.i.1.col 78 73 76 mulsol.i.4.col 50 46 47
fpsol2.i.2.col 123 118 120 mulsol.i.5.col 50 46 47
fpsol2.i.3.col 120 112 115 myciel3.col 8 8 8
games120.col 37 36 36 myciel4.col 16 16 16
homer.col 336 324 329 myciel6.col 43 41 41
huck.col 47 46 46 myciel7.col 56 54 55
inithx.i.1.col 131 123 127 queen5 5.col 7 7 7
inithx.i.2.col 144 137 140 queen6 6.col 9 9 9
inithx.i.3.col 142 136 138 queen7 7.col 11 11 11
jean.col 58 57 57 queen8 8.col 12 12 12
latin square 10.col 7 7 7 queen8 12.col 15 14 14
le450 5a.col 61 59 60 queen9 9.col 14 13 13
le450 5b.col 62 59 60 queen10 10.col 15 14 14
le450 5c.col 41 38 39 queen11 11.col 16 15 15
le450 5d.col 41 39 40 queen12 12.col 17 17 17
le450 15b.col 54 52 52 queen13 13.col 19 18 18
le450 15c.col 30 28 28 queen14 14.col 19 19 19
le450 15d.col 30 28 29 queen15 15.col 21 20 20
le450 25a.col 61 58 59 queen16 16.col 22 21 21
le450 25b.col 58 55 56 school1.col 28 26 26
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Table 6. Cont.

Instance Best Worst Average Instance Best Worst Average

le450 25c.col 31 29 30 school1 nsh.col 27 25 25
le450 25d.col 31 29 30 zeroin.i.1.col 49 44 45
miles250.col 64 62 63 zeroin.i.2.col 68 63 65
miles500.col 32 31 31 zeroin.i.3.col 65 63 64
miles750.col 21 20 20

Table 7. Results for simulated annealing (SA) and a CPU-time limit of 30 min for 15 runs.

Instance Best Worst Average Instance Best Worst Average

anna.col 113 100 104 miles1000.col 14 12 13
david.col 54 49 51 miles1500.col 9 8 8
DSJC125.1.col 40 37 37 mulsol.i.1.col 38 29 32
DSJC125.5.col 10 9 9 mulsol.i.2.col 45 39 42
DSJC125.9.col 5 5 5 mulsol.i.3.col 47 39 42
fpsol2.i.1.col 90 66 73 mulsol.i.4.col 47 39 42
fpsol2.i.2.col 133 116 123 mulsol.i.5.col 48 38 42
fpsol2.i.3.col 133 109 116 myciel3.col 8 8 8
games120.col 36 34 35 myciel4.col 16 15 15
homer.col 331 325 327 myciel6.col 40 34 37
huck.col 45 41 42 myciel7.col 54 46 50
inithx.i.1.col 131 124 128 queen5 5.col 7 7 7
inithx.i.2.col 148 138 143 queen6 6.col 9 9 9
inithx.i.3.col 145 134 139 queen7 7.col 10 10 10
jean.col 56 52 53 queen8 8.col 12 11 11
latin square 10.col 7 6 6 queen8 12.col 14 13 13
le450 5a.col 61 57 58 queen9 9.col 13 12 12
le450 5b.col 60 57 58 queen10 10.col 14 13 13
le450 5c.col 40 36 37 queen11 11.col 15 14 14
le450 5d.col 41 37 38 queen12 12.col 17 15 15
le450 15b.col 54 48 50 queen13 13.col 18 16 16
le450 15c.col 28 26 27 queen14 14.col 18 17 17
le450 15d.col 28 26 26 queen15 15.col 19 18 18
le450 25a.col 61 53 56 queen16 16.col 21 19 19
le450 25b.col 56 52 53 school1.col 26 23 23
le450 25c.col 30 26 28 school1 nsh.col 25 23 23
le450 25d.col 30 27 27 zeroin.i.1.col 51 37 42
miles250.col 61 56 58 zeroin.i.2.col 67 54 59



Algorithms 2013, 6 741

Table 7. Cont.

Instance Best Worst Average Instance Best Worst Average

miles500.col 31 28 29 zeroin.i.3.col 63 53 57
miles750.col 19 18 18

In order to show the performance and efficiency of various algorithms, experiments are conducted
to test the algorithms (NewkLS FVS, k-opt-LS, VNS1, VNS2, SA) on graphs huck.col, inithx.i.1.col,
le450 25a.col, zeroin.i.1.col and school1 nsh.col. The convergence curves of these algorithms are
reported on both running times (with a CPU-time limit of 10 min; see Figure 1) and iteration numbers
(within 100 iterations; see Figure 2). The experimental results show that NewkLS FVS outperforms
other algorithms on graphs huck.col, le450 25a.col, zeroin.i.1.col and school1 nsh.col almost at any
moment. The solution quality is better than any other compared algorithm after 3 min on inithx.i.1.col.
Additionally, the solution quality of NewkLS FVS is better than those of any other compared algorithm
on all tested graphs after 20 iterations. It can be seen that the performance of the algorithm, k-opt-LS,
is better than VNS1, VNS2 and SA on almost all these instances, and the convergence performance of
k-opt-LS is improved by using the proposed approaches.

Figure 1. Comparison of the algorithms with a CPU-time limit of 10 min. (a) inithx.i.1.col;
(b) le450 25a.col; (c) school1 nsh.col; (d) zeroin.i.1.col.

(a) (b)

(c) (d)
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Figure 2. Comparison of the algorithms within 100 iterations. (a) huck.col; (b)
inithx.i.1.col; (c) le450 25a.col; (d) zeroin.i.1.col.

(a) (b)

(c) (d)

5.4. Evaluation of the Algorithms

From the report of Tables 3–7, it can be seen that the results of NewKLS FVS and k-opt-LS are
obviously better than those of VNS1, VNS2 and SA. Table 8 presents the results of the best algorithm
for each instance testing DIMACS. In Table 8, the column best means the best result from the algorithms,
and the column worst is the worst result from the algorithms. The column the-best-algorithm is the set
of algorithms capable of obtaining the best result.

Table 8. Results for algorithm analysis.

Instance Best Worst The-Best-Algorithm

anna.col 126 126 a,b
david.col 66 66 a,b

DSJC125.1.col 58 58 a
DSJC125.5.col 15 15 a,b
DSJC125.9.col 6 6 a,b,c,d
fpsol2.i.1.col 366 364 a
fpsol2.i.2.col 370 370 a
fpsol2.i.3.col 344 344 a,b
games120.col 47 46 a,b

homer.col 520 520 a,b
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Table 8. Cont.

Instance Best Worst The-Best-Algorithm

huck.col 52 52 a,b
inithx.i.1.col 602 554 a
inithx.i.2.col 549 548 a
inithx.i.3.col 529 529 a

jean.col 63 63 a,b
latin square 10.col 13 13 a

le450 5a.col 114 108 a
le450 5b.col 114 109 a
le450 5c.col 104 94 a
le450 5d.col 104 97 a
le450 15b.col 129 126 a
le450 15c.col 66 63 a
le450 15d.col 67 65 a
le450 25a.col 157 154 a
le450 25b.col 141 138 a
le450 25c.col 78 76 a
le450 25d.col 72 70 a
miles250.col 81 80 a
miles500.col 43 43 a,b
miles750.col 27 27 a,b

miles1000.col 20 20 a,b
miles1500.col 10 10 a,b
mulsol.i.1.col 121 121 a,b
mulsol.i.2.col 133 133 a,b
mulsol.i.3.col 129 129 a,b
mulsol.i.4.col 130 130 a,b
mulsol.i.5.col 131 131 a,b
myciel3.col 8 8 a,b
myciel4.col 16 16 a,b
myciel6.col 61 61 a,b
myciel7.col 122 122 a

queen5 5.col 7 7 a,b,c,d,e
queen6 6.col 9 9 a,b,c,d,e
queen7 7.col 11 11 a,b,c,d
queen8 8.col 13 13 a,b

queen8 12.col 16 16 a,b
queen9 9.col 14 14 a,b

queen10 10.col 16 16 a,b
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Table 8. Cont.

Instance Best Worst The-Best-Algorithm

queen11 11.col 18 18 a,b
queen12 12.col 20 19 a,b
queen13 13.col 21 21 a,b
queen14 14.col 23 22 a,b
queen15 15.col 25 24 a,b
queen16 16.col 26 25 a,b

school1.col 77 75 a
school1 nsh.col 71 67 a

zeroin.i.1.col 139 139 a
zeroin.i.2.col 160 160 a
zeroin.i.3.col 156 156 a

Procedures used in Table 8: a: NewkLS FVS; b: k-opt-LS; c: VNS1; d: VNS2; e: SA.

Table 8 shows that NewKLS FVS obtains the best result for all the tested instances, and k-opt-LS
obtains 34 best results. From the report, it can be seen that they both perform better than other test
procedures for the feedback vertex set problem.

6. Concluding Remarks

This paper addresses an NP-complete problem, the feedback vertex set problem, which is inspired by
many applications, such as deadlock detection in operating systems and relational database systems of an
operating system. An efficient local search algorithm, NewkLS FVS, is proposed to solve this problem,
and it was compared with popular heuristics, such as variable depth search and simulated annealing.
From the experiments on random graphs and DIMACS benchmarks, it can be seen that NewkLS FVS is
able to obtain better solutions than the variable depth search, and it has good performance by setting the
parameter, tabu tenure, to a suitable value.
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