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Abstract: We suggest a user-oriented approach to combinatorial data anonymization.
A data matrix is called k-anonymous if every row appears at least k times—the goal
of the NP-hard k-ANONYMITY problem then is to make a given matrix k-anonymous
by suppressing (blanking out) as few entries as possible. Building on previous work
and coping with corresponding deficiencies, we describe an enhanced k-anonymization
problem called PATTERN-GUIDED k-ANONYMITY, where the users specify in which
combinations suppressions may occur. In this way, the user of the anonymized data can
express the differing importance of various data features. We show that PATTERN-GUIDED

k-ANONYMITY is NP-hard. We complement this by a fixed-parameter tractability result
based on a “data-driven parameterization” and, based on this, develop an exact integer
linear program (ILP)-based solution method, as well as a simple, but very effective, greedy
heuristic. Experiments on several real-world datasets show that our heuristic easily matches
up to the established “Mondrian” algorithm for k-ANONYMITY in terms of the quality of the
anonymization and outperforms it in terms of running time.

Keywords: NP-hardness; parameterized complexity; integer linear programming; exact
algorithms; heuristics; experiments

1. Introduction

Making a matrix k-anonymous, that is, each row has to occur at least k times, is a classic model for
(combinatorial) data privacy [1,2]. We omit considerations on the also very popular model of “differential
privacy” [3], which has a more statistical than a combinatorial flavor. It is well-known that there are
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certain weaknesses of the k-anonymity concept, for example, when the anonymized data is used multiple
times [1]. Here, we focus on k-anonymity, which, due to its simplicity and good interpretability, continues
to be of interest in current applications. The idea behind k-anonymity is that each row of the matrix
represents an individual, and the k-fold appearance of the corresponding row shall avoid the situation
in which the person or object behind can be identified. To reach this goal, clearly, some information
loss has to be accepted, that is, some entries of the matrix have to be suppressed (blanked out); in this
way, information about certain attributes (represented by the columns of the matrix) is lost. Thus, the
natural goal is to minimize this loss of information when transforming an arbitrary data matrix into a
k-anonymous one. The corresponding optimization problem k-ANONYMITY is NP-hard (even in special
cases) and hard to approximate [4–8]. Nevertheless, it played a significant role in many applications,
thereby mostly relying on heuristic approaches for making a matrix k-anonymous [2,9,10].

It was observed that care has to be taken concerning the “usefulness” (also in terms of expressiveness) of
the anonymized data [11,12]. Indeed, depending on the application that has to work on the k-anonymized
data, certain entry suppressions may “hurt” less than others. For instance, considering medical data
records, the information about eye color may be less informative than information about blood pressure.
Hence, it would be useful for the user of the anonymized data to specify information that may help in
doing the anonymization process in a more sophisticated way. Thus, in recent work [13], we proposed
a “pattern-guided” approach to data anonymization, in a way that allows the user to specify which
combinations of attributes are less harmful to suppress than others. More specifically, the approach allows
“pattern vectors”, which may be considered as blueprints for the structure of anonymized rows—each
row has to be matched with exactly one of the pattern vectors (we will become more precise about this
when formally introducing our new model). The corresponding proposed optimization problem [13],
however, has the clear weakness that each pattern vector can only be used once, disallowing that there
are different incarnations of the very same anonymization pattern. While this might be useful for the
clustering perspective of the problem [13], we see no reason to justify this constraint from the viewpoint
of data privacy. This leads us to proposing a modified model, whose usefulness for practical data
anonymization tasks is supported by experiments on real-world data and comparison with a known
k-anonymization algorithm.

Altogether, with our new model, we can improve both on k-ANONYMITY by letting the data user
influence the anonymization process, as well as on the previous model [13] by allowing full flexibility for
the data user to influence the anonymization process. Notably, the previous model is more suitable for
homogeneous team formation instead of data anonymization [14].

An extended abstract of this work appeared in the Proceedings of the Joint Conference of the 7th
International Frontiers of Algorithmics Workshop and the 9th International Conference on Algorithmic
Aspects of Information and Management (FAW-AAIM ’13), Dalian, China, Volume 7924, of Lecture Notes
in Computer Science, pages 350–361, June, 2013. c© Springer. This full version contains all proof details
and an extended experimental section. Furthermore, we provide the new result that PATTERN-GUIDED

2-ANONYMITY is polynomial-time solvable (Theorem 2).
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Formal Introduction of the New Model. A row type is a maximal set of identical rows of a matrix.

Definition 1. (k-anonymous [15–17]) A matrix is k-anonymous if every row type contains at least k rows
in the matrix, that is, for every row in the matrix, one can find at least k − 1 other identical rows.

Matrices are made k-anonymous by suppressing some of their entries. Formally, suppressing an
entry M [i, j] of an n×m-matrix M over alphabet Σ with 1 ≤ i ≤ n and 1 ≤ j ≤ m means to simply
replace M [i, j] ∈ Σ by the new symbol “?”, ending up with a matrix over the alphabet Σ ∪ {?}.

Our central enhancement of the k-ANONYMITY model lies in the user-specific pattern mask guiding
the anonymization process: Every row in the k-anonymous output matrix has to conform to one of the
given pattern vectors. Note that both the input table and the given patterns mathematically are matrices,
but we use different terms to more easily distinguish between them: the “pattern mask” consists of
“pattern vectors”, and the “input matrix” consists of “rows”.

Definition 2. A row r in a matrix M ∈ {Σ, ?}n×m matches a pattern vector v ∈ {�, ?}m if and only if
∀1 ≤ i ≤ m : r[i] = ? ⇐⇒ v[i] = ?, that is, r and v have ?-symbols at the same positions.

With these definitions, we can now formally define our central computational problem. The decisive
difference with respect to our previous model [13] is that in our new model, two non-identical output
rows can match the same pattern vector.

PATTERN-GUIDED k-ANONYMITY

Input: A matrix M ∈ Σn×m, a pattern mask P ∈ {�, ?}p×m, and two positive integers k and s.
Question: Can one suppress at most s entries of M in order to obtain a k-anonymous matrix M ′,

such that each row type of M ′ matches to at least one pattern vector of P ?

For some concrete examples, we refer to Section 3.6.

Our Results Describing a polynomial-time many-to-one reduction from the NP-hard 3-SET COVER

problem, we show that PATTERN-GUIDED k-ANONYMITY is NP-complete; even if the input matrix only
consists of three columns, there are only two pattern vectors, and k = 3. Motivated by this computational
intractability result, we develop an exact algorithm that solves PATTERN-GUIDED k-ANONYMITY in
O(2tpt6p5m + nm) time for an n ×m input matrix M , p pattern vectors, and the number of different
rows in M being t. In other words, this shows that PATTERN-GUIDED k-ANONYMITY is fixed-parameter
tractable for the combined parameter (t, p) and actually can be solved in linear time if t and p take
constant values. (The fundamental idea behind parameterized complexity analysis [18–20] is, given
a computationally hard problem Q to identify a parameter ` (typically, a positive integer or a tuple of
positive integers), for Q and to determine whether size-s instances of Q can be solved in f(`) · sO(1) time,
where f is an arbitrary computable function.) This result appears to be of practical interest only in special
cases (“small” values for t and p are needed). It nevertheless paves the way for a formulation of an integer
linear program for PATTERN-GUIDED k-ANONYMITY that exactly solves moderate-size instances of
PATTERN-GUIDED k-ANONYMITY in reasonable time. Furthermore, our fixed-parameter tractability
result also leads to a simple and efficient greedy heuristic, whose practical competitiveness is underlined
by a set of experiments with real-world data, also favorably comparing with the Mondrian algorithm for
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k-ANONYMITY [21]. In particular, our empirical findings strongly indicate that, even when neglecting
the aspect of potentially stronger expressiveness on the data user side provided by PATTERN-GUIDED

k-ANONYMITY, in combination with the greedy algorithm, it allows for high-quality and very fast data
anonymization, being comparable in terms of anonymization quality with the established Mondrian
algorithm [21], but significantly outperforming it in terms of time efficiency.

2. Complexity and Algorithms

This section is organized as follows. In Section 2.1, we prove the NP-hardness of PATTERN-GUIDED

3-ANONYMITY restricted to two pattern vectors and three columns. To complement this intractability
result, we also present a polynomial-time algorithm for PATTERN-GUIDED 2-ANONYMITY and a
fixed-parameter algorithm for PATTERN-GUIDED k-ANONYMITY. In Sections 2.2 and 2.3, we extract
the basic ideas of the fixed-parameter algorithm for an integer linear program (ILP) formulation and a
greedy heuristic.

2.1. Parameterized Complexity

One of the decisions made when developing fixed-parameter algorithms is the choice of the parameter.
Natural parameters occurring in the problem definition of PATTERN-GUIDED k-ANONYMITY are the
number n of rows, the number m of columns, the alphabet size |Σ|, the number p of pattern vectors, the
anonymity degree k, and the cost bound s. In general, the number of rows will arguably be large and, thus,
also the cost bound s, tends to be large. Since fixed-parameter algorithms are fast when the parameter
is small, trying to exploit these two parameters tends to be of little use in realistic scenarios. However,
analyzing the adult dataset [22] prepared as described by Machanavajjhala et al. [23], it turns out that
some of the other mentioned parameters are small: The dataset has m = 9 columns, and the alphabet size
is 73. Furthermore, it is natural to assume that also the number of pattern vectors is not that large. Indeed,
compared to the n = 32, 561 rows, even the number of all possible pattern vectors 29 = 512 is relatively
small. Finally, there are applications where k, the degree of anonymity, is small [24]. Summarizing,
we can state that fixed-parameter tractability with respect to the parameters |Σ|, m, k, or p, could be of
practical relevance. Unfortunately, by reducing from 3-SET COVER, we can show that PATTERN-GUIDED

k-ANONYMITY is NP-hard in very restricted cases.

Theorem 1. PATTERN-GUIDED k-ANONYMITY is NP-complete even for two pattern vectors, three
columns, and k = 3.

Proof. We reduce from the NP-hard 3-SET COVER [25]: Given a set family F = {S1, . . . , Sα}
with |Si| = 3 over a universe U = {u1, . . . , uβ} and a positive integer h, the task is to decide whether
there is a subfamily F ′ ⊆ F of size at most h such that

⋃
S∈F ′S = U . In the reduction, we need unique

entries in the constructed input matrix M . For ease of notation, we introduce the 4-symbol with an
unusual semantics. Each occurrence of a4-symbol stands for a different unique symbol in the alphabet Σ.
One could informally state this as “4 6= 4”. We now describe the construction. Let (F , U, h) be
the 3-SET COVER instance. We construct an equivalent instance (M,P, k, s) of PATTERN-GUIDED

k-ANONYMITY as follows: Initialize M and P as empty matrices. Then, for each element ui ∈ U , add
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the row (ui,4,4) twice to the input matrix M . For each set Si ∈ F with Si = {ua, ub, uc}, add to M
the three rows (ua, Si, Si), (ub, Si, Si), and (uc, Si, Si). Finally, set k = 3, s = 4|U | + 3|F| + 3h, and
add to P the pattern vectors (�, ?, ?), and (?, �, �).

We show the correctness of the above construction by proving that (F , U, h) is a yes-instance of 3-SET

COVER, if and only if (M,P, 3, s) is a yes-instance of PATTERN-GUIDED k-ANONYMITY.
“⇒:” If (F , U, h) is a yes-instance of 3-SET COVER, then there exists a set cover F ′ of size at most h.

We suppress the following elements inM : First, suppress all4-entries inM . This gives 4|U | suppressions.
Then, for each Si ∈ F ′, suppress all Si-entries in M . This gives 6|F ′| suppressions. Finally, for each Sj /∈
F ′, suppress the first column of all rows containing the entry Sj . These are 3(|F| − |F ′|) suppressions.
Let M ′ denote the matrix with the suppressed elements. Note that M ′ contains 4|U |+ 3|F|+ 3|F ′| ≤ s

suppressed entries. Furthermore, in each row in M ′, either the first element is suppressed or the last
two elements. Hence, each row of M ′ matches to one of the two pattern vectors of P . Finally, observe
that M ′ is 3-anonymous: The three rows corresponding to the set Sj /∈ F ′ are identical: the first column
is suppressed, and the next two columns contain the symbol Sj . Since F ′ is a set cover, there exists for
each element uj a set Si ∈ F ′ such that uj ∈ Si. Thus, by construction, the two rows corresponding
to the element uj , and the row (uj, Si, Si) in M coincide in M ′: The first column contains the entry uj
and the other two columns are suppressed. Finally, for each row (ui, Sj, Sj) in M that corresponds to a
set Sj ∈ F ′, the row in M ′ coincides with the two rows corresponding to the element ui: Again, the first
column contains the entry ui and the other two columns are suppressed.

“⇐:” If (M,P, 3, s) is a yes-instance of PATTERN-GUIDED k-ANONYMITY, then there is a
3-anonymous matrix M ′, that is obtained from M by suppressing at most s elements, and each row
of M ′ matches to one of the two pattern vectors in P . Since M and, so, M ′ contain 2|U | + 3|F| rows,
M ′ contains at most s = 4|U |+3|F|+3h suppressions and each pattern vector contains a ?-symbol, there
are at most 2|U |+ 3h rows in M ′ containing two suppressions and at least 3|F| − 3h rows containing
one suppression. Furthermore, since the 2|U | rows in M corresponding to the elements of U contain the
unique symbol4 in the last two columns in M ′, these rows are suppressed in the last two columns. Thus,
at most 3h rows corresponding to sets of F have two suppressions inM ′. Observe that for each set Si ∈ F
the entries in the last two columns of the corresponding rows are Si. There is no other occurrence of
this entry in M . Hence, the at least 3|F| − 3h rows in M ′ with one suppression correspond to |F| − h
sets in F . Thus, the at most 3h rows in M ′ that correspond to sets of F and contain two suppressions
correspond to at most h sets of F . Denote these h sets by F ′. We now show that F ′ is a set cover for
the 3-SET COVER instance. Assume by contradiction that F ′ is not a set cover, and hence, there is an
element u ∈ U \ (

⋃
S∈F ′ S). However, since M ′ is 3-anonymous, there has to be a row r in M ′ that

corresponds to some set Si such that this row coincides with the two rows ru1 and ru2 corresponding to u.
Since all rows in M ′ corresponding to elements of U contain two suppressions in the last two columns,
the row r also contains two suppressions in the last two columns. Thus, Si ∈ F ′. Furthermore, r has to
coincide with ru1 and ru2 in the first column, that is, r contains as the entry in the first column the symbol u.
Hence, u ∈ Si, a contradiction.

Blocki and Williams [7] showed that, while 3-ANONYMITY is NP-complete [7,8], 2-ANONYMITY is
polynomial-time solvable by reducing it in polynomial time to the polynomial-time solvable, SIMPLEX

MATCHING [26], defined as follows:
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SIMPLEX MATCHING

Input: A hypergraph H = (V,E) with hyperedges of size two and three, a positive integer h,
and a cost function, cost : E → N, such that:

1. {u, v, w} ∈ E ⇒ {u, v}, {v, w}, {u,w} ∈ E and
2. cost({u, v}) + cost({v, w}) + cost({u,w}) ≤ 2 · cost({u, v, w}).

Question: Is there a subset of the hyperedges E ′ ⊆ E, such that for all v ∈ V , there is exactly one
edge in E ′ containing v and

∑
e∈E′ cost(e) ≤ h?

We slightly adjust their reduction to obtain polynomial-time solvability for PATTERN-GUIDED

2-ANONYMITY, together with Theorem 1, yielding a complexity dichotomy for PATTERN-GUIDED

k-ANONYMITY with respect to the parameter k.

Theorem 2. PATTERN-GUIDED 2-ANONYMITY is polynomial-time solvable.

Proof. We reduce PATTERN-GUIDED 2-ANONYMITY to SIMPLEX MATCHING. To this end, we first
introduce some notation. Let (M,P, 2, s) be the PATTERN-GUIDED 2-ANONYMITY instance. For a set A
of rows A = {r1, . . . , r`} and a pattern vector p in P the set A(p) is obtained from A by suppressing
entries in the rows of A such that each row matches p (see Definition 2). The set P (A) contains all pattern
vectors p such that A(p) is a set of identical rows. Intuitively, P (A) contains all “suitable” pattern vectors
to make the rows in A identical.

Now, construct the hypergraph H = (V,E) as follows: Initialize V = ∅ and E = ∅. For each row r

in M add a vertex vr to V . For a vertex subset V ′ ⊆ V let M(V ′) be the set of the corresponding rows
in M . For each vertex subset V ′ ⊆ V of size 2 ≤ |V ′| ≤ 3 add the hyperedge V ′ if P (M(V ′)) 6= ∅.
Let p(V ′) be a pattern vector in P (M(V ′)) with the minimum number of ?-symbols. Denote this
number of ?-symbols of p(V ′) by `. Then, set cost(V ′) = ` · |V ′|. Note that this is exactly the cost
to “anonymize” the rows in M(V ′) with the pattern vector p. Finally, set the cost bound h = s. This
completes the construction.

First, we show that Conditions 1 and 2 are fulfilled. Clearly, as each pattern vector that makes
some row set A identical also makes each subset of A identical, it follows that for any V ′ ⊆ V and
any V ′′ ⊆ V , it holds P (M(V ′)) ⊆ P (M(V ′′)). Hence, Condition 1 is fulfilled. Furthermore, it follows
that 2 · cost({u, v, w}) ≥ 3 · cost({u, v}) for each u, v, w ∈ V , implying:

cost({u, v}) + cost({v, w}) + cost({u,w}) ≤ 6/3 · cost({u, v, w})

Thus, Condition 2 is fulfilled.
Observe that the construction can be easily performed in polynomial time. Hence, it remains to be

shown that (M,P, 2, s) is a yes-instance of PATTERN-GUIDED 2-ANONYMITY, if and only if (H, s, cost)

is a yes-instance of SIMPLEX MATCHING.
“⇒:” Let M ′ be a 2-anonymous matrix obtained from M by suppressing at most s elements, and

each row of M ′ matches a pattern vector in P . LetR be the set of all row types in M ′. We construct a
matching E ′ for H as follows: First, partition the rows in each row type, such that each part contains
two or three rows. For each part Q, add to E ′ the set of the vertices corresponding to the rows in Q. By
construction, the cost bound is satisfied, and all vertices are matched.
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“⇐:” Let E ′ ⊆ E be a matching, and let e ∈ E ′. Recall that M(e) denotes the set of rows
corresponding to the vertices in e. By construction, P (M(e)) 6= ∅. We construct M ′ from M by
suppressing for each e ∈ E ′ entries in the rows M(e) such that they match p(e). Observe that M ′ is
k-anonymous, and each row matches a pattern vector. Furthermore, by construction, there are at most s
suppressions in M ′. Thus, (M,P, 2, s) is a yes-instance.

Contrasting the general intractability result of Theorem 1, we will show fixed-parameter tractability
with respect to the combined parameter (|Σ|,m). To this end, we additionally use as a parameter
the number t of different input rows. Indeed, we show fixed-parameter tractability with respect to
the combined parameter (t, p). This implies fixed-parameter tractability with respect to the combined
parameter (|Σ|,m), as |Σ|m ≥ t and |Σ|m ≥ 2m ≥ p. This results from an adaption of combinatorial
algorithms from previous work [13,27].

Before presenting the algorithm, we introduce some notation. We distinguish between the input row
types of the input matrix M and the output row types of the matrix M ′. Note that in the beginning, we can
compute the input row types of M in O(nm) time using a trie [28], but the output row types are unknown.
By the definition of PATTERN-GUIDED k-ANONYMITY, each output row type R′ has to match a pattern
vector v ∈ P . We call R′ an instance of v.

Theorem 3. PATTERN-GUIDED k-ANONYMITY can be solved in O(2tp · t6p5 ·m+ nm) time, where p
is the number of pattern vectors and t is the number of different rows in the input matrix M .

Proof. We present an algorithm running in two phases:

Phase 1: Guess for each possible output row type whether it is used in M ′. Denote withR the set of all
output row types in M ′ according to the guessing result.

Phase 2: Check whether there exists a k-anonymous matrix M ′ that can be obtained from M by
suppressing at most s elements, such that M ′ respects the guessing result in Phase 1; that is,
the set of row types in M ′ is exactlyR.

As to Phase 1, observe that the number of possible output row types is at most t · p: For each pattern
vector, there exist at most t different instances—one for each input row type. Hence, Phase 1 can be
realized by simply trying all 2t·p possibilities. On the contrary, Phase 2 can be computed in polynomial
time using the so-called ROW ASSIGNMENT problem [27]. To this end, we introduce Tin := {1, . . . , t}
and Tout := {1, . . . , r}, where r is the number of used output row types according to the guessing result
of Phase 1, formally, r = |R|. With this notation, we can state ROW ASSIGNMENT.

ROW ASSIGNMENT

Input: Nonnegative integers k, s, ω1, . . . , ωr and n1, . . . , nt with
∑t

i=1 ni = n, and a function h :

Tin × Tout → {0, 1}.
Question: Is there a function g : Tin × Tout → {0, . . . , n}, such that:
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h(i, j) · n ≥ g(i, j) ∀i ∈ Tin ∀j ∈ Tout (1)
t∑
i=1

g(i, j) ≥ k ∀j ∈ Tout (2)

p∑
j=1

g(i, j) = ni ∀i ∈ Tin (3)

t∑
i=1

p∑
j=1

g(i, j) · ωj ≤ s (4)

We now discuss how we use ROW ASSIGNMENT to solve Phase 2. The function h captures the
guessing in Phase 1: If the input row type i is “compatible” with the output row type j, then h(i, j) = 1,
otherwise, h(i, j) = 0. Here, an input row type R is compatible with an output row type R′ if the rows in
both row types are identical in the non-?-positions or, equivalently, if any row of R can be made identical
to any row of R′ by just replacing entries with the ?-symbol. The integer ωi is set to the number of stars in
the ith output row type Ri inR; that is, ωi captures the cost of “assigning” a compatible row of M to Ri.
In ni, the size (number of rows) of the ith input row type is stored. The integers with the same names in
ROW ASSIGNMENT and PATTERN-GUIDED k-ANONYMITY also store the same values.

Next, we show that solving ROW ASSIGNMENT indeed correctly realizes Phase 2: Since the output
row types of M ′ are given from Phase 1, it remains to specify how many rows each output row type
contains, such that M ′ can be obtained from M by suppressing at most s entries, and M ′ is k-anonymous.
Due to Phase 1, it is clear that each row in M ′ matches a pattern vector in P . To ensure that M ′ can be
obtained from M by suppressing entries, we “assign” rows of M to compatible output row types. Herein,
this assigning means to suppress the entries in the particular row, such that the modified row belongs to
the particular output row type. This assigning is captured by the function g: The number of rows from
the input row type Ri that are assigned to the output row type Rj is g(i, j). Inequality (1) ensures that
we only assign rows to compatible output row types. The k-anonymous requirement is guaranteed by
Inequality (2). Equation (3) ensures that all rows of M are assigned. Finally, the cost bound is satisfied,
due to Inequality (4). Hence, solving ROW ASSIGNMENT indeed solves Phase 2.

Analyzing the running time, we get the following: Computing the input row types in M can be
done in O(nm). In Phase 1, the algorithm tries 2tp possibilities. For each of these possibilities, we have
to check which input row types are compatible with which output row types. This is clearly doable in
O(trm) time. Finally, ROW ASSIGNMENT can be solved in O((t + r) · log(t + r)(t · r + (t + r)

log(t+ r))) (Lemma 1 in [27]). Since r ≤ tp, we roughly upper-bound this by O((tp)4). Putting all this
together, we arrive at the statement of the theorem.

In other words, Theorem 3 implies that PATTERN-GUIDED k-ANONYMITY can be solved in linear
time if t and p are constants.

2.2. ILP Formulation

Next, we describe an integer linear program (ILP) formulation for PATTERN-GUIDED k-ANONYMITY

employing the ideas behind the fixed-parameter algorithm of Theorem 3. More specifically, our ILP
contains the integer variables xi,j denoting the number of rows from type i being assigned into an output
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row type compatible with pattern vector j. The binary variable uj,l is 1 if instance l of pattern vector j is
used in the solution; that is, there is at least one row mapped to it, otherwise, it is set to 0. Furthermore,
ni denotes the number of rows of type i, ωj denotes the costs of pattern vector j, and k is the required
degree of anonymity. Let p̂i ≤ t denote the number of instances of pattern vector i, and let c(i, j, l) be 1 if
mapping row i to pattern vector j produces pattern vector instance l, otherwise c(i, j, l) = 0. With this
notation, we can state our ILP formulation:

min
t∑
i=1

p∑
j=1

xi,j · ωj (5)

t∑
i=1

c(i, j, l) · xi,j ≤ uj,l · n 1≤j≤p
1≤l≤p̂j

(6)

t∑
i=1

c(i, j, l) · xi,j + k · (1− uj,l) ≥ k 1≤j≤p
1≤l≤p̂j

(7)

p∑
j=1

xi,j = ni 1 ≤ i ≤ t. (8)

The goal function (5) ensures that the solution has a minimum number of suppressions. Constraint (6)
ensures that the variables uj,l are consistently set with the variables xi,j; that is, if there is some positive
variable xi,j indicating that the instance l of pattern vector j is used, then uj,l = 1. Constraint (7) ensures
that every pattern vector instance that is used by the solution contains at least k rows. Constraint (8)
ensures that the solution uses as many rows from each row type as available.

We remark that, as Theorem 3, our ILP formulation also yields fixed-parameter tractability with respect
to the combined parameter (t, p). This is due to the famous result of Lenstra [29], and the fact that the
number of variables in the ILP is bounded by O(tp). Theorem 3; however, provides a direct combinatorial
algorithm with better worst-case running time bounds. Nevertheless, in the experimental section, we
decided to use the ILP formulation and not the combinatorial algorithm based on the experience that
there are very strong (commercial) ILP solvers that, in practice, typically perform much better than the
worst-case analysis predicts.

2.3. Greedy Heuristic

In this section, we provide a greedy heuristic based on the ideas of the fixed-parameter algorithm of
Theorem 3 presented in Section 2.1. The fixed-parameter algorithm basically does an exhaustive search
on the assignment of rows to pattern vectors. More precisely, for each row type R and each pattern
vector v it tries both possibilities of whether rows of R are assigned to v or not. Furthermore, in the ILP
formulation, all assignments of rows to pattern vectors are possible. In contrast, our greedy heuristic will
just pick for each input row type R the “cheapest” pattern vector v and, then, assigns all compatible rows
of M to v. This is realized as follows: We consider all pattern vectors, one after the other, ordered by
increasing number of ?-symbols. This ensures that we start with the “cheapest” pattern vector. Then, we
assign as many rows as possible of M to v: We just consider every instance R′ of v, and if there are more
than k rows in M that are compatible with R′, then, we assign all compatible rows to R′. Once a row
is assigned, it will not be reassigned to any other output row type, and hence, the row will be deleted
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from M . Overall this gives a running time of O(pnm). See Algorithm 1 for the pseudo-code of the
greedy heuristic.If at some point in time, there are less than k remaining rows in M , then, these rows will
be fully suppressed. Note that this slightly deviates from our formal definition of PATTERN-GUIDED

k-ANONYMITY. However, since fully suppressed rows do not reveal any data, this potential violation of
the k-anonymity requirement does not matter.

Algorithm 1 Greedy Heuristic (M,P, k)
1: Sort pattern vectors P by cost (increasing order)
2: for each v ∈ P do
3: for each instance R′ of v do
4: if ≥ k rows are compatible with R′ then
5: Assign all compatible rows of M to R′

6: Delete the assigned rows from M .

Our greedy heuristic clearly does not always provide optimal solutions. Our experiments indicate,
however, that it is very fast and that it typically provides solutions close to the optimum and outperforms
the Mondrian algorithm [21] in most datasets we tested. While this demonstrates the practicality of
our heuristic (Algorithm 1), the following result shows that from the viewpoint of polynomial-time
approximation algorithmics, it is weak in the worst case.

Theorem 4. Algorithm 1 for PATTERN-GUIDED k-ANONYMITY runs in O(pnm) time and provides a
factor m-approximation. This approximation bound is asymptotically tight for Algorithm 1.

Proof. Since the running time is already discussed above, it remains to show the approximation factor.
Let sheur be the number of suppressions in a solution provided by Algorithm 1 and sopt be the number
of suppressions in an optimal solution. We show that for every instance, it holds that sheur ≤ m · sopt.
Let M be a matrix, M ′

heur be the suppressed matrix produced by Algorithm 1, and M ′
opt be the suppressed

matrix corresponding to an optimal solution. First, observe that for any row in M ′
opt not containing any

suppressed entry, it follows that the corresponding row in M ′
heur also does not contain any suppression.

Clearly, each row in M ′
heur has at most m entries suppressed. Thus, each row in M ′

heur has at most m times
more suppressed entries than the corresponding row in M ′

opt and, hence, sheur ≤ m · sopt.
To show that this upper bound is asymptotically tight, consider the following instance. Set k = m,

and let M be as follows: The matrix M contains k-times the row with the symbol 1 in every entry.
Furthermore, for each i ∈ {1, . . . ,m}, there are k − 1 rows in M , such that all but the ith entry contains
the symbol 1. In the ith entry, each of the k − 1 rows contains a uniquely occurring symbol. The
pattern mask contains m+ 2 pattern vectors: For i ∈ {1, . . . ,m}, the ith pattern vector contains m− 1

�-symbols and one ?-symbol at the ith position. The last two pattern vectors are the all-� and all-? vectors.
Algorithm 1 will suppress nothing in the k all-1 rows and will suppress every entry of the remaining rows.
This gives sheur = (k − 1) ·m2 = (m− 1) ·m2 suppressions. However, an optimal solution suppresses
in each row exactly one entry: The rows containing in all but the ith entry the symbol 1 are suppressed
in the ith entry. Furthermore, to ensure the anonymity requirement, in the submatrix with the k rows
containing the symbol 1 in every entry, the diagonal is suppressed. Thus, the number of suppressions is
equal to the number of rows; that is, sopt = k + (k − 1)m = m2. Hence, sheur = (m− 1)sopt.
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3. Implementation and Experiments

In this section, we present the results of our experimental evaluation of the heuristic presented in
Section 2.3 and the ILP-formulation presented in Section 2.2.

3.1. Data

We use the following datasets for our experimental evaluations. The first three datasets are taken from
the UCI machine learning repository [22].

Adult ([30]) This was extracted from a dataset of the US Census Bureau Data Extraction System. It
consists of 32,561 records over the 15 attributes: age, work class, final weight, education, education
number, marital status, occupation, relationship, race, sex, capital gain, capital loss, hours per week,
native country, and salary class. Since the final weight entry is unique for roughly one half of the
records, we removed it from the dataset.
Following Machanavajjhala et al. [23], we also prepared this dataset with the nine attributes, age,
work class, education, marital status, occupation, race, sex, native country, and salary class. This
second variant is called Adult-2 in the following.
Nursery ([31]) The Nursery dataset was derived from a hierarchical decision model originally
developed to rank applications for nursery schools; see Olave et al. [32] for a detailed description.
It contains 12,960 records over the eight attributes: parents, has nurse, form, children, housing,
finance, social, and health. All entries are encoded as positive integers.
CMC ([33]) This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.
It contains 1,473 records over 10 attributes. The attributes are wife’s age, wife’s education, husbands
education, number of children, wife’s religion, wife working, husband occupation, standard of
living, exposure, and contraceptive.
Canada ([34]) This dataset is taken from the Canada Vigilance Adverse Reaction Online Database
and contains information about suspected adverse reactions (also known as side effects) to health
products. The original dataset was collected in November 2012 and contains 324,489 records over
43 attributes. (See [35] for the list of the attribute names.) Since some values are contained in
multiple attributes (as numerical code, in English and in French), other attributes contain unique
values for each record and some attributes are empty in most records, we removed all these attributes
from the dataset. We ended up with 324,489 records over the nine attributes: type of report, gender,
age, report outcome, weight, height, serious adverse reaction, reporter type, and report source.

3.2. Implementation Setup

All our experiments are performed on an Intel Xeon E5-1620 3.6 GHz machine with 64 GB memory
under the Debian GNU/Linux 6.0 operating system. The heuristic is implemented in Haskell, as Haskell
is reasonably fast [36] and makes parallelization easy. Pattern vectors are stored in the standard list data
structures provided by Haskell; the input matrix is stored as a list of lists. The ILP implementation uses
ILOG CPLEXby its C++ API. Both implementations are licensed under GPLVersion 3. The source code
is available. ([37]).
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3.3. Quality Criteria

We now briefly describe the measurements used in the next subsection to evaluate the
experimental results.

Obvious criteria for the evaluation are the number of suppressions and the running time. Furthermore,
we use the average and the minimum size of the output row types as already done by Li et al. [38]
and Machanavajjhala et al. [23], as well as the number of output row types. The perhaps most difficult
to describe measurement we use is “usefulness” introduced by Loukides and Shao [11]. According
to Loukides and Shao, usefulness “is based on the following observation: close values [. . .] enhance
usefulness, as they will require a small amount of modification to achieve a k-anonymisation. [. . .] A
small value in usefulness implies that tuples [= rows] are close together w.r.t.these attributes, hence require
less modification to satisfy k-anonymity”.

Formally, it is defined as follows.

Definition 3 ([11]). Let M ∈ Σn×m. Let 1 ≤ i ≤ m be an integer, and let Σi ⊆ Σ be the domain of
the ith column in M , that is, the set of symbols used in the ith column. For a subset Vi ⊆ Σi the attribute
diversity, denoted by dA(M, i, Vi), is

dA(M, i, Vi) =


max(Vi)−min(Vi)
max(Σi)−min(Σi)

numerical attributes
|Vi|
|Σi| non-numerical attributes,

where max(Vi), min(Vi), max(Σi) and min(Σi) denote maximum and minimum values in Vi and Σi,
respectively.

Informally speaking, the attribute diversity is a measurement of how many symbols of Σi are in Vi.
The next definition extends this to diversity for a subset of rows of a given matrix.

Definition 4 ([11]). Let M ∈ Σn×m be a matrix, and let R ⊆M be a matrix containing a subset of rows
of M . The tuple diversity of R, denoted by dT (M,R) is

dT (M,R) =
m∑
i=1

dA(M, i, α(R, i)),

where α(R, i) denotes the domain of the ith column of R.

With these notations, one can define the usefulness measure.

Definition 5 ([11]). Let M ∈ Σn×m be a matrix and let M ′ ∈ {Σ ∪ ?}n×m be a k-anonymous matrix
obtained from M by suppressing entries. LetR′ = {R′1, . . . , R′`} be the row types of M ′. Further, denote
with original(R′i) the set of rows in M that form, after having applied the suppression operations, the
output row type R′i.

The usefulness of this partition M ′ is:

usefulness =
1

`

∑̀
i=1

dT (M, original(R′i))

Roughly speaking, the usefulness is the average tuple diversity of all output row types. In general,
small usefulness values are better, and the values lie between zero and the number m of columns.
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3.4. Evaluation

We tested our greedy heuristic in two types of experiments. In the first type (Section 3.5), we compare
our results with those of the well-known Mondrian [21] heuristic. We decided to compare with an
existing implementation of Mondrian ([39]), since we could not find a more recent implementation of a
k-ANONYMITY algorithm that is freely available. By specifying all possible pattern vectors, we “misuse”
our greedy heuristic to solve the classical k-ANONYMITY problem. In the second type (Section 3.6), we
solve k-ANONYMITY and PATTERN-GUIDED k-ANONYMITY and analyze the distance of the results
provided by our greedy heuristic from an optimal solution (with a minimum number of suppressed entries).
Such an optimal solution is provided by the ILP implementation. We provide tables comparing two
algorithms, where a cell is highlighted by gray background whenever the value is at least as good as the
corresponding value for the other algorithm.

3.5. Heuristic vs. Mondrian

In this subsection, we evaluate our experiments. Observe that the Mondrian algorithm does not suppress
entries, but replaces them with some more general one. Hence, the number of suppressions as quality
criteria is not suitable in the comparison; instead, we use the usefulness as defined in Section 3.3. Overall,
we use the following criteria:

1. Usefulness value u;
2. Running time r in seconds;
3. Number #h of output row types;
4. Average size havg of the output row types; and
5. Maximum size hmax of the output row types.

Except for #h, lower values indicate better solutions.
For each dataset, we computed k-anonymous datasets with our greedy heuristic and Mondrian for

k ∈ {2, 3, . . ., 10, 25, 50, 75, 100}. In the presented tables comparing the results of the Greedy Heuristic
and Mondrian, we highlight the best obtained values with light gray background.

General Observations The running time behavior of the tested algorithms is somewhat unexpected.
Whereas Mondrian gets faster with increasing k, our greedy heuristic gets faster with decreasing k. The
reason why the greedy heuristic is faster for small values of k is that usually the cheap pattern vectors
are used, and hence, the number of remaining input rows decreases soon. On the contrary, when k is
large, the cheap pattern vectors cannot be used, and hence, the greedy heuristic tests many pattern vectors
before it actually starts with removing rows from the input matrix. Thus, for larger values of k, the greedy
heuristic comes closer to its worst-case running time of O(pnm) with p = 2m.

Adult Our greedy heuristic could anonymize the Adult dataset in less than three minutes for all tested
values of k. For k = 3 and k = 4, Mondrian took more than half an hour to anonymize the dataset.
However, in contrast to all other values of k, Mondrian was slightly faster for k = 75 and k = 100.
Except for hmax with k ≥ 25, all quality measures indicate that our heuristic produces the better solution.
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Table 1. Heuristic vs. Mondrian: Results for the Adult dataset.

Greedy Heuristic

k u r #h havg hmax

2 2.062 5.502 14,589 2.232 16
3 2.290 13.226 9,208 3.536 18
4 2.470 19.538 6,670 4.882 25
5 2.615 24.867 5,199 6.263 31
6 2.738 29.663 4,315 7.546 42
7 2.851 34.126 3,669 8.875 53
8 2.942 37.629 3,193 10.198 53
9 3.026 41.216 2,832 11.498 52
10 3.106 44.779 2,559 12.724 56
25 3.840 79.281 1,046 31.129 161
50 4.462 117.008 537 60.635 317
75 4.873 144.536 354 91.980 317
100 5.151 163.582 274 118.836 317

Mondrian

k u r #h havg hmax

2 3.505 2,789.400 11,136 2.709 61
3 3.782 1,803.510 7,306 4.128 61
4 4.007 1,337.860 5,432 5.553 61
5 4.191 1,061.960 4,325 6.974 61
6 4.362 885.939 3,597 8.385 61
7 4.498 754.652 3,053 9.879 61
8 4.622 659.184 2,663 11.326 61
9 4.766 588.347 2,368 12.737 69
10 4.875 535.872 2,145 14.062 69
25 6.009 229.248 850 35.485 90
50 6.729 127.392 430 70.144 135
75 7.339 93.621 287 105.094 242
100 7.805 76.005 209 144.316 242

The usefulness value of the Mondrian solutions is between 1.5 and 1.7 times the usefulness value of the
heuristic for all tested k—this indicates the significantly better quality of the results of our heuristic. See
Table 1 for details and Figure 1 for an illustration.

Adult-2 The solutions for Adult-2 behave similarly to those for Adult. Our greedy heuristic with a
maximum running time of five seconds is significantly faster than Mondrian with a maximum running
time of 20 min (at least 10 times faster for all tested k). However, the usefulness is quite similar for both
algorithms. Mondrian beats the heuristic by less than 1% for k = 50; the heuristic is slightly better for
each other tested k. See Table 2 for details.

Nursery For the Nursery dataset, the heuristic is at least eight times faster than Mondrian. Concerning
solution quality, this dataset is the most ambiguous one. Except for k = 5, Mondrian produces better
solutions in terms of usefulness, whereas our heuristic performs better in terms of maximum and average
output row type size. For the number of output row types, there is no clear winner. See Table 3 for details.

CMC For the CMC dataset, both algorithms were very fast in computing k-anonymous datasets for
every tested k. Mondrian took at most 10 s, and our greedy heuristic took at most 1.2 s and was always
faster than Mondrian. As for the solution quality, the heuristic can compete with Mondrian. The usefulness
of the heuristic results is always slightly better. The Mondrian results have always at least 20% less
output row types, and the average output row type size of the heuristic results is always smaller. Only
for k = 5, 6, 7, and 8, the Mondrian results have a lower maximum size of the output row types. See
Table 4 for details.
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Figure 1. Heuristic vs. Mondrian: Diagrams comparing running time and usefulness for the
Adult dataset.
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Table 2. Heuristic vs. Mondrian: Results for the Adult-2 dataset.

Greedy Heuristic

k u r #h havg hmax

2 1.760 1.040 12,022 2.708 45
3 1.872 1.181 7,971 4.085 45
4 1.962 1.329 5,890 5.528 45
5 2.037 1.504 4,609 7.065 45
6 2.099 1.629 3,836 8.488 45
7 2.161 1.707 3,266 9.970 52
8 2.212 1.796 2,837 11.477 63
9 2.260 1.936 2,518 12.931 63
10 2.302 2.025 2,273 14.325 66
25 2.722 2.926 914 35.625 164
50 3.094 3.874 460 70.785 349
75 3.312 4.426 310 105.035 552
100 3.434 4.928 245 132.902 552

Mondrian

k u r #h havg hmax

2 1.885 1,278.380 7,971 3.784 113
3 1.992 887.699 5,543 5.441 113
4 2.074 693.385 4,319 6.984 113
5 2.142 565.370 3,525 8.557 113
6 2.201 484.160 3,020 9.987 113
7 2.257 417.950 2,596 11.619 113
8 2.291 372.469 2,308 13.068 113
9 2.325 338.958 2,095 14.397 113
10 2.366 308.058 1,890 15.959 113
25 2.724 139.030 801 37.655 113
50 3.070 79.263 414 72.855 145
75 3.385 59.847 277 108.888 200
100 3.573 49.573 210 143.629 279
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Table 3. Heuristic vs. Mondrian: Results for the Nursery dataset.

Greedy Heuristic

k u r #h havg hmax

2 3.200 0.834 4,320 3.000 3
3 3.200 0.285 4,320 3.000 3
4 3.283 0.344 3,240 4.000 4
5 3.333 0.328 2,592 5.000 5
6 3.867 0.320 1,440 9.000 9
7 3.867 0.335 1,440 9.000 9
8 3.867 0.391 1,440 9.000 9
9 3.867 0.319 1,440 9.000 9
10 3.950 0.432 1,080 12.000 12
25 4.533 0.846 480 27.000 27
50 4.750 1.179 216 60.000 60
75 4.833 1.259 162 80.000 80
100 5.283 1.608 120 108.000 108

Mondrian

k u r #h havg hmax

2 2.776 484.572 6,468 2.004 3
3 3.057 233.710 3,294 3.934 4
4 3.072 221.731 3,186 4.068 6
5 3.338 122.665 1,722 7.526 8
6 3.338 122.713 1,722 7.526 8
7 3.396 104.568 1,518 8.538 12
8 3.396 104.638 1,518 8.538 12
9 3.607 67.630 922 14.056 16
10 3.607 68.079 922 14.056 16
25 4.091 28.229 334 38.802 48
50 4.493 18.330 176 73.636 96
75 4.720 13.638 116 111.724 144
100 4.861 13.179 100 129.600 144

Table 4. Heuristic vs. Mondrian: Results for the CMCdataset.

Greedy Heuristic

k u r #h havg hmax

2 3.274 0.068 718 2.052 4
3 3.508 0.111 461 3.195 7
4 3.735 0.152 334 4.410 9
5 3.934 0.178 258 5.709 15
6 4.115 0.212 216 6.819 17
7 4.219 0.244 183 8.049 17
8 4.410 0.251 158 9.323 18
9 4.500 0.288 139 10.597 18
10 4.545 0.282 127 11.598 18
25 5.641 0.447 48 30.688 53
50 6.319 0.559 27 54.556 77
75 6.926 0.685 17 86.647 148
100 7.271 0.752 13 113.308 167

Mondrian

k u r #h havg hmax

2 3.469 9.134 599 2.459 7
3 3.814 6.375 391 3.767 8
4 4.139 4.848 273 5.396 10
5 4.331 4.205 223 6.605 11
6 4.538 3.729 184 8.005 13
7 4.724 3.328 155 9.503 16
8 4.913 3.085 135 10.911 17
9 5.023 2.914 122 12.074 21
10 5.178 2.717 108 13.639 21
25 6.434 1.862 43 34.256 57
50 7.272 1.556 22 66.955 95
75 7.836 1.404 13 113.308 148
100 7.981 1.368 10 147.300 204
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Table 5. Heuristic vs. Mondrian: Results for the Canada dataset.

Greedy Heuristic

k u r #h havg hmax

2 1.403 13.018 63,140 5.139 2,448
3 1.415 13.599 41,408 7.836 2,448
4 1.429 14.679 31,652 10.252 2,448
5 1.442 14.870 25,852 12.552 2,448
6 1.456 15.318 22,150 14.650 2,448
7 1.469 15.434 19,399 16.727 2,448
8 1.482 16.071 17,276 18.783 2,448
9 1.495 16.198 15,651 20.733 2,448
10 1.508 16.631 14,248 22.774 2,448
25 1.646 20.154 6,167 52.617 2,448
50 1.773 23.383 2,988 108.597 2,448
75 1.861 25.736 1,917 169.269 2,448
100 1.929 27.600 1,393 232.942 2,838

Mondrian

k u r #h havg hmax

2 1.476 3,504.560 15,984 2.409 9
3 1.577 2,196.720 10,233 3.763 11
4 1.654 1,600.540 7,458 5.163 12
5 1.714 1,252.050 5,887 6.540 13
6 1.766 1,040.750 4,856 7.929 15
7 1.803 894.510 4,139 9.302 17
8 1.834 783.056 3,618 10.642 19
9 1.863 694.625 3,191 12.066 22
10 1.888 622.441 2,840 13.557 27
25 2.119 272.739 1,120 34.378 57
50 2.354 158.413 563 68.389 103
75 2.516 116.970 356 108.154 154
100 2.595 103.402 279 138.004 201

Canada Again, our heuristic outperforms Mondrian in terms of efficiency (at least three times faster).
However, for this dataset, the quality measures are contradictory. Whereas the usefulness of the heuristic
results is always slightly better and the number of output row types of the heuristic results is at least four
times the number of output row types of Mondrian results, the measures concerning the size of the output
row types are significantly better for Mondrian. The reason seems that our heuristic always produces one
block of at least 2,448 identical rows. See Table 5 for details.

Conclusions for Classical k-ANONYMITY We showed that our greedy heuristic is very efficient, even
for real-world datasets with more than 100,000 records and k ≤ 100. Especially for smaller degrees of
anonymity k ≤ 10, Mondrian is at least ten times slower. Altogether, our heuristic outperforms Mondrian
for all datasets, except Nursery, in terms of the quality of the solution. There is no clear winner for the
Nursery dataset. Hence, we demonstrated that even when neglecting the feature of pattern-guidedness
and simply specifying all possible pattern vectors, our heuristic already produces useful solutions that can
at least compete with Mondrian’s solutions.

3.6. Heuristic vs. Exact Solution

In Section 3.5, we showed that our greedy heuristic is very efficient and produces good solutions, even
if it is (mis)used to solve the classical k-ANONYMITY problem.

By design, the heuristic always produces solutions where every output row can be matched to some of
the specified pattern vectors. However, the number of suppressions performed may be far from being
optimal. Hence, by comparing with the exact solutions of the ILP implementation, we try to answer the
question of how far the produced solutions are away from the optimum. We evaluate our experiments
using the following criteria:
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1. Number s of suppressions;
2. Usefulness value u;
3. Running time r in seconds;
4. Number #h of output row types;
5. Average size havg of the output row types; and
6. Maximum size hmax of the output row types.

Nursery Our ILP implementation was able to k-anonymize the Nursery dataset for k ∈ {2, . . . , 10, 25,
50, 75, 100} within two minutes for each input, that is, we could solve k-ANONYMITY with a minimum
number of suppressions. In contrast, the ILP formulation could not k-anonymize the other datasets within
30 min for many values of k.

Surprisingly, the results computed by the heuristic were optimal (in terms of the number of suppressed
entries) for all tested k, and many results are better in terms of the other quality measures. The reason
seems to be that the ILP implementation tends to find, for a fixed number of suppressions, solutions with a
high degree of anonymity. For example, the result of the ILP for k = 6 is already 15-anonymous, whereas
the result of the heuristic is 9-anonymous, yielding more and smaller output row types. Summarizing,
the heuristic is at least 25 times faster than the ILP implementation and also produces solutions with a
minimum number of suppressions, which have a better quality concerning #h, havg and hmax values. See
Table 6 for details.

CMC Consider the scenario where the user is interested in a k-anonymized version of the CMC dataset,
where each row has at most two suppressed entries. To fulfill these constraints, we specified all possible
pattern vectors with at most two ?-symbols (plus the all-?-vector to remove outliers) and applied our
greedy heuristic and the ILP implementation for k ∈ {2, . . . , 10, 25, 50, 75, 100}.

As expected, the heuristic works much faster than the ILP implementation (at least by a factor of ten).
The solution quality depends on the anonymity degree k. The results of the heuristic get closer to the
optimum with increasing k. Whereas for k = 2, the number of suppressions in the heuristic solution is
1.4 times the optimum, for k > 10, the heuristic produces results with a minimum number of suppressions.
Most other quality measures behave similarly, but the differences are less strong. The usefulness values of
the heuristic results are at most as good as those of the ILP results for k ≤ 7 and k ≥ 50. See Table 7
for details.

Adult-2 Consider a user who is interested in the Adult-2 dataset. Her main goal is to analyze correlations
between the income of the individuals and the other attributes (to detect discrimination). To get useful
data, she specifies four constraints for an anonymized record.

1. Each record should contain at most two suppressed entries.
2. The attributes “education” and “salary class” should not be suppressed, because she assumes a

strong relation between them.
3. One of the attributes, “work class” or “occupation”, alone is useless for her, so either both should

be suppressed or none of them.
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Table 6. Heuristic vs. ILP: Results for the Nursery dataset specifying all pattern vectors.

Greedy Heuristic

k s u r #h havg hmax

2 12,690 3.20 0.834 4320 3.0 3
3 12,690 3.20 0.285 4320 3.0 3
4 12,690 3.28 0.344 3240 4.0 4
5 12,690 3.33 0.328 2592 5.0 5
6 25,920 3.87 0.320 1440 9.0 9
7 25,920 3.87 0.335 1440 9.0 9
8 25,920 3.87 0.391 1440 9.0 9
9 25,920 3.87 0.319 1440 9.0 9
10 25,920 3.95 0.432 1080 12.0 12
25 38,880 4.53 0.846 480 27.0 27
50 38,880 4.75 1.179 216 60.0 60
75 38,880 4.83 1.259 162 80.0 80
100 51,840 5.28 1.608 120 108.0 108

ILP implementation

k s u r #h havg hmax

2 12,960 3.20 62.859 4,320 3.0 3
3 12,960 3.20 62.627 4,320 3.0 3
4 12,960 3.33 61.097 2,592 5.0 5
5 12,960 3.33 60.543 2,592 5.0 5
6 25,920 4.0 60.812 864 15.0 15
7 25,920 4.0 47.496 864 15.0 15
8 25,920 4.0 59.188 864 15.0 15
9 25,920 4.0 59.717 864 15.0 15
10 25,920 4.0 59.334 864 15.0 15
25 38,880 4.75 56.221 216 60.0 60
50 38,880 4.75 49.699 216 60.0 60
75 38,880 4.83 45.728 162 80.0 80
100 51,840 5.5 44.085 54 240.0 240

Table 7. Heuristic vs. ILP: Results for the CMC dataset specifying all pattern vectors with
costs of at most two.

Greedy Heuristic

k s u r #h havg hmax

2 4,112 3.18 0.057 533 2.764 249
3 6,564 3.42 0.054 264 5.580 501
4 8,252 3.57 0.066 153 9.627 696
5 8,952 3.69 0.069 109 13.514 771
6 9,821 3.76 0.072 78 18.885 874
7 10,339 3.84 0.084 61 24.148 935
8 10,878 3.95 0.073 47 31.340 998
9 11,486 4.06 0.085 32 46.031 1,074
10 11,678 4.08 0.081 28 52.607 1,098
25 13,722 5.69 0.097 4 368.25 1,347
50 14,314 7.12 0.103 2 736.50 1,421
75 14,730 10.0 0.108 1 1,473.0 1,473
100 14,730 10.0 0.097 1 1,473.0 1,473

ILP implementation

k s u r #h havg hmax

2 2,932 3.22 2.205 653 2.256 100
3 5,216 3.46 3.668 349 4.221 320
4 7,024 3.60 2.240 208 7.082 528
5 8,065 3.73 3.939 146 10.089 646
6 9,012 3.80 1.655 103 14.301 765
7 9,751 3.84 1.479 76 19.382 856
8 10,254 3.91 1.454 60 24.550 918
9 11,051 4.00 1.269 44 33.477 1016
10 11,462 4.05 1.364 35 42.086 1066
25 13,722 5.37 1.106 5 294.60 1347
50 14,314 7.12 1.174 2 736.50 1421
75 14,730 10.0 1.169 1 1,473.0 1473
100 14,730 10.0 1.146 1 1,473.0 1473
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Table 8. Heuristic vs. ILP: Results for the Adult-2 dataset with user-specified pattern vectors.

Greedy Heuristic

k s u r #h havg hmax

2 38,312 1.73 0.61 9,214 3.53 2,356
3 55,749 1.81 0.57 5,313 6.13 3,896
4 67,618 1.87 0.55 3,676 8.86 5,077
5 76,363 1.91 0.60 2,777 11.7 5,967
6 83,598 1.95 0.60 2,214 14.7 6,736
7 89,501 1.99 0.65 1,849 17.6 7,346
8 94,086 2.02 0.62 1,581 20.6 7,801
9 98,999 2.04 0.63 1,360 23.9 8,333
10 103,624 2.07 0.68 1,194 27.3 8,863
25 141,697 2.31 0.75 395 82.4 13,237
50 173,947 2.53 0.85 164 198 17,110
75 196,218 2.57 0.93 97 336 20,040
100 207,417 2.57 0.93 73 446 21,465

ILP implementation

k s u r #h havg hmax

2 29,056 1.75 19.91 9,765 3.33 893
3 43,887 1.84 41.36 6,315 5.16 1,831
4 54,162 1.91 53.13 4,754 6.85 2,592
5 61,701 1.96 163.9 4,034 8.07 3,183
6 68,278 2.01 183.1 3,386 9.62 3,737
7 74,160 2.06 322.7 2,833 11.5 4,275
8 79,109 2.08 110.3 2,509 13.0 4,846
9 84,065 2.11 68.58 2,046 15.9 5,560
10 88,026 2.15 52.39 1,762 18.5 5,997
25 125,233 2.43 18.43 684 47.6 10,046
50 161,083 2.62 7.067 288 113 14,636
75 185,870 2.69 6.179 153 213 18,063
100 197,421 2.74 6.552 102 319 19,648

4. Since she assumes discrimination because of age, sex, and race, at most one of these attributes
should be suppressed.

We generated the set of pattern vectors fulfilling her constraints (plus the all-?-vector to remove outliers)
and applied our greedy heuristic and the ILP implementation for k ∈ {2, 3 . . . , 10, 25, 50, 75, 100}.

The ILP implementation took up to six minutes to compute one single instance, whereas the greedy
heuristic needs always less than one second. Moreover, the solution quality of the heuristic results is
surprisingly good. The number of suppressed entries is at most 1.31 times the optimum. The ILP is
slightly better concerning the measures #h and havg. Only the maximum size of the output row types
of the heuristic results is sometimes more than twice the maximum size of output row types of the ILP
results for some k. Surprisingly, the usefulness values are always slightly better for the heuristic results.
See Table 8 for details.

4. Conclusions

In three scenarios with real-world datasets, we showed that our greedy heuristic performs well in
terms of solution quality compared with the optimal solution produced by the ILP implementation. The
results of the heuristic are relatively close to the optimum, and in fact, for many cases, they were optimal,
although our heuristic is much more efficient than the exact algorithm (the ILP was, on average, more
than 1000 times slower). The heuristic results tend to get closer to the optimal number of suppressions
with increasing degree k of anonymity.

5. Outlook
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We introduced a promising approach to combinatorial data anonymization by enhancing the basic
k-ANONYMITY problem with user-provided “suppression patterns.” It seems feasible to extend our
model with weights on the attributes, thus making user influence on the anonymization process even more
specific. A natural next step is to extend our model by replacing k-ANONYMITY by more refined data
privacy concepts, such as domain generalization hierarchies [40], p-sensitivity [41], `-diversity [23] and
t-closeness [38].

On the theoretical side, we did no extensive analysis of the polynomial-time approximability
of PATTERN-GUIDED k-ANONYMITY. Are there provably good approximation algorithms for
PATTERN-GUIDED k-ANONYMITY? Concerning exact solutions, are there further polynomial-time
solvable special cases beyond PATTERN-GUIDED 2-ANONYMITY?

On the experimental side, several issues remain to be attacked. For instance, we used integer linear
programming in a fairly straightforward way almost without any tuning tricks (e.g., using the heuristic
solution or “standard heuristics” for speeding up integer linear program solving). It also remains to
perform tests comparing our heuristic algorithm against methods other than Mondrian (unfortunately, for
the others, no source code seems to be freely available).
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