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Abstract: In this paper, we present a method to provide proactive assistance in text 

checking, based on usage relationships between words structuralized on the Web. For a 

given sentence, the method builds a connectionist structure of relationships between word 

n-grams. Such structure is then parameterized by means of an unsupervised and language 

agnostic optimization process. Finally, the method provides a representation of the 

sentence that allows emerging the least prominent usage-based relational patterns, helping 

to easily find badly-written and unpopular text. The study includes the problem statement 

and its characterization in the literature, as well as the proposed solving approach and some 

experimental use. 

Keywords: natural language processing; language usage; emergent paradigm; 

unsupervised approach; connectionist model; web as corpus 

 

1. Introduction and Motivations 

Human communication processes are nowadays increasingly integrated with the Web. As a result, a 

huge quantity of natural language text can be instantly accessed through search engines, as a live 

linguistic corpus [1]. This consists of a variety of text types and styles, such as colloquial, formal, 

technical, scientific, medical, legal, journalistic, and so on. With respect to edited texts, web-based 

texts are produced in a wider variety of contexts, with different writing styles. The problem of text 

checking in different contexts remains to a large extent still unsolved [2]. Human language is also 
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influenced by evolutionary processes characterized by emergence, self-organization, collective 

behavior, clustering, diversification, hierarchy formation, and so on [3–6]. For this reason, new 

research methodologies and trends based on direct observable data have gained an increasing interest 

in natural language processing (NLP) [7,8]. In this paper, we present a text analysis approach that is 

intrinsically embodied in the Web and is based on the paradigm of emergence, in contrast with the 

classical and common paradigm of cognitivism [9]. In the following, we first classify NLP methods 

according to such paradigms, and then we provide a better characterization of our approach. 

Generally speaking, in the literature there are three basic approaches to NLP, i.e., symbolic, 

statistical and connectionist [10]. Symbolic approaches are based on representation of knowledge 

about language, derived from human introspective data. Two examples of this category are the 

following: (i) Rule-Based Systems, which rely on morphological/syntactic generators [11]; (ii) 

Semantic Networks, which are based on a structure of labeled relations and concepts [12]. Quite 

different are statistical approaches, which employ directly observable data to develop a mathematical 

model of linguistic phenomena [13,14]. Two examples of this category are the following: (i) Markov 

Models, which can predict the next symbol or word in a sequence [15,16]; (ii) Language Usage 

Patterns, in which NLP expressions are analyzed by means of surveys for performing statistical 

inference [2]. By contrast, in connectionist approaches a model is a network of interconnected simple 

processing units with knowledge embodied in the weights of the connections. Connections reflect local 

structural relationships that can result in dynamic global behavior. Similarly to statistical approaches, 

connectionist approaches develop models from observable data. However, with connectionist systems 

linguistic models are harder to observe, because the architectures are less constrained than statistical 

ones, so as to allow emergent phenomena [9]. 

Both symbolic and statistical approaches belong to the cognitivist paradigm [9]. In this paradigm, 

the system is a descriptive product of a human designer, whose knowledge has to be explicitly 

formulated for a representational system of symbolic information processing. This designer-dependent 

representation biases the system, and constrains it to a consequence of the cognitive analysis of human 

activity. Indeed, it is well known that symbolic systems are highly context-dependent, neither scalable 

nor manageable [17], ineffectual in optimizing both grammar coverage and resultant ambiguity [17]. 

With respect to symbolic systems, statistical systems are more robust in the face of noisy and 

unexpected inputs, allowing broader coverage and being more adaptive [10]. Actually, every use of 

statistics is based upon a symbolic model, and statistics alone is not adequate for NLP [2,10]. In 

contrast, connectionist systems can exhibit higher flexibility, by dynamically acquiring appropriate 

behavior on the given input, so as to be more robust and fault tolerant [10]. 

The connectionist approach discussed in this paper takes inspiration from the emergent paradigm [9], 

which reflects the dynamic sociological characteristics of natural languages. The underlying idea is 

that simple mechanisms, inspired by basic human linguistic capabilities [16], can lead to an emergent 

collective behavior, representing an implicit structure of the sentence in terms of relationships between 

words. With this approach, the most important consideration in the modeling is that global (i.e., 

language) -level relationships between words must not be explicitly modeled, neither in logical nor 

mathematical terms. Such relationships must be kept embodied in the corpus [9]. Indeed, in contrast 

with a cognitivist system, which does not need to be embodied, an emergent system is dependent on 

the physical platform in which it is implemented, i.e., the platform in which the corpus itself resides [9]. 
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When using the Web as a corpus, representativeness and correctness are two important topics of 

debate [1,18,19]. With regard to representativeness, let us consider some typical events of human 

conversation and their availability in both web-based and conventional text. Production and reception: 

many conversations have one speaker and one hearer; this one-to-one conversation is largely available 

on the Web; in contrast, many conventional text have one writer and many readers, e.g., a Times 

newspaper article. Speech and text: there are orders of magnitude more speech events than writing 

events; web-based messaging is very close to speech events; in contrast, most conventional corpus 

research has tended to focus on text production rather than on speech production. Background 

language: rumors and murmurs are conversational events greatly available on social networks; in 

contrast, these kinds of events are poorly covered by conventional text. Copying: in the text domain, 

copyright, ownership and plagiarism restrict cut-and-paste authorship, whereas in the Web domain the 

open access paradigm enables new language production events. 

With regard to correctness, a fundamental paradigm shift has been occurring since the introduction 

of the Web as a corpus. In contrast to paper-based, copy-edited published texts, web-based texts are 

produced by a large variety of authors, cheaply and rapidly with little concerns for formal correctness [1]. 

For instance, a Google search for “I beleave”, “I beleive”, and “I believe” gives 257,000, 3,440,000, 

and 278,000,000 hits, respectively. Hence, all the “erroneous” forms appear, but much less often than 

the “correct” forms. From the formal standpoint, the Web is a dirty corpus, but expected usage is much 

more frequent than what might be considered noise. Actually, a language is made of a core of lexis, 

grammar, constructions, plus a wide array of sublanguages, used in each of a myriad of human 

activities. In the last decade, an extensive literature on sophisticated mathematical model for word 

frequency distributions has been produced with the aim of modeling sublanguage mixtures [1,20]. 

Let us consider a simple positive feedback: for a given sentence, the more occurrences of the 

sentence in a corpus, the more correctness of the sentence [21]. Here, the open-world assumption is 

considered: any phraseology that is used in some sublanguage events of human conversation can be 

positively assessed [20]. However, it is unlikely that many occurrences of the same sentence are found 

in a corpus [1]. Moreover, for an incorrect sentence it should be important to show which part of the 

sentence is actually incorrect. Hence, a structural analysis of the sentence able to allow emerging 

relationships between words should be considered. Here, we emphasize that this analysis should be 

performed at the syntagmatic level, by identifying and rating elementary segments within the text 

(syntagms) [22]. Nevertheless, the number of occurrences of a text segment is strongly affected by the 

usage of its terms. For instance, unfamiliar proper nouns and unusual numbers may drastically limit the 

number of occurrences of a segment. Hence, some transformations of segments should be taken into 

account, to allow substitution of terms within the same category that does not affect the structural 

relationships. 

In our approach, we avoid identifying codes, rules or constraints that underlie the production and 

interpretation of text. For this reason, our method could be applied, with no changes, to many other 

languages that have enough available n-grams on the Web. The fundamental assumption of our 

grammarless approach is that the strength of word relationships can arise via a structural disassembly 

process of the sentence, upon language agnostic operators such as segmentation and substitution. This 

process is fundamental so as to allow the sublanguages knowledge to be kept embodied in the corpus.  
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To avoid an explicit representation, words relationships are represented in a connectionist  

model [17,23,24], whose weights are trained via an unsupervised optimization process. Here, 

clustering is essential to identify atypical and misused parts, structurally opposed to commonly used 

parts. Finally, from the connectionist model, an output is derived so as to provide a visual 

representation [25] of the sentence able to give the writer an informative insight of the text usage. 

The paper is organized as follows. Section 2 covers the related work on open-world approaches to 

textual analysis. In Section 3, we introduce the problem formulation. Section 4 is devoted to the 

connectionist model and its components. Section 5 describes the determination of weights of the 

connections. Section 6 is focused on experimental results. Section 7 draws some conclusions and 

future works. 

2. Open-World Approaches to Textual Analysis: Related Work 

To the best of our knowledge, no work has been done in the field of text analysis using a 

connectionist model and the Web. However, there are a number of research projects that pursue textual 

analysis tasks using the Web as a corpus. In this section, we intend to characterize and present such 

open-world approaches with the aim of providing a landscape of the current methodologies. 

In the closed-world assumption, any linguistic analysis that cannot be generated by the grammar is 

assumed to be ungrammatical. In contrast, statistical parsers are considerably more open-world. For 

example, unknown words do not present a problem for statistical parsers. A possible approach to 

produce more open grammar-based approach is to relax the interpretation of constraints in the 

grammar. For instance, rules can be interpreted as soft constraints that penalize analyses in which they 

fail. However, any option that makes the grammar-based approach open-world requires a very higher 

computational effort, and needs parsing algorithms capable of handling massive ambiguity [20]. 

Grammar-based approaches model explicit linguistic knowledge that is closer to meaning. Indeed, 

grammar-based analyses explicitly represent predicate-argument structure. However,  

predicate-argument structure can be also recovered using statistical methods [26]. Grammar-based 

approaches are also often described as more linguistically based, while statistical approaches are 

viewed as less linguistically informed. However, this difference between the two approaches is 

misleading [20], because there are only different ways of modeling linguistic knowledge in the two 

approaches. Indeed, in the grammar-based approach linguists explicitly write the grammars, while in 

statistical approaches linguists annotate the corpora with syntactic parses. Hence, linguistic knowledge 

plays a central role in both approaches. While many features used in statistical parsers do not 

correspond to explicit linguistic constraints, such features encode psycolinguistic preferences and 

aspects of world knowledge. Hence, from a high-level perspective, the grammar-based and the 

statistical approaches view parsing fundamentally in the same way, namely as a specialized kind of 

inference problem [20]. 

A direct comparison with our system in terms of result is not currently feasible, due to functional, 

architectural and structural differences with the open-world approaches to textual analysis available in 

the literature.  

From a functional standpoint, the research field of open-world approaches to text correction is 

characterized by a variety of specialized NLP sub-tasks. Examples of NLP tasks are: real-world error 
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correction; near-synonym choice; preposition choice; adjective correction; adjective ordering;  

context-sensitive spelling correction; part-of-speech tagging; word sense disambiguation; noun 

countability detection; language-specific grammatical error correction made by native-language-specific 

people, and so on [27]. Common examples of application of statistical NLP are: the classification of a 

period as end-of-sentence; the classification of a word into its part-of-speech class; the classification of 

a link between words as a true dependency. In contrast, our system does not model linguistic sub-tasks. 

From an architectural standpoint, for each aforementioned NLP sub-task linguistic knowledge is 

injected in the system through specific algorithms, parameters, and training data. Most tasks of 

statistical NLP methods to text correction are classification problems tackled via machine learning 

methods. Classifiers can logically be trained only on specific linguistic problems and on a selected data 

set. Training process leads to scalability issues when applied to complex problems or to large training 

sets without guidance. For this reason, web-based NLP models are typically supervised models using 

annotated training data, or unsupervised models which rely on external resources such as taxonomies 

to strengthen results. In contrast, our system does not adopt some form of linguistic training or some 

form of linguistic supervision. 

From a structural standpoint, with a linguistically informed approach there is a dualist distinction 

between computational processes and data structures. In contrast, our emergent system is characterized 

by fine-grained coupling between behavioral model and environment. Indeed, web data organization is 

a structural part of the algorithm, and data output is comprehensive and visually well integrated with 

the human perception (embodiment).  

More specifically, in the remainder of the section we summarize the open-world approaches to text 

detection and correction relevant with respect to our work. 

In [14], the authors present a method for correcting real-world spelling errors, i.e., words that occur 

when a user mistakenly types a correctly spelled word when another was intended. The method first 

determines some probable candidates and then finds the best one among them, by considering a string 

similarity function and a frequency value function. The string similarity function is based on a 

modified version of the Longest Common Subsequence (LCS) measure. To find candidate words of 

the word having spelling error, the Google Web 1T n-gram data set is used. 

An unsupervised statistical method for correcting preposition errors is proposed in [19]. More 

specifically, the task is to find the best preposition from a set of candidates that could fill in the gap in 

an input text. The first step is to categorize an n-gram type based on the position of the gap in the 

Google n-gram data set, n ranging from 5 to 2. In the second step, the frequency of the n-gram is 

determined, and then the best choice preposition is established. 

In [28] the authors propose a way of using web counts for some tasks of lexical disambiguation, 

such as part-of-speech tagging, spelling correction, and word sense disambiguation. The method 

extracts the context surrounding a pronoun (called context patterns) and determines which other words 

(called pattern fillers) can take the place of the pronoun in the context. Pattern fillers are gathered from 

a large collection of n-gram frequencies. Given the n-gram counts of pattern fillers, in the supervised 

version of the method, a labeled set of training examples is used to train a classifier that optimally 

weights the counts according to different criteria. In the unsupervised version, a score is produced for 

each candidate by summing the (un-weighted) counts of all context patterns. 
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A method for detecting grammatical and lexical English errors made by Japanese is proposed in [29]. 

The method is based on a corpus data, which includes error tags that are labeled with the learners’ 

errors. Error tags contain different types of information, i.e., the part of speech, the grammatical/lexical 

system, and the corrected form. By referring to information on the corrected form, the system is able to 

convert erroneous parts into corrected equivalents. More specifically, errors are first divided into two 

groups, i.e., the omission-type error and the replacement-type error. The former is detected by 

estimating whether or not a necessary word is missing in front of each word, whereas the latter is 

detected by estimating whether or not each word should be deleted or replaced with another word. To 

estimate the probability distributions of data the Maximum Entropy (ME) model is used. Finally, the 

category with maximum probability is selected as the correct category. 

In [30] a method for detecting and correcting spelling errors is proposed, by identifying tokens that 

are semantically unrelated to their context and are spelling variations of words that would be related to 

the context. Relatedness to the context is determined by a measure of semantic distance. The authors 

experimented different measures of semantic relatedness, all of which rely on a WordNet-like 

hierarchical thesaurus as their lexical resource. 

A multi-level feature based framework for spelling correction is proposed in [31]. The system 

employs machine learning techniques and a number of features from the character level, phonetic 

level, word level, syntax level, and semantic level. These levels are evaluated by a Support Vector 

Machine (SVM) to predict the correct candidate. The method allows correcting both non-word errors 

and real-world errors simultaneously using the same feature extraction techniques. The method is not 

confined to correct only words from precompiled lists of confused words. 

In [32], the authors analyze the advantages and limitations of the trigrams method, a statistical 

approach that uses word-trigram probabilities. Conceptually, the basic method follows the rule: if the 

trigram-derived probability of an observed sentence is lower than that of any sentence obtained by 

replacing one of the words with a spelling variation, then the original is supposed to be an error and the 

variation corresponds to what the user intended. The authors present new versions of this algorithm 

that use fixed-length windows, designed so that the results can be compared with those of other 

methods. 

An efficient hybrid spell checking methodology is proposed in [33]. The methodology is based 

upon phonetic matching, supervised learning, and associative matching in a neural system. The 

approach is aimed at isolated word error correction. It maps character onto binary vectors and two 

storage-efficient binary matrices that represent the lexicon. The system is not language-specific and 

then it can be used with other languages, by adapting the phonetic codes and transformation rules. 

3. Problem Formulation 

Our system aims at providing a continuous-valued representation of word relationships in a given 

sentence. Figure 1 shows a sample sentence with some relationships (connections) between words. 

Here, subsequences of words, i.e., word n-grams, involved in each connection are represented  

in boldface.  

Some general properties of subsequences are the following: (i) subsequences can be made of  

non-contiguous words, as represented in the first n-gram; (ii) subsequences can be overlapped; (iii) a 
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suitable number of subsequences can be generated so as to cover all the words in the sentence; (iv) a 

subsequence does not usually correspond to a clause, since a grammarless approach is used. 

Figure 1. Example sentence with some arcs showing dependencies between words. 

 

A sentence with the corresponding subsequences can be represented as a connectionist model. Each 

word is represented by a node of the network, and the connections between nodes represent word 

relationships. Weak (or strong) connections model weak (or strong) relationships between its words. 

Connections strength can be based on the usage of their subsequences on the Web.  

In general, different segmentations of a sentence in subsequences are possible. Hence, a suitable 

optimization method should be able to identify the better segmentation so as to emphasize 

subsequences with very low usage.  

Finally, a suitable displaying method should provide an intuitive manner of expressing the relevant 

information owned by the connectionist model. 

Figure 2 shows an UML activity diagram of the macro activities of our approach to text analysis. 

Here, activities (represented by oval shapes) are connected via control flow (solid arrow), whereas 

input/output data object (rectangles) are connected via data flow (dashed arrow). 

Figure 2. Overall activities involved in our emergent approach to text analysis. 

 

At the beginning, the sentence is parsed and then converted into an initial connectionist model 

instance. The sentence is completely broken up into (overlapped) segments by a segmentation 

operator. Afterwards, the connectionist model instance goes through an optimization process, which 

optimizes the connections by using the usage information available in the raw corpus instance, i.e. the 

Web. Finally, connectionist model information is displayed, i.e., transferred to a visual representation 

of the sentence, namely a sentence presentation instance [25,34].  

More specifically, Figure 3 shows the macro activities of the optimization process. First, a 

segmentation of the sentence is performed, producing a series of n-grams of the sentence itself. Then, 

one of two possible operators is applied, namely generalization or commutation. The former is an 

operator that employs the class of a specific word in place of the world itself, whereas the latter is an 

operator which substitutes a word with another more popular word which is structurally similar. 

Afterwards, the usage of each n-gram in the corpus is rated. Finally, the n-grams with the lowest usage 
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are determined. In order to find the best setting, all these activities may be carried out a number of 

times, as represented by the loop in the Figure.  

Figure 3. Macro activities of the optimization process. 

 

Figure 4a shows an example of generalization, in which the individual name “Greg” is replaced 

with any other individual name that can be found in the Corpus by using the wildcard. Figure 4b shows 

an example of commutation, in which the individual name “Greg” is replaced with the more popular 

name “Steve” and the word “claim” is generalized. Each of these alternatives affects the usage rating 

of the phrase, and allows a better robustness of the optimization process. For example, without the 

generalization operator, usage rating may be strained by an unpopular word. 

Figure 4. An example of generalization (a) and commutation (b) operators. 

 

In the next section, we introduce some definitions to formalize our method. 

4. The Connectionist Model and Its Components 

4.1. Input Sentence and Operators  

Let us consider an input sentence G, with n items gi after tokenization: 

1( , ..., ), G(i) gn iG g g  (1) 

Tokenization is case sensitive, and makes a different item for each word and each punctuation 

mark. All words are supposed to be correctly spelled (Search engines already figure out possible 

misspelling and their likely correct spellings, using a character n-gram models. For example, the “did 

you mean” generator offered by Google Inc.). Sentence ends with a full stop, an exclamation mark, a 

question mark, or a semicolon: 

g {. ! ?  ;}n   (2) 

The segmentation operator
 
divides an n-gram into partially overlapping s-grams (segments) with s > 1. 

The extent of overlapping is established by the parameter o, i.e., the number of items common to any 

subsequent segments: 
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   1 1 1 1Segment , , ( , ..., ), ( , ..., ), ..., ( , ..., ) ,  s s o s o s n k nG s o g g g g g g o s n          (3) 

Depending on n, the length of the last segment (k) can be either equal to s + 1 or lower than s. 

The generalization operator
 
substitutes an n-gram with a defined set of possible equivalent items, 

according to an equivalence type (θ): 

 (4) 

Table 1 shows some important examples of such operator. 

Table 1. Some examples of the generalization operator. 

 Operation Result 

(i) Generalize(“Greg”)  Any individual name 

(ii) Generalize(“18754”)  Any number 

(iii) Generalize(“,who is famous in the field,”)  Any n-gram between commas, 

or nothing. 

4.2. Search Engines and Hit Counts 

The default means of access to the Web is a search engine. In particular, our method uses the hit 

counts and examines a limited number of snippets, i.e., short descriptions available in results pages. 

Hence, the method does not require an expensive downloading of actual text for analysis. Snippets 

allow inspecting results so as to filter a percentage of irrelevant matches. Unfortunately, search engines 

were not designed for NLP tasks and the reported hit counts are subject to inaccuracy [1,7]. For 

instance, search is not case sensitive, it pays no attention to punctuation marks, and word considered 

adjacent to each other could actually lie in different sentences of paragraphs. Hence, according to [2] 

we define some basic concepts. 

Given an n-gram G, we use  to denote the raw usage as the number of Web pages (hit counts) 

containing G found by the search engine . The precise usage 
 
represents the raw usage 

excluding a proportion due to inaccurate results found in the hit counts according to a precision 

parameter π. More specifically: 

 (5) 

where is the number of snippets found by parsing a number of pages equal to π, and is the 

number of snippet with an exact match by considering also punctuation marks, case-sensitivity, 

adjacency, generalization (4). 

  

Generalize( ) { ' ' }G G G G

G



,

G


,
/G G 

 
 

 

 
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4.3. The Connectionist Structure 

Figure 5 shows a connectionist model related to the example sentence of Figure 1. Each item gi of 

the sentence (words and punctuation marks) is represented by an individual unit ui (localist model). 

The number of units is then prefixed for a given input sentence, whereas the number of connections 

and their weights are determined by the optimization algorithm. 

Figure 5. A connectionist model with dependencies between words. 

 

The basic type of relationship in a sentence concerns a totally joined n-gram, (gi,…, gj) [17] with 

arcs Wi,j, which is modeled by a connection between units ui,…, uj, with strength wk,h. An example of 

this relationship is W14,16 in Figure 5. Note that such n-grams in general do not correspond to clauses or 

other grammatical concepts that could be labeled: a connection could be virtually established on any 

subsequence. The optimization procedure limits the number of connections. Another type of 

relationship concerns a partially joined n-gram. An example of this relationship is W1,12 in Figure 5, 

involving g1, g2, g11, and g12 only.  

For a network with N nodes, the k-th output, k = 1,.., N, is the following: 

 (6) 

where wk,h are the weights corresponding to the pk connections related to the node uk. 

4.4. The Visual Output of the Network 

The output provided by the network is visually represented by using size and color of the  

text [25,34]. The font size represents the usage of contiguous n-grams, whereas the foreground text 

color represents the usage of non-contiguous n-grams. More specifically, given and  the 

minimum and maximum font size, respectively, the average font size of the k-th word belonging to a 

contiguous n-gram is the following: 

 (7) 

whereas the average color of the k-th word belonging to a non-contiguous n-gram is the following, 

expressed in terms of red (R), green (G), and blue (B) coordinates: 

  

2

,

1
( ) ( )k k h

hk

out u w
p

 

mint maxt

min max min( ) ( )k kt t t t out u   
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(8) 

Figure 6 shows a large range of achievable colors with the corresponding value of , i.e., Y = 

(G + B)/2. 

Figure 7 shows an example of visual output, where there are two n-grams with low usage, i.e., 

“Professor Greg claim that” and “Rate are 2”, non-contiguous and contiguous respectively. Here, it can 

be also noted that letters of a single word have different sizes and colors, so as to have soft style 

transitions. Indeed, the size and colors computed by the above formulas are average values for each 

word, which are linearly spread from a word to another. 

Figure 6. Colorization of a value Y between 0 and 1: Y = (G + B)/2. 

 

Figure 7. Example of visual output. 

 

4.5. Overall Components of the System 

Figure 8 shows how the overall components of the system are wired together, via a UML 

component diagram. The client-side is made of a web-browser interface. The package Emergent Text 

Checker contains all the server-side components. On the server-side, an Application Controller 

component manages all the communications from and to the client-side, as well as triggers the other 

components. More specifically the main components are the following: (i) the Parsing and Displaying 

components, which manage the input and the output sentences, respectively; (ii) the Connectionist 

Model component, which is responsible for managing the connections between words; (iii) the 

Optimization component, which is able to optimize the Connectionist Model on the basis of the Usage 

Rating component; (iv) the Raw Corpus component, which can be realized thanks to the use of the 

Web Search Engine components. The latter can be implemented with many alternatives, i.e., Google, 

Bing, Yahoo!, or with an aggregation of their results. 

  

 
 
 

1,  2 ( ),  0  ( ) 0.5
,  ,  

1,  1,  2 ( ) 1  ( ) 0.5

k k

k k k

k k

out u if out u
R G B

out u if out u

  
 

  

( )kout u
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Figure 8. Overall system components. 

 

5. The Determination of the Weights 

In this section, we elaborate on the determination of the weights of the connectionist model. 

Weights are mainly established via an optimization procedure, which aims at separating low usage 

from normal/ high usage. For a single optimization process, different segmentations of the sentence are 

possible. For each segmentation process, the precise usage of each n-gram is calculated.  

Usage values of the connections are divided into categories so that usage values in the same 

category are as similar as possible, and usage values in different categories are as dissimilar as 

possible. Further, each usage value can belong to more than one category. This soft clustering process 

is used to optimize the weights of the connections in the network.  

The optimization process aims at discovering low usage segments in the sentence. For this reason 

we adopt the following proximity function, which tends to zero as x1 and x2 tend to infinity: 

 (9) 

where f is a scaling factor which is automatically adapted. More specifically, Figure 9 shows two 

simple scenarios of proximity space y = arctan(x/f), corresponding to two different curves with 

different values of the scaling factor f. On both curves, the same precise usage values are considered, 

i.e., x1, …, x4. With the lower scaling factor (f' = 500), high usage values are considered very similar in 

the proximity space, whereas low usage values are considered very dissimilar. However, a very low 

scaling factor would consider all usage values almost identical and equal to 1 in the proximity space. 

With the higher scaling factor (f = 9000), usage values in the proximity space y are almost linearly 

connected with the source space.  

  

1 2 1 2

2
( , ) arctan( / ) arctan( / )d x x x f x f


 
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Figure 9. Two simple scenarios with the adopted proximity space. 

 

In our approach, the scaling factor is automatically adapted by maximizing the proximity between 

the minimum and the maximum usages in the sentence, e.g., y1 and y4 in Figure 9. Figure 10 shows an 

example of differential proximity space w = arctan(a/z) − arctan(b/z), with a > b. The example clearly 

shows that there is a unique global maximum of the proximity between a and b, that can be easily 

found by means of fundamentals of mathematical analysis. In conclusion, by using (9) with the 

adaptation of the scaling factor, high usage values are all considered similar, whereas differences 

between low usage values are sensed. 

Figure 10. A scenario of differential proximity space. 

 

We adopted an implementation of a soft clustering process known as Fuzzy C-Means (FCM), with 

a simple iterative scheme and good convergence properties [35]. The algorithm categorizes a set of 

data points  finding D cluster centers  as prototypes and the fuzzy 

membership degrees  of each data point to the cluster centers, under the constraint 

. The FCM algorithm introduces fuzzy logic with respect to the well-known K-Means (or 

Hard C-Means, HCM) clustering algorithm. The two algorithms are basically similar in design. The 
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latter forces data points to belong exclusively to one category, whereas the former allows them to 

belong to multiple clusters with varying degrees of membership. Such degrees are crucial for 

measuring the quality of the process as well as for the determination of the connection weights, and 

then the fuzzy character of the clustering can be considered a requirement of our approach. 

There is a plethora of fuzzy clustering methods available in the literature [36]. For instance, the 

Fuzzy Self-Organizing Map (Fuzzy SOM) can be taken into consideration, as well as many other FCM 

derivatives. The most of them are iterative methods. Moreover, some of them are more robust to 

outliers, and less sensitive to the initial conditions. However, in our study most performance-related 

problems on the clustering are mitigated, because the clustering is made on a mono-dimensional space, 

with a proximity function that facilitates the granulation process, with a limited number of points and 

of clusters. Thus, the clustering process converges very quickly, in a very few iterations. We adopted 

the basic FCM version as it has been used very successfully in many applications, having a simple 

iterative scheme and good convergence properties. 

The FCM algorithm minimizes an objective function representing a clusters compactness measure, 

by iteratively improving fuzzy membership degrees until no further improvement is possible. More 

specifically, the cluster centers are computed as the weighted average of all data points, i.e., 

, whereas the fuzzy membership degrees are computed as follows: 

 (10) 

where d is a proximity function and m > 1 is a parameter called fuzziness. The choice of the proximity 

function determines the success of a clustering algorithm on the specific application domain [37]. As a 

proximity function, we adopted formula (9), which facilitates the granulation process. FCM 

approaches HCM when m is approaching 1. The larger the value of m (up to infinity), the larger the 

similarity of the clusters. The parameter is usually set to 2. We adopted this value since its effect is 

marginal in our system.

 

The FCM method requires also the number of categories D as input. Different fuzzy partitions are 

obtained with different number of categories. Thus, a cluster validity index is required to validate each 

of the fuzzy partitions and to establish the optimal partition [38], i.e., the optimal number of categories. 

The FCM validation procedure used to determine the optimal number of clusters is made of the 

following steps: 

(i) initialize the parameters of the FCM except for the number of clusters, D; 

(ii) execute the FCM algorithm for different values of D, ranging from 2 to a maximum, 

established in the design stage or at runtime;  

(iii) compute the validity index for each partition provided by step (ii); 

(iv) choose the optimal partition and the optimal number of categories according to the validity index. 

To find the optimal number of categories, we adopted the Xie-Beni validity index, which optimizes 

compactness and separation of categories [39]: 

1 1

n nm m

h ih i ihi i
c u 

 
  

1/( 1)
2

2
1

( , )
1

( , )

m
D

i h
ih

j i j
j i

d u c

d u c







 
   

 




Algorithms 2013, 6                            

 

 

579 
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where the numerator and the denominator indicate compactness and separation, respectively. Thus, the 

best partition corresponds to the minimum value of P.  

In conclusion, the overall optimization process can be summarized as follows. First, a segmentation 

of the sentence into subsequences is performed. Second, the usage values (points) of each subsequence 

in the Web are computed. Third, a number of clusters is chosen. Fourth, point coefficients are assigned 

randomly for each cluster. Fifth, the centroid of each cluster is computed. Sixth, point coefficients are 

computed for each cluster. Seventh, go to the fifth step, if there is no convergence in coefficients. 

Eighth, the Xie-Beni index of clusters is computed. Ninth, go to the third step if a new number of 

clusters should be assessed. Tenth, provide the coefficients of the clustering process related to the best 

Xie-Beni index. Eleventh, coefficients are employed to assign the weights of the network. 

More formally, the optimization algorithm can be defined as follows. 

Algorithm: optimization of the weights in the connectionist model 

01: G  Tokenize(input sentence); 

02: G  (G
(1)

, G
(2)

,…, G
(n)

)  Segment(G,s,o); 

03: U  (u1,…, un)  ( , ,…, ); 

04:  

05: for D = 2 to 5 do 

06: t  0; 

07: Initialize , 1 ≤ i ≤ n, 1 ≤ h ≤ D (categories); 

08: do 

09: 
, 1 ≤ h ≤ D; 

10: 
, 1 ≤ h ≤ D, 1 ≤ i ≤ n;

 

11: t  t+1;
 

12: while ; 

13: 

 

14: If P ≤ Popt
 

15:  Popt  P; Copt  {ch}; Mopt  {ih}; 

16: end if 

17: end for  
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The result of this optimization process is made of: (i) the usage categories Copt; (ii) the membership 

degrees of each segment usage to all categories, Mopt. Let us assume that the lowest category is 

identified by h = 1. Hence, we take in order to discover atypical, misused and outdated 

segments in the sentence. 

Table 2 summarizes the parameters of the system, together with their typical values. Such values 

have been derived by maximizing the performance of the system over a subset of the sample sentences 

used in the experimental results (Section 6).  

Table 2. Parameters of the algorithm and their typical values. 

Parameter Description Value Reference 

 Search engine google, bing, yahoo, all, random  
Section 

4.2 

 
Number of snippet pages 

to parse  
from 2 to 5, to improve precision 

Section 

4.2 

o 
Allowed overlapping n-

grams 
1, 2 

Section 

4.1 

lMIN, lMAX 

Minimum and maximum 

allowed length of n-

grams.  

3, 4 
Section 

4.1 

f 
Initial threshold of low 

usage 
3,000,00 Section 5 

tMIN, tMAX 
Minimum and maximum 

font size 
1,030 Section 5 

6. Experimental Results 

In order to test the effectiveness of the system, a collection of 80 sentences have been derived from 

the British National Corpus (BNC) [40]. More specifically, the extraction criterion was the following. 

First, the following list of the most frequent English word has been derived: time, year, people, way, 

man, day, thing, child [41]. Second, word pairs in the list have been used as a search criterion to find a 

collection of 30 sentences. Third, a new collection of 50 sentences has been produced by introducing 

mistakes in the first collection of sentences, and thus having 80 total sentences. 

In order to measure the system performance, let us consider the system as a classifier whose results 

(expectation) are compared under test with trusted external judgments (observation). A correct result 

(true positive) is then an atypical subsequence discovered in the sentence, whereas a correct absence of 

result (true negative) is a good sentence where no atypical subsequence has been discovered, i.e., the 

lowest usage category is empty.(Actually, the lowest usage category contains the zero usage value by 

default, and then this condition from a technical standpoint means that the category contains the zero 

usage value only) Hence, the terms positive (the sentence is somewhere atypical) and negative (the 

sentence is good) refer to the expectation, whereas the terms true and false refer to whether that 

expectation corresponds to the observation. 
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Figure 11 shows some examples of successful application of our system. Here, each black rectangle 

is a visual output of an input sentence. On the left side of the Figure, original BNC sentences are 

presented. All these sentences are correct from a grammatical standpoint, and then no atypical 

subsequences are available in the sentences. Hence, all cases on the left are true negatives. On the right 

side of the Figure, the same sentence of the left side is presented with some grammatical mistake, so as 

to have some atypical subsequence. In all cases, the system correctly identified the atypical segment. 

Hence, all cases on the right are true positive. It is worth noting, on the right of Figure 11k and Figure 

11 (l), two examples of colored non-contiguous subsequences. 

Table 3 shows some values related to the sentences of Figure 11c. Here, it can be easily noticed that 

the atypical subsequence (represented in boldface) is characterized by a weight value wk,h lower than 

the corresponding scaling factor f. 

Table 3. Values related to the sentences of Figure 11c. 

That was one man he wanted people to grieve 

for. 

n. of subsequences: 4 

n. of clusters: 2  

Xie-Beni index: 0.0000070033 

f = 29,851 

n-grams   

that was one  888,034,526 0.9999888 

one man he  22,619,593 0.9999936 

he wanted people to 3,159,405 0.9999929 

to grieve for  2,896,900 0.9999896 
 

That was one man he wanted people to 

grieving for. 

n. of subsequences: 5 

n. of clusters: 2  

Xie-Beni index: 0.000032159 

f = 30,249 

n-grams   

that was one  909,886,666 0.9999704 

one man he  25,481,131 0.9999779 

he wanted people  3,272,179 0.9999997 

people to grieving  452 0.0000233 

grieving for  1,279,430 0.9999036 
 

Figure 12 shows some peculiar examples of successful application of our system. Again, on the left 

side of the figure, original BNC sentences are presented. All these sentences are correct from a 

grammatical standpoint, and then no atypical subsequences have been detected. Hence, all cases on the 

left are true negatives. On the right side of the figure, the same sentence of the left side is presented 

with some grammatical mistake. However, such grammatical mistakes are not considered atypical by 

the system, in terms of usage. Moreover, it has been verified that, for a given mistake, in all cases 

found by the system the subsequences with the grammatical mistake have been employed with the 

same meaning as in the original sentence. Hence, all cases on the right are true negatives.  

Table 4 shows some values related to the sentences of Figure 12c. Here, it can be easily noticed that 

the subsequence “for an year” (represented in boldface) is characterized by a weight value wk,h higher 

than the corresponding scaling factor f, and then it is considered as a typical subsequence. 
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Table 4. Values related to the sentences of Figure 12c. 

The price of the bow was as much as the 

income of a common man for a year. 

n. of subsequences: 7 

n. of clusters: 2  

Xie-Beni index: 0.00015013 

 f = 47,763 

n-grams   

the price of 2,175,898,647 0.9999531 

of the bow was 3,178,377 0.9999937 

was as much  235,902,800 0.9999546 

much as the income 223,002,490 0.9999547 

income of a 46,863,789 0.9999612 

a common man for  784,401 0.9989659 

for a year 1,944,067,782 0.9999531 
 

The price of the bow was as much as the income 

of a common man for an year. 

n. of subsequences: 7 

n. of clusters: 2  

Xie-Beni index: 0.00047737 

 f = 46,648 

n-grams   

the price of  2,175,799,647 0.9996993 

of the bow was  643,519 0.9990948 

was as much  85,217,200 0.9997106 

much as the income  65,702,378 0.9997141 

income of a  5,725,105 0.9998504 

a common man for  495,611 0.9979714 

for an year  3,010,079 0.9999428 
 

Thus far, we have shown true positive and true negative cases. Figure 13 shows some examples of 

unsuccessful application of our system. Again, on the left side of the Figure, original BNC sentences 

are presented. All these sentences are correct from a grammatical standpoint, and then no atypical 

subsequences have been detected. Hence, all cases on the left are true negatives. On the right side of 

the figure, the same sentence of the left side is presented with some grammatical mistake. However, 

such grammatical mistakes are not considered atypical by the system, in terms of usages. Moreover, it 

has been discovered that in the most cases found by the system, the subsequences with the grammatical 

mistakes were employed with a different meaning with respect to the original sentence. Hence, all 

cases on the right are false positives. 

For example, some sentences with a different meaning with respect to the sentences of Figure 13a-d 

are: (a) “one of those was one”; (b) “the opinions expressed in it do not reflect”; (c) “the opinion of you 

does not reflect”; (d) “if the whole thing were”. To solve this kind of problems, other constraints can 

be included in the search. For instance, when rating an initial/final subsequence of a sentence, only 

initial/final subsequences in the precise usage should be considered valid. For this reason, as a future 

works we will improve the precise usage calculation with additive features, so as to allow a more exact 

matching of the meaning. 

From the above examples, it becomes then obvious that the test of the performance of our emergent 

system for text analysis cannot be carried out by means of automatic tools. Indeed, there are no 

cognitivist models of the observations available, and then the effectiveness of the system must be 

currently based on human observers. 

We have measured the system performance by considering 80 sentences derived from the BNC as 

described at the beginning of this Section. As metrics, we adopted Precision (P), Recall (R), and  

F-measure (F) [4], defined as follows: 

     

       

number of correct suggestions returned true positive
P

number of suggestions returned true positive false positive
 


 (12) 

,
G

 ,k hw
,

G
 ,k hw



Algorithms 2013, 6                            

 

 

583 

     

        

number of correct suggestions returned true positive
R

total number of errors in the collection true positive false negative
 

  
(13) 

2
P R

F
P R




  
(14) 

Precision is a measure of exactness or quality, whereas recall is a measure of completeness or 

quantity. The F-measure combines precision and recall via the harmonic mean of them.  

Table 5 and Table 6 show the confusion matrix and the system performance, respectively. Both 

recall and precision are very high, thus confirming the effectiveness of our method. 

Table 5. Confusion matrix. 

Actual class (observation) 

E
x
p

ec
te

d
 c

la
ss

 (
ex

p
ec

ta
ti

o
n

) 

44 

True positive  

(wrong sentence, atypical 

subsequence discovered) 

3 

False positive 

(good sentence, atypical 

subsequence discovered) 

6 

False negative 

(wrong sentence, 

nothing discovered 

27 

True negative 

(good sentence,  

nothing discovered) 

Table 6. Performance of the system. 

P R F 

0.94 0.88 0.91 

7. Conclusions and Future Works  

In this paper we presented a novel approach to text analysis able to overcome the designer-dependent 

representations of the available analyzers, which are more efficient but work as long as the system 

does not have to stray too far from the conditions under which these explicit representations were 

formulated. By using an emergent paradigm, in our approach interactions between words in the Web 

can be represented in terms of visual properties of the input text. In contrast, both symbolic and 

statistical approaches are cognitivist, involving a representation of a given pre-determined linguistic 

objective, established based on domain knowledge acquisition in the design process. Hence, cognitivist 

approaches are characterized by efficiency in solving specific application problems with more or less 

adaptability, in contradistinction with the emergent approach, which is characterized by embodiment, 

adaptation, autonomy, and self-organization. 

Our approach to text analysis is based on the principles of connectionism and embodiment with the 

environment. The system employs hit counts and snippets provided by web search engines, in order to 

rate the subsequences of the input sentence, thus producing usage relationships between words of the 

sentence. A connectionist structure is then built to represent and optimize such relationships, via an 

unsupervised fuzzy clustering process. Finally, a visual output of the sentence is provided, with usage 
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information. The system has been discussed and tested on a collection of sentences of the British 

National Corpus, showing its effectiveness in highlighting real-world spelling errors. Work is 

underway to improve the match between word segments and snippets, and to test the system with other 

languages. Indeed, the approach is completely grammarless and open-world, thus providing an 

efficient means of analysis of sublanguages in the Web. Moreover, a more usable and manageable 

version of the system is under development, to allow performing beta tests and collecting assessments 

of linguistics experts. Finally, a challenge for the future lies in studying the possibility of integration of 

our method with other web-based models. 

Figure 11. Some examples of successful application of our text analysis to the British 

National Corpus (BNC) data. 

 Original BNC sentence Altered BNC sentence 

(a) 

  

(b) 

  

(c) 

 

 

(d) 

  

(e) 

 

 

(f) 

  

(g) 
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(h) 

  

(i) 

  

(j) 

 

 

(k) 

 
 

(l) 

 
 

Figure 12. Some peculiar examples of successful application of our text analysis to the 

BNC data. 

 Original BNC sentence Altered BNC sentence 

(a) 

  

(b) 

  

(c) 

  

(d) 
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(e) 

  

(f) 

  

(g) 

  

(h) 

  

(i) 

  

(j) 

  

(k) 

  

Figure 13. Some examples of unsuccessful application of our text analysis to the  

BNC data. 

 Original BNC sentence Altered BNC sentence 

(a) 
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(b) 

  

(c) 

  

(d) 
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