
Algorithms 2013, 6, 278-308; doi:10.3390/a6020278

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Generic Two-Phase Stochastic Variable Neighborhood

Approach for Effectively Solving the Nurse Rostering Problem

Ioannis P. Solos, Ioannis X. Tassopoulos and Grigorios N. Beligiannis *

Department of Business Administration of Food and Agricultural Enterprises, University of Western

Greece, G. Seferi 2, 30100, Agrinio, Greece; E-Mails: john.p.solos@gmail.com (I.P.S.);

johnytass@gmail.com (I.X.T.)

* Author to whom correspondence should be addressed; E-Mail: gbeligia@uwg.gr or

gbeligia@cc.uoi.gr; Tel.: +30-26410-74194; Fax: +30-26410-74179.

Received: 6 March 2013; in revised form: 4 April 2013 / Accepted: 12 April 2013 /

Published: 21 May 2013

Abstract: In this contribution, a generic two-phase stochastic variable neighborhood

approach is applied to nurse rostering problems. The proposed algorithm is used for

creating feasible and efficient nurse rosters for many different nurse rostering cases. In

order to demonstrate the efficiency and generic applicability of the proposed approach,

experiments with real-world input data coming from many different nurse rostering cases

have been conducted. The nurse rostering instances used have significant differences in

nature, structure, philosophy and the type of hard and soft constraints. Computational

results show that the proposed algorithm performs better than six different existing

approaches applied to the same nurse rostering input instances using the same evaluation

criteria. In addition, in all cases, it manages to reach the best-known fitness achieved in the

literature, and in one case, it manages to beat the best-known fitness achieved till now.

Keywords: nurse rostering; hospital personnel scheduling; stochastic variable neighborhood;

two-phase algorithm; mutation element; swap selective mutation; reduce rosters’ cost

OPEN ACCESS

Algorithms 2013, 6 279

1. Introduction and Related Work

1.1. Introduction

In this paper, the problem of nurse rostering is faced, which refers to the schedule of the personnel’s

shift in a hospital. This problem belongs to the wide category of timetabling problems. These problems

deal with the allocation of resources to specific timeslots so that some specific constraints are satisfied

and the created timetables/rosters are valid and effective. According to each case, the constraints, the

sources and the elements defining the effectiveness of each timetable/roster are determined.

These timetabling/rostering problems are non-deterministic polynomial time (NP)-complete in their

general form [1], as far as their computational complexity is concerned, meaning that the difficulty to

find a solution rises exponentially to their size and a deterministic algorithm, giving an acceptable

solution in polynomial time, cannot be found [2,3]. Therefore, alternative optimization methods,

namely metaheuristics, have been developed in order to reach a (near) optimal solution for various

kinds of the nurse rostering problem [4,5]. Metaheuristics comprise a major class of approaches to

solve the nurse rostering problem. They have been designed in order to cope with complex

optimization problems in cases where other optimization methods have failed to be either effective or

efficient. The main advantages of metaheuristic methods are their effectiveness and general

applicability. In the literature, a lot of heuristic methods have been developed for dealing with the

nurse rostering problem: genetic algorithms [6–8], tabu search [9,10], simulated annealing [11,12],

variable neighborhood search [13–15], scatter search [16,17], iterated local search [18,19], particle

swarm optimization [20], memetic algorithms [21], ant colony optimization [22], etc.

The algorithm presented in this contribution comprises a heuristic method to solve the nurse rostering

problem. More precisely, it is a stochastic variable neighborhood approach, which uses three different

swap mechanisms, which are different from other swap mechanisms presented in the literature [13].

The use of these three swap operators by the proposed algorithm enables it to search in three different

neighborhoods of the problem’s search space. The reason why we decided to use a variable

neighborhood search algorithm in order to solve this specific problem is that variable neighborhood

search algorithms have been widely applied in many multi-objective optimization problems having

very satisfactory results [23–25]. The innovation of the proposed algorithm is two-fold. First, although

there are plenty of variable neighborhood algorithms applied to scheduling and timetabling problems

in the literature [13,26–29], there is no two-phase stochastic variable neighborhood approach, to the

best of our knowledge, applied to the nurse rostering problem. This was our main motivation in order

to design and apply a two-phase stochastic variable neighborhood algorithm, so as to solve effectively

and efficiently the nurse rostering problem. The second novelty of the proposed algorithm is the

application of a ―stochastic moving segment grouping swap‖ (see Subsection 3.2), which is innovative,

to our knowledge, and different from other types of swaps presented in the literature [13,26].

Therefore, in this contribution, a new two-phase stochastic algorithm based on variable

neighborhood search [30,31] has been designed, developed and applied to the nurse rostering problem.

The generic two-phase stochastic variable neighborhood algorithm proposed has been used in order to

create feasible and efficient schedules of the personnel’s shifts in many different hospitals having

different types of constraints. In order to demonstrate the effectiveness, efficiency and generic

Algorithms 2013, 6 280

applicability of the proposed algorithm, its performance is compared with six other very effective

algorithms published in the literature that have been applied to the same problem instances [32–37].

1.2. Related Work

Valouxis and Housos presented in [32] a hybrid methodology that utilizes the strengths of

operations research and artificial intelligence. In particular, an approximate integer linear programming

model is firstly solved, and its solution is further improved using local search techniques. Furthermore,

a tabu search strategy is applied in order to construct effective and efficient solutions. Li et al., present

a hybrid artificial intelligence approach for a class of over-constrained nurse rostering problems, [33]

which comes in two phases. The first phase solves a relaxed version of the problem, which only

includes hard rules and part of the nurses’ requirements for shifts. In the second phase, adjustments

with descend local search and tabu search are applied to improve the solution. The algorithm presented

in [34] is a shift sequence-based approach that consists also of two stages: (a) Constructing high

quality sequences for nurses by only considering the sequence constraints and (b) Iteratively

constructing schedules for nurses and the overall rosters, based on the sequences built and considering

the schedule and roster constraints. Greedy local search carried out during and after the roster

construction manages to improve the (partial) rosters built. Puente et al., present a genetic algorithm

approach to solve the medical doctor rostering problem in a hospital emergency department in [35].

More specifically, they intend to automate the creation of timetables by applying genetic algorithms in

an actual hospital emergency department. Firstly, a heuristic-schedule builder, designed ad hoc to

satisfy the hard constraints, produces an initial population of feasible solutions. Afterwards, iteratively, a

genetic algorithm obtains new generations of feasible individuals, thanks to the use of a specific

crossover operator, based on the exchange of whole workweeks that operates together with a repair

function. Musa and Saxena describe in [36] a single-phase goal-programming algorithm for scheduling

nurses in one unit of a hospital. The goals represent the scheduling policies of the hospital and nurses’

preferences for weekends on and off. Experiments on one unit with 11 nurses resulted in satisfactory

results. Finally, in [37], Weil et al., present the efficiency of constraint programming for solving the

nurse rostering problem. Experimental results obtained are very satisfactory regarding response time

and flexibility of the approach.

The proposed variable neighborhood search algorithm uses the same formalism for modeling the

nurse rostering problem, tries to minimize the same fitness function and uses the same performance

criteria in order to evaluate the quality of resulted rosters, as the ones used in [32–37]. Therefore, a

straightforward comparison of their experimental results is fair. Moreover, in order to have a fair

comparison with these algorithms, we decided to use the exact same input instances used by these six

approaches. Computational results showed that the proposed two-phase variable neighborhood search

algorithm achieves better results compared to these six very effective algorithms. The comparison was

carried out on the basis of seven instances taken from real world situations that were also used as input

by the six published effective approaches mentioned above. In one case, the proposed algorithm

manages to beat the best-known fitness achieved till now. In addition, in the rest of the six cases, the

proposed algorithm manages to reach, for each different instance, the best-known fitness achieved in

Algorithms 2013, 6 281

the literature and demonstrates, experimentally, that in these instances, there is more than one roster

that achieves the best-known fitness.

This paper is organized as follows. Section 2 defines the nurse rostering problem and the constraints

used, in most cases, in order to evaluate the resulting shift schedules. Section 3 describes the proposed

two-phase variable neighborhood algorithm, while Section 4 describes the input data used. Section 5

assesses and compares the performance of the proposed algorithm to that of existing approaches.

Finally, Section 6 provides a summary and future extensions.

2. Problem Definition

The nurse rostering problem has to satisfy a large number of constraints and is affected by many

parameters. The entities that are involved in the construction of a feasible and effective solution of the

nurse rostering problem are the nurses, the shifts and the time periods. More precisely, nurses have to

make some specific shifts in specific time periods. Therefore, in order to create a feasible timetable, for

the nurse-shift couple, the time periods that these shifts will take place must be assigned. Constraints

regarding the construction of a nurse roster can be divided into two categories: ―hard‖ constraints and

―soft‖ constraints. When all hard constraints are satisfied, then a feasible nurse roster is constructed,

which is a roster that can actually be used by the hospital it was made for. However, the number of soft

constraints satisfied is the main factor that affects the quality of a nurse roster. The final aim, of course,

is to create a feasible nurse roster while maximizing its quality, i.e., to create a roster that satisfies all

hard constraints and, at the same time, satisfies the maximum possible number of soft constraints.

Constraints

There are many different types of nurse rostering problems found in the literature, each having their

own constraints. However, in most cases, the hard constraints that must be satisfied in order to keep

the nurse roster valid are the following:

 All shift type demands during the planning period must be met

 The shift coverage requirements must be fulfilled

 Each nurse should work at most one shift per day

Also, the soft constraints that should be satisfied, in most types of the nurse rostering problem, in

order the nurse roster to be considered of high quality are the following:

 Maximum number of shifts that should be assigned to a nurse

 Minimum number of shifts that should be assigned to a nurse

 Maximum number of consecutive working days

 Minimum number of consecutive working days

 Maximum number of consecutive free days

 Minimum number of consecutive free days

 Maximum number of hours worked

 Minimum number of hours worked

 Maximum number of consecutive working weekends

 Maximum number of working weekends in four weeks

Algorithms 2013, 6 282

 Number of days off after a series of night shifts

 Complete weekends (i.e., if a nurse has to work only on some days of the weekend, then a

penalty occurs)

 Identical shift types during the weekend (i.e., assignments of different shift types to the same

nurse during a weekend are penalized)

 Unwanted patterns (i.e., an unwanted pattern is a sequence of assignments that is not in the

preferences of a nurse, based on her contract)

 Unwanted patterns not involving specific shift types

 Unwanted patterns involving specific shift types

 Alternative skill (i.e., if assignments of a nurse to a shift type requiring a skill that she does not

have occurs, then the solution is penalized accordingly)

 Day on/off request (i.e., requests by nurses to work or not to work on specific days of the week

should be respected, otherwise solution quality is compromised)

 Shift on/off request (i.e., similar to the previous, but now for specific shifts on certain days)

As stated in the Introduction Section, in this contribution, the proposed generic variable

neighborhood search algorithm is applied to seven different nurse rostering instances each of which

belongs to a different type of the nurse rostering problem. For a more detailed description of each type

of the nurse rostering problem faced by the proposed algorithm, the reader can refer to the respective

references [32–37]. A detailed description of the input instances used in the experimental results is

presented in Section 4.

3. Solution Approach

3.1. General Overview of the Stochastic Variable Neighborhood Algorithm

The flowchart describing the general overview of the proposed algorithm is presented in Figure 1.

As shown there, the proposed algorithm is a hybrid one consisting of two phases:

(a) The first phase deals with the assignment of nurses to working days

(b) The second phase deals with the assignment of nurses to shift types

At first, the values of the algorithm’s parameters are set, namely, the population size, the maximum

number of repetition cycles of first phase, the maximum number of generations of second phase and,

finally, the swapping probability (see Subsection 3.2). Due to the differences in nature, structure,

philosophy and type of hard and soft constraints among input instances, there is a small difference in

the swapping probability value used for each instance. Note that the value of swapping probability

determines the searching behavior of the algorithm. A high value will cause an exhausting cell swap,

while a low value will cause skipping of cell swaps (see Subsection 3.2). Exhaustive experiments

showed that for some instances, a lower value of the swapping probability is beneficial to the

algorithm, while the opposite holds for others. Except for swapping probability, the values used for the

other algorithm’s parameters are the same. Table 1 lists the parameters’ values for each instance, as

well as the time consumed in order to find the optimal parameters of the algorithm. The effect of

parameter setting to algorithm performance is investigated in Section 5.1.

Algorithms 2013, 6 283

Figure 1. The structure of the proposed stochastic variable neighborhood search algorithm.

Set algorithm parameters’

values

Main Algorithm

Initialize d individuals with

working days

Proceed to and conclude

First Phase

Copy best individual to

other individuals

Assign shift types randomly to any

individual, driven by working days

Proceed to and conclude

Second Phase

Near optimal solution produced

End of Algorithm

Table 1. The parameters’ values used for each input instance.

No
Input

instance

Swapping

probability

(pswap)

Number

of cycles

in first

phase

Maximum

number of

generations

in second

phase

Population

size

Number of

experiments needed

to find the optimal

parameters of the

algorithm

Average

time per

experiment

Average

time

consumed

1 Valouxis-1 0.99995 1 100 2 22 2 min 44 min

2 BCV3-46.2 0.97 1 100 2 22 11 min 242 min

3 MUSA 0.97 1 100 2 22 0.06 s 1.32 s

4 LLR 0.5 1 100 2 17 0.56 s 9.52 s

5 BCV4-13.1 0.97 1 100 2 22 3 s 66 s

6 WHPP 0.45 1 100 2 17 7.7 s 130.9 s

7 HED01 0.85 1 100 2 27 29 s 13.05 min

The experimentation procedure in order to find the optimal parameters of the algorithm is described

as follows. At first, the number of cycles in the first phase was determined. For each input instance, we

ran five experiments setting the number of cycles equal to 1, 2, 3, 4 and 5, respectively. For all

instances, experimental results showed that a number of cycles equal to 1 suffices in order to achieve

the best possible results. Next, the population size was determined. For each input instance, we ran five

experiments, setting the population size equal to 1 to 5, respectively. For all instances, experimental

results showed that a population size equal to 2 achieves the best possible results. The maximum number

Algorithms 2013, 6 284

of generations in the second phase was set arbitrarily equal to 100, which is a very big value, since our

main purpose was to reach or even beat the best ever reported roster for each input instance. However,

as mentioned in Section 3.3, the user is able to choose the termination criterion he/she likes to apply

between the maximum number of generations and the number of generations for which the fitness

remains the same; that is, no improvement is reported.

Finally, we determined the value of the swapping probability (pswap) that leads the algorithm to the

best possible results. At first, for each input instance, we ran seven experiments, setting pswap equal to

0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. For the sixth instance, since pswap = 0.4 was the value giving the best

results, we further experimented, setting pswap equal to 0.35, 0.36, 0.37, 0.38, 0.39, 0.41, 0.42, 0.43,

0.44 and 0.45. Since pswap = 0.45 was the value giving the best results, we further experimented, setting

pswap equal to 0.445, 0.446, 0.447, 0.448, 0.449, 0.451, 0.452, 0.453, 0.454 and 0.455. Since again

pswap = 0.45 was the value giving the best results, we decided to use this value. For the fourth instance,

since pswap = 0.5 was the value giving the best results, we further experimented, setting pswap equal to

0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54 and 0.55. Since again pswap = 0.5 was the value

giving the best results, we decided to use this value. For the seventh instance, since pswap = 0.8 was the

value giving the best results, we further experimented, setting pswap equal to 0.75, 0.76, 0.77, 0.78,

0.79, 0.81, 0.82, 0.83, 0.84 and 0.85. Since pswap = 0.85 was the value giving the best results, we

further experimented, setting pswap equal to 0.845, 0.846, 0.847, 0.848, 0.849, 0.851, 0.852, 0.853,

0.854 and 0.855. Since again pswap = 0.85 was the value giving the best results, we decided to use this

value. For the second, the third and the fifth instances, since pswap = 1.0 was the value giving the best

results, we further experimented, setting pswap equal to 0.95, 0.96, 0.97, 0.98 and 0.99. Since

pswap = 0.97 was the value giving the best results, we further experimented, setting pswap equal to 0.965,

0.966, 0.967, 0.968, 0.969, 0.971, 0.972, 0.973, 0.974 and 0.975. Since again pswap = 0.97 was the

value giving the best results, we decided to use this value for these two instances. For the rest

instances, namely, the first instance, since initially pswap = 1.0 was the value giving the best results, we

further experimented, setting pswap equal to 0.95, 0.96, 0.97, 0.98 and 0.99. Since again pswap = 1.0 was

the value giving the best results, we further experimented, setting pswap equal to 0.995, 0.996, 0.997,

0.998 and 0.999. Since again pswap = 1.0 was the value giving the best results, we further experimented,

setting pswap equal to 0.9995, 0.9996, 0.9997, 0.9998 and 0.9999. Although, once again pswap = 1.0 was

the value giving the best results, we decided to use pswap = 0.99995, since a value of pswap = 1.0 would

make the execution of swaps deterministic and not stochastic. Using pswap = 1.0 would lead the

algorithm to poor diversification and big intensification. To conclude, we noticed that for all instances,

setting pswap to a big value causes big intensification, while setting pswap to a small value causes

big diversification.

After setting the parameters’ values, the initialization of each individual of the proposed algorithm’s

population takes place. This is done at random with respect to the working requirements of each day.

Next, the first phase of the algorithm, which deals with the assignment of nurses to working days, is

executed. After the first phase is completed, the best individual found is copied to all individuals of the

population, and shift types are randomly assigned to them. Therefore, the input to the second phase of

the algorithm is a population of individuals, all of them being equivalent, by means of workings, to the

best individual found by the first phase, with shift types randomly assigned to them. Finally, the

Algorithms 2013, 6 285

second phase of the algorithm, which deals with the assignment of nurses to shift types, is executed,

leading to the near optimal solution found by the proposed algorithm.

Since the seven nurse rostering input instances, to which the proposed algorithm is applied, are

totally different cases of nurse rostering problems, there are significant differences, between them, in

nature, structure, philosophy and type of hard and soft constraints. As a result, a different evaluation

function is used for each different input instance taking into account different constraints and having

different weight values. The specific constraints and the weight values used for each different

constraint for each different input instance are the ones presented in [38]. However, a general form of

the evaluation function applied to all instances can be presented as follows:

Weight_function(Weight_of_1st_Constraint) × Times_1st_Constraint_is_violated + … +

Weight_function(Weight_of_nth_Constraint) × Times_ nth_Constraint_is_violated
(1)

where the ith Constraint is different for each different input instance, Weight_of_ith_Constraint is the

weight of the ith Constraint (which is different for each different input instance) and

Times_ith_Constraint_is_violated is the number of times the ith Constraint is violated. In addition,

Weight_function(Weight_of_ith_Constraint) equals Weight_of_ith_Constraint, if the ith Constraint is

assumed linear, while Weight_function(Weight_of_ith_Constraint) equals Weight_of_ith_Constraint ×

Weight_of_ith_Constraint if the ith Constraint is assumed quadratic. Whether a constraint is assumed

linear or quadratic depends, once again, on the input instance, and it is explicitly stated. At this point,

we have to mention that for all input instances, the evaluation function takes into account only

constraints concerning working days and day offs in the first phase of the algorithm, while it takes into

account all kinds of constraints in the second phase of the algorithm.

3.2. The First Phase of the Stochastic Variable Neighborhood Algorithm

The first phase of the proposed algorithm, which deals with the assignment of nurses to working

days, is presented in Figure 2. As shown, this phase consists of the execution of procedure

Successive_Segment_Swap_Mutation(). This procedure is applied to each individual sequentially and

is repeated for a specified number of cycles. A detailed description of this procedure along with

procedure Selective_Partial_Swap(), which is used by Successive_Segment_Swap_Mutation() in the

first phase of the algorithm, is given in the following paragraphs.

Algorithms 2013, 6 286

Figure 2. The structure of the first phase of the proposed stochastic variable neighborhood

search algorithm.

Execute
Successive_Segment_Swap_Mutation()

For each individual

Repeat

Until C cycles

are completed

Start

second

phase

Comment:

best individual and

best fitness are potentially

updated

The procedure, Successive_Segment_Swap_Mutation(), is applied as follows. At first, a list of all

nurses L1 is created at random. Next, for each nurse n1 in L1 and for each nurse, n2, next to n1 (i.e., after

n1 in L1), procedure Selective_Partial_Swap() is applied. This procedure, which is described in the next

paragraph, is applied between nurse n1 and other nurses, until no other nurse n2 exists in list L1 and is

repeated from the beginning for each nurse, n1, in list, L1. The structure of Successive_Segment

_Swap_Mutation() is presented in Figure 3.

Figure 3. The structure of the procedure, Successive_Segment_Swap_Mutation().

Create a random list L1,

of all nurses

For each nurse n1

of list L1

Apply procedure

Selective_Partial_Swap() on nurses n1, n2

Chose next nurse n2 until no more

next nurses are left in list L1

End

For each nurse n2 of

list L1, next to n1

Chose next nurse n1 until no

more nurses are left in list L1

Algorithms 2013, 6 287

Procedure Selective_Partial_Swap(), which in fact implements a ―stochastic moving segment

grouping swap‖, is applied for each day, d1, of the scheduling period as follows. At first, the left

extreme (this is always equal to d1) and the right extreme (this is equal to d2) of the cell segment, in

which swaps will be performed, are defined. Next, swaps are performed between cells included in a

cell segment defined previously for rosters belonging to nurse n1 and nurse n2 under a certain

probability. After all swaps in the selected cell segment have been performed, the fitness of the roster

is computed. If the fitness of the created roster (i.e., after the swaps) is improved, then the swaps are

accepted; otherwise, the swaps are discarded, and the roster sustains the structure it had before the

swaps. After that, d2 is increased by one, and swapping cells between d1 and d2 for rosters belonging to

nurses n1 and n2 is repeated as long as d2 is less or equal to the last day of the scheduling period. The

structure of this procedure is presented in Figure 4. At this point, we have to mention that the application

of a ―stochastic moving segment grouping swap‖ to the nurse rostering problem is innovative, to

our knowledge.

Figure 4. The structure of the procedure, Selective_Partial_Swap().

For each day d1 of the

planning horizon

Right extreme of

cell segment = d2

Left extreme of

cell segment = d1

Perform cell swaps, between cells included in cell segment,

for nurse n1 and nurse n2 under a certain probability

Compute new fitness f2 of whole individual

Is f2 worse than the one

before swapping

Cancel swaps

d2 = d2 + 1

repeat

d2 = d1

Until d2 > last day of the planning horizon

Until no more days are left

Yes

No

New

structure of

individual

produced

Comment:

Define the extremes

of cell segment in

which swaps will

be performed

Algorithms 2013, 6 288

3.3. The Second Phase of the Algorithm

The second phase of the proposed algorithm, which deals with the assignment of nurses to shift

types, is presented in Figure 5. As shown, this phase consists of the sequential execution of the

following procedures:

(a) Selective_Day_Swap_Mutation()

(b) Successive_Segment_Swap_Mutation()

(c) Random_Segment_Swap_Mutation()

Procedure Successive_Segment_Swap_Mutation() is the same with the one executed in the first

phase of the algorithm; however, this time, it is executed in order to assign nurses to shift types and not

to working days as performed in the first phase. This is the goal of the other two procedures, too. The

execution of these three procedures is repeated for each individual of the population for a number of

times, i.e., generations. The execution of the second phase of the algorithm is performed, until a specified

termination criterion is met. We have implemented two termination criteria, which are the following:

 The total number of generations

 The number of generations for which the fitness remains the same, that is, no improvement

is reported

Figure 5. The structure of the second phase of the proposed stochastic variable neighborhood

search algorithm.

Execute

“Random_Segment_Swap_Mutation”

Execute

“Selective_Day_Swap_Mutation”

Execute

―Successive_Segment_Swap_Mutation‖

Have all individuals been processed?

Is termination criterion is met?

For each individual

Repeat

(Near) optimal

solution produced-

End of Algorithm

YES

NO

NO

YES

Algorithms 2013, 6 289

More precisely, at the beginning of the algorithm, the user is asked to select the termination

criterion he/she prefers to use:

1. If he/she chooses ―the total number of generations‖, next, he/she has to insert this number.

2. If he/she chooses ―the total number of generations for which the fitness remains the same‖, next,

he/she has to insert this number.

In the next sections, we present a detailed description of procedures,

Selective_Day_Swap_Mutation() and Random_Segment_Swap_Mutation().

3.3.1. Procedure Selective_Day_Swap_Mutation()

This procedure is applied as follows. At first, a nurse, n1, is selected at random. Next, the order of

all combinations between nurse n1 and all other nurses is created randomly. Then, for each day of the

scheduling period and for each pair of nurses created at random, a swap is performed between the cells

of the current day of each pair of nurses. If the fitness of the created roster (i.e., after the swap) is

improved, then the swap is accepted; otherwise, the swap is discarded, and the roster sustains the

structure it had before the swap. This procedure is performed for each nurse of the roster. The structure

of this procedure is presented in Figure 6.

Figure 6. The structure of the procedure, Selective_Day_Swap_Mutation().

Create all combinations

between nurse n1 and all other

nurses chosen at random

Pick a nurse n1,

at random

For each combination of

different paired nurses

For each day of the

planning horizon

Swap cells of current day

belonging to paired nurses

Does fitness get smaller than or

equal to fitness before swap?

Apply swap to

individual

Cancel swap

Chose next combination until

no more combinations are left

Pick next nurse until no

more nurses are left

Chose next day until

no more days are left

Yes

No

End

Algorithms 2013, 6 290

3.3.2. Procedure Random_Segment_Swap_Mutation()

This procedure is applied as follows. At first, a list of all nurses in random order, L1, and a list of all

nurses in a random order, too, L2, are created. Next, for each nurse, n1, in list L1 and for each nurse, n2,

in list L2, procedure Selective_Partial_Swap() is applied. This procedure, which is described in the

previous section, is applied between nurse n1 and each nurse, n2, belonging to list, L2, until no other

nurse n2 exists in list L2 and is repeated from the beginning for each nurse n1 in list L1. The structure of

this procedure is presented in Figure 7.

Figure 7. The structure of the procedure, Random_Segment_Swap_Mutation().

Create a random list L1 of all nurses

Create a random list L2 of all nurses

For each nurse n1 of list L1

For each nurse n2 of list L2

Apply procedure

Selective_Partial_Swap() on nurses n1, n2

Chose next nurse from

list L2 until L2 is empty

Chose next nurse from

list L1 until L1 is empty

End

4. Input Data

As stated in the Introduction Section, the proposed two-phase variable neighborhood algorithm is

applied to seven different nurse rostering input instances. These instances, which have significant

differences with each other, are presented in the following sections. They comprise a set of benchmark

data that represents a wide variety of nurse rostering problems with non-trivial properties, which are

derived from complete real world complex instances.

4.1. Input Instance, Valouxis-1

In this input instance, there are 16 nurses working three daily work shift types, and the planning

horizon is 28 days long. The demand is assumed to be the same every week, and the daily requirement

for personnel from Monday to Friday is 4-4-2 for the Day, Evening and Night work shifts, respectively,

and the demand for Saturday and Sunday is 3-3-2, respectively. The legal work stretches are 2–4 days

long, while the least time break between two work stretches is two calendar days long. In the planning

horizon, all individuals must have at least one Sunday rest, while the total Day, Evening and Night

Algorithms 2013, 6 291

work shifts must be 5–8, 5–8 and 2–5, respectively. The total work shifts of all types must be

15–18 work shifts. A specific description of the precise definition of the evaluation function used, the

hard and soft constraints and their respective weight values is given in [39]. For a more detailed

description of this input instance, the reader can refer to [32].

4.2. Input Instance, BCV3-46.2

This input instance was collected from a rather small department of a real hospital, using the nurse

rostering model and algorithms developed at KaHo Sint-Lieven [40]. It comprises a non-cyclic

problem. The number of nurses equals 46, the number of shift types equals 3 (Day, Early, Late and

Night), the scheduling period is 26 days long and there is only one skill level (Nurse). A specific

description of the precise definition of the evaluation function used, the hard and soft constraints and

their respective weight values is given in [41]. For a more detailed description of this input instance,

the reader can refer to [34].

4.3. Input Instance, MUSA

In this input instance, there are 11 nurses, there is only one shift type (Day), the scheduling period is

14 days long and there is only one skill level (Nurse). A specific description of the precise definition of

the evaluation function used, the hard and soft constraints and their respective weight values is given

in [42]. For a more detailed description of this input instance, the reader can refer to [36].

4.4. Input Instance, LLR

This input instance belongs to a class of over-constrained nurse rostering problems. The number of

nurses equals 27, the number of shift types equals 3 (Morning, Afternoon and Night), the scheduling

period is seven days long and there is only one skill level (Nurse). A specific description of the precise

definition of the evaluation function used, the hard and soft constraints and their respective weight

values is given in [43]. For a more detailed description of this input instance, the reader can refer

to [33].

4.5. Input Instance, BCV4-13.1

This input instance was also collected from a rather small department at a real hospital, using the

nurse rostering model and algorithms developed at KaHo Sint-Lieven [40]. It comprises a non-cyclic

problem. The number of nurses equals 13, the number of shift types equals 4 (Day, Early, Late and

Night), the scheduling period is 29 days long and there are two skill levels (Nurse and Head nurse).

A specific description of the precise definition of the evaluation function used, the hard and soft

constraints and their respective weight values is given in [44]. For a more detailed description of this

input instance, the reader can refer to [34].

4.6. Input Instance, WHPP

In this instance, the number of nurses equals 30, the number of shift types equals 3 (Day, Early and

Night), the scheduling period is 14 days long and there is only one skill level (Nurse). A specific

Algorithms 2013, 6 292

description of the precise definition of the evaluation function used, the hard and soft constraints and

their respective weight values is given in [45]. For a more detailed description of this input instance,

the reader can refer to [37].

4.7. Input Instance, HED01

This input instance stems form the needs of an actual hospital emergency department (HED) in

Spain. An actual situation set up by the HED’s management is described. HED’s permanent staff

consists of 16 workers, while there are also four temporary workers. The number of shift types equals

5 (Weekday morning—M; Weekday afternoon—A; Weekday night—N; Weekday stand-by duty—D; and

Holiday stand-by duty—H), the scheduling period is 31 days long and there are two skill levels

(Permanent staff and Temporary staff). Moreover, a minimum number of doctors must be assigned to

each working shift. As a general rule for working days, different members of staff will be assigned to

the different existing shifts: Four members will be assigned to the morning (M) and afternoon (A)

shifts; two will be assigned to the night (N) shift; and one person will be on 24 h weekday stand-by

duty (D). On Saturdays, Sundays and holidays, the HED’s medical staff will work on duty, whereby

four members of staff will generally work for an uninterrupted 24 h holiday stand-by duty (H). A

specific description of the precise definition of the evaluation function used, the hard and soft

constraints and their respective weight values is given in [46]. For a more detailed description of this

input instance, the reader can refer to [35].

5. Computational Results

The proposed two-phase stochastic variable neighborhood search algorithm approach is coded in

C++ and is run on Intel
®

 Core™ 2 Duo CPU E7500 2.93 GHz under the Windows 7 OS. The

algorithm parameters’ values used are the ones presented in Table 1, Section 3.1. In order to

demonstrate its efficiency and very good performance, the proposed algorithm is compared with six

very effective algorithms for solving the nurse rostering problem issued in the literature [32–37] in

solving the same seven input instances.

In Table 2, the performance and efficiency of the proposed two-phase stochastic variable

neighborhood search algorithm is shown by comparing the best timetables constructed by it with the

best timetables created by the other six algorithms for each different input instance. Since in [32–37]

the best rosters created are presented, we also decided in the current contribution to present and

compare the best rosters constructed by the proposed approach in order to have a fair comparison

between the algorithms. Note that, for each different input instance, in order to compare the roster

constructed by the proposed variable neighborhood search algorithm and the roster constructed by the

respective published nurse rostering algorithm, we used the same fitness function, the same hard and

soft constraints and the same constraint weights as the ones used by the respective algorithms.

Algorithms 2013, 6 293

Table 2. Comparing the best timetables constructed by the proposed algorithm with the

best timetables created in [32–37].

Input

instance

Published algorithm Proposed algorithm

Description of algorithm
Fitness

value

Execution

time

Fitness

value

Execution

time

Valouxis-1 Integer linear programming approach [32] 160 15 min 20 17.64 s

BCV3-46.2
A shift sequence based approach with greedy

local search and adaptive ordering [34]
3601 3 min, 4 s 894 16 min

MUSA Single phase goal programming model [36] 199 28.3 s 175 0.12 s

LLR Two-phase hybrid approach [33] 510 1 min, 36 s 301 0.3 s

BCV4-13.1
A shift sequence based approach with greedy

local search without adaptive ordering [34]
18 10 s 10 3 s

WHPP
Linear programming formulation using

column generation approach [37]
5 Not mentioned 5 9.1 s

HED01 Genetic algorithm [35] 517 Not mentioned 129 29.1 s

Table 2 demonstrates that the proposed algorithm outperforms other published approaches in

6/7 cases (85.7%), considering the best roster per instance, while it achieves the same result in

1/7 cases (14.3%). From experimental results presented in Table 2, one can easily come to the

conclusion that the proposed algorithm is very efficient and achieves better results compared to the

other six techniques issued in the literature that have been applied to the same instances of the nurse

rostering problem.

Moreover, in order to demonstrate the efficiency and very satisfactory performance of the proposed

two-phase variable neighborhood search algorithm, the best rosters found by it are compared with the

best-known timetables ever reported for the same seven different input nurse rostering instances [38].

Table 3 demonstrates that the proposed two-phase algorithm manages to reach the best known

fitness ever reported in the literature in 6/7 cases (85.7%), while it manages to beat the best known

fitness ever reported in the literature in 1/7 cases (14.3%). From experimental results presented in

Table 3, one can easily come to the conclusion that the proposed algorithm is very efficient and

achieves results equal to the best known ever reported for the majority of these quite different nurse

rostering instances, while it manages to beat the best known ever reported result in one case. Except

for that, the proposed algorithm has demonstrated experimentally that the best result ever reported for

these six instances is not unique, since the best nurse rosters that the proposed algorithm created are in

all six cases different from the best ones ever reported [38]. This means that in these six cases, there

are at least two different best ever reported rosters and that maybe the global optimum is yet to be

found. The executables implementing the proposed stochastic variable neighborhood search algorithm,

as well as the best rosters achieved for each input instance, can be accessed in [47].

Algorithms 2013, 6 294

Table 3. Comparing the best timetables constructed by the proposed algorithm with the

best timetables ever reported for these specific instances.

Input

Instance

Best roster reported ever [38] Best roster found by the proposed algorithm

Found by Fitness value Execution Time Fitness value Execution Time

Valouxis-1 Tim Curtois, 3/9/2008 20 Not mentioned 20 17.64 s

BCV3-46.2

F. Xue, C. Y. Chan and

W. H. Ip, using a Hybrid

VDS, 2/8/2008

894 4 h, 57 min 894 16 min

MUSA Not mentioned 175 Not mentioned 175 0.12 s

LLR
Tim Curtois, using a variable

depth search, 5/9/2008
301 10 s 301 0.3 s

BCV4-13.1 Not mentioned 10 Not mentioned 10 3 s

WHPP Weil et al., 5/4/2009 5 Not mentioned 5 9.1 s

HED01
Tec on BEECHBONE (CS),

11/2/2010
136 Not mentioned 129 29.1 s

The superiority of the proposed algorithm compared to other approaches comes mainly from the

fact that the algorithm succeeds in searching the search space using a new variable neighborhood

search approach. In the literature, there are three commonly used swaps, that is, simple move, simple

swap and Kempe swap, each one of them leading to a search algorithm to investigate a different

neighborhood [23]. The proposed algorithm uses only simple swaps, that is, swaps between cells

without considering what these cells contain in order to perform the swap (i.e., whether they are empty

or not). However, each one of the three swap procedures used by the proposed algorithm

(see Sections 3.2, 3.3.1, 3.3.2) applies a different swap mechanism, which leads the algorithm to search

in a different neighborhood of the search space. The application of the proposed mutation operators

that implement the algorithm’s swapping mechanisms, applied in this specific way and order, is

innovative to our knowledge and different from the swapping mechanisms already investigated in [13].

The strongest point of this variable neighborhood search approach is the combination of a classic

neighborhood search with a ―stochastic moving segment grouping swap‖ (see Subsection 3.2). The

―stochastic moving segment grouping swap‖ achieves exhaustive local search, since the segment is not

stable, and as a result, it ensures intensification. On the other hand, since this swap is a stochastic one,

it ensures diversification. To conclude, combining and applying these three swap procedures

(see Sections 3.2, 3.3.1, 3.3.2) enriches the variable neighborhood search approach, since it enhances

the classic neighborhood search with a ―stochastic moving segment grouping swap‖. This combination

ensures both intensification and diversification of the search space.

Since the nature of the proposed two-phase algorithm is stochastic, different computational results

may be obtained in different runs. So, in order to demonstrate its efficiency, in Table 4, we present not

only the best, but also the worst and the average results (and the respective standard deviations—STDs),

considering the fitness function value achieved and the execution time of the algorithm. Additionally,

we present the respective coefficient of variation (CV) and the success rate for each input instance. All

results presented in Table 4 concern the execution of the proposed algorithm to the seven

aforementioned nurse rostering input instances for 100 Monte Carlo runs.

Algorithms 2013, 6 295

Table 4. Computational experiments demonstrating the efficiency, stability and homogeneity

of the proposed algorithm. STD, standard deviation; CV, coefficient of variation.

Input

instance

Fitness value Execution Time Success

Rate Best Worst Average STD CV (%) Best Worst Average STD

Valouxis-1 20 120 73.33 30.55 41.7 17.64 s 222.88 s 90.19 s 75.6 20%

BCV3-46.2 894 894 894 0 0 16 min 31 min 25 min 4.37 100%

MUSA 175 175 175 0 0 0.12 s 0.52 s 0.22 s 0.13 100%

LLR 301 305 301.48 0.93 0.3 0.3 s 5.5 s 1.85 s 1.4 67%

BCV4-13.1 10 10 10 0 0 3 s 14.2 s 7.1 s 0.7 100%

WHPP 5 5 5 0 0 9.1 s 27.2 s 16.2 s 5.9 100%

HED01 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6%

Experimental results presented in Table 4 show that the average fitness reached by the proposed

two-phase variable neighborhood search approach is, in most cases, very close to the best one achieved

for each input instance. This demonstrates that the proposed algorithm is stable and efficient. We also

notice that CV of fitness function value ranges from 0% to 41.7%, with the great majority of CV

values being below 10%. More specifically, in four out of seven cases, CV equals 0, which means that

the algorithm is totally homogenous. This observation leads to the conclusion that the behavior of the

algorithm concerning the resulted fitness function value for 100 Monte Carlo runs per input instance is

quite homogenous. Note that we have intentionally avoided calculating CV values for the execution

time. This is done because STD and average values are close to each other, so the CV value for the

execution time would be misleading. Moreover, in Table 4, we present the success rate, i.e., the

percentage of cases that the proposed algorithm achieves the best fitness function value among

100 Monte Carlo runs. The fact that, in most cases, the success rate achieved is bigger than 60%,

demonstrates the efficiency of the proposed algorithm. In addition, in four cases, the success rate is 100%.

Finally, we present convergence results (maximum, average and minimum evaluation function

value versus number of function evaluations) in order to illustrate the evolutionary behavior of the

proposed algorithm. Figure 8 illustrates the convergence behavior of the proposed algorithm for four

input instances, namely, MUSA, LLR, BCV4-13.1 and HED01. In all cases, the algorithm’s

convergence behavior is very satisfactory, since it avoids falling into local optima very quickly and

shows significant improvement during the evolutionary process. In these experiments, because our

main concern was to reach or even beat the best ever reported result for each different input instance,

we used as the determination criterion ―the total number of generations‖.

Algorithms 2013, 6 296

Figure 8. Convergence behavior of the proposed algorithm for four input instances:

(a) Input instance, MUSA; (b) Input instance, LLR; (c) Input instance, BCV4-13.1;

(d) Input instance HED01.

1 2 3 4 5 6 7 8 9 10

x 10
4

150

200

250

300

350

400

450

Fitness function evaluation number

F
it
n
e
s
s
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence behavior of the proposed algorithm for the MUSA input instance

worst case

average case

best case

(a)

2 4 6 8 10 12 14 16

x 10
4

250

300

350

400

450

500

550

600

Fitness function evaluation number

F
it
n
e
s
s
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence behavior of the proposed algorithm for the LLR input instance

worst case

average case

best case

(b)

Algorithms 2013, 6 297

Figure 8. Cont.

0.5 1 1.5 2 2.5

x 10
5

10

20

30

40

50

60

70

80

90

100

Fitnees function evaluation number

F
it
n
e
s
s
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence behavior of the proposed algorithm for the BCV4-13.1 input instance

worst case

average case

best case

(c)

1 2 3 4 5 6 7 8 9 10 11

x 10
6

100

150

200

250

300

350

400

Fitness function evaluation number

F
it
n
e
s
s
 f

u
n
c
ti
o
n
 v

a
lu

e

Convergence behavior of the proposed algorithm for the HED01 input instance

worst case

average case

best case

(d)

Algorithms 2013, 6 298

Investigating the Effect of Parameter Setting to Algorithms’ Performance

In this section, the effect of parameter setting to algorithms’ performance is investigated and the

results of different specific parameter values are demonstrated. Except for that, an indication of the

contribution of each component of the algorithm is presented. More specifically, the contribution of

the two-phase approach compared to a single-phase approach is investigated. As stated in Section 3.1,

the first phase of the algorithm deals with the assignment of nurses to working days, while the second

phase of the algorithm deals with the assignment of nurses to shift types. Therefore, the first phase of

the algorithm cannot solve the nurse rostering problem alone, while the second phase can be applied to

solve the nurse rostering problem as a single-phase approach. Experimental results presented below,

show that using together the first and the second phase of the algorithm, as a two-phase approach,

achieves better results to using only the second phase of the algorithm as a single-phase approach.

Due to the fact that there are no obvious criteria for defining specific parameter values of the

proposed algorithm for all instances of the problem, we have selected these values by trial and error.

More precisely, we have conducted exhaustive experiments and selected the values that achieved the

best simulation results and the best algorithm’s behavior. Tables 5–25, presented in the next

paragraphs, show the effect of the value of first phase’s number of cycles, the effect of the value of the

population size and the effect of the value of swapping probability to algorithms’ performance

and behavior.

In Tables 5–7, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance Valouxis-1 are presented.

As shown in Table 5, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times,

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), experimental

results are rather worse.

Table 5. Investigating the effect of first phase’s number of cycles for input

instance, Valouxis-1.

Input instance

Valouxis-1

Fitness value Execution time (s)
Success

rate Best Worst Average STD
CV

(%)
Best Worst Average STD

First phase cycles = 0 40 160 88 34.25 38.92 80 170 110 24.6 10%

First phase cycles = 1 20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20%

First phase cycles = 2 40 140 83 35.92 43.27 85 180 100 31.8 20%

First phase cycles = 3 40 160 86 34.06 39.6 90 180 150 27.6 10%

First phase cycles = 4 40 140 68 28.6 42.05 110 210 180 43.8 20%

First phase cycles = 5 40 120 68 21.5 31.62 78 290 232 34.08 10%

As shown in Table 6, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Algorithms 2013, 6 299

Table 6. Investigating the effect of population size for input instance, Valouxis-1.

Input instance

Valouxis-1

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 60 140 88 30.11 34.21 61 180 130 36 30%

POPSIZE = 2 20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20%

POPSIZE = 3 60 160 83 34.01 40.97 62 246 135 57.3 30%

POPSIZE = 4 60 140 100 28.28 28.28 72 222.9 140 55 10%

POPSIZE = 5 60 100 84 20.66 24.59 80 200 150 62 30%

As shown in Table 7, setting the value of swapping probability equal to 0.99995 assists the

algorithm in achieving both the lowest best fitness value and the highest success rate.

Table 7. Investigating the effect of swapping probability for input instance, Valouxis-1.

Input instance

Valouxis-1

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability

= 0.85
40 120 82 25.73 31.37 100 190 150 33 10%

Swapping probability

= 0.9
20 160 76 40.88 53.78 80 200 112 38.4 10%

Swapping probability

= 0.95
40 100 68 19.32 28.41 66 253 129 60.9 20%

Swapping probability

= 0.97
20 100 60 24.94 41.56 18 93.6 71 39.24 10%

Swapping probability

= 0.99995
20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20%

In Tables 8–10, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance BCV3-46.2 are presented.

As shown in Table 8, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times,

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), execution

times are rather worse.

Table 8. Investigating the effect of first phase’s number of cycles for input

instance, BCV3-46.2.

Input instance

BCV3-46.2

Fitness value Execution time (min) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

First phase cycles = 0 894 894 894 0 0 25 42 31 5.55 100%

First phase cycles = 1 894 894 894 0 0 16 31 25 4.37 100%

First phase cycles = 2 894 894 894 0 0 21 45 39 11.52 100%

First phase cycles = 3 894 894 894 0 0 19 57 35 11.94 100%

First phase cycles = 4 894 894 894 0 0 26 49 38 6.13 100%

First phase cycles = 5 894 894 894 0 0 30 49 40 5.6 100%

Algorithms 2013, 6 300

As shown in Table 9, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 9. Investigating the effect of population size for input instance, BCV3-46.2.

Input instance

BCV3-46.2

Fitness value Execution time (min) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 894 894 894 0 0 16 48 28 8.71 100%

POPSIZE = 2 894 894 894 0 0 16 31 25 4.37 100%

POPSIZE = 3 894 894 894 0 0 16 38 28 7.64 100%

POPSIZE = 4 894 894 894 0 0 17 43 34 8 100%

POPSIZE = 5 894 894 894 0 0 25 42 33 5.55 100%

As shown in Table 10, setting the value of swapping probability equal to 0.97 assists the algorithm

in achieving the lowest best fitness value in the lowest execution time.

Table 10. Investigating the effect of swapping probability for input instance, BCV3-46.2.

Input instance

BCV3-46.2

Fitness value Execution time (min) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability = 0.85 894 894 894 0 0 16 57 36 11.67 100%

Swapping probability = 0.9 894 894 894 0 0 23 49 35 9.04 100%

Swapping probability = 0.95 894 894 894 0 0 27 51 39 8.46 100%

Swapping probability = 0.97 894 894 894 0 0 16 31 25 4.37 100%

Swapping probability = 0.99995 894 894 894 0 0 11 61 30 12.84 100%

In Tables 11–13, experimental results that investigate the effect of parameter setting to the

algorithms’ performance and behavior regarding input instance, MUSA, are presented.

As shown in Table 11, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times,

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), execution

times and success rate are rather worse.

Table 11. Investigating the effect of first phase’s number of cycles for input

instance, MUSA.

Input instance

Musa

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

First phase cycles = 0 175 185 177.8 4.25 2.4 0.13 0.52 0.3 0.12 75%

First phase cycles = 1 175 175 175 0 0 0.12 0.52 0.22 0.13 100%

First phase cycles = 2 175 180 175.7 3.9 2.2 0.33 0.58 0.43 0.12 80%

First phase cycles = 3 175 180 175.5 3.5 2 0.4 0.57 0.48 0.07 85%

First phase cycles = 4 175 180 177.6 4.2 2.4 0.39 0.62 0.54 0.11 90%

First phase cycles = 5 175 180 177.5 3.4 1.9 0.54 0.87 0.7 0.14 90%

Algorithms 2013, 6 301

As shown in Table 12, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 12. Investigating the effect of population size for input instance, MUSA.

Input instance

MUSA

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 175 180 175.65 1.1 0.62 0.31 0.54 0.4 0.07 95%

POPSIZE = 2 175 175 175 0 0 0.12 0.52 0.22 0.13 100%

POPSIZE = 3 175 175 175 0 0 0.51 0.74 0.6 0.12 100%

POPSIZE = 4 175 175 175 0 0 0.19 0.82 0.5 0.24 100%

POPSIZE = 5 175 175 175 0 0 0.43 0.75 0.58 0.11 100%

As shown in Table 13, setting the value of swapping probability equal to 0.97 assists the algorithm

in achieving the lowest best and average fitness value and the highest success rate.

Table 13. Investigating the effect of swapping probability for input instance, MUSA.

Input instance

MUSA

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability

= 0.85
175 185 176.5 3.38 1.9 0.14 0.42 0.32 0.14 80%

Swapping probability

= 0.9
175 185 176.5 3.38 1.9 0.12 0.38 0.2 0.1 80%

Swapping probability

= 0.95
175 185 176 3.16 1.79 0.11 0.29 0.18 0.07 90%

Swapping probability

= 0.97
175 175 175 0 0 0.12 0.52 0.22 0.13 100%

Swapping probability

= 0.99995
175 185 177.62 3.75 2 0.06 0.56 0.23 0.14 62%

In Tables 14–16, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance, LLR, are presented.

As shown in Table 14, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values and the highest success rate. Except for that, if we

do not use the first phase at all (first

phase cycles = 0), execution times and success rate are rather worse.

Table 14. Investigating the effect of first phase’s number of cycles for input instance, LLR.

Input instance

LLR

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

1ST Phase cycles = 0 301 303 301.7 0.82 0.27 0.8 2.5 2 1.1 50%

1ST Phase cycles = 1 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67%

1ST Phase cycles = 2 301 303 301.8 0.8 0.3 1 2.9 1.6 0.6 45%

1ST Phase cycles = 3 301 303 301.6 0.8 0.26 1.3 3.8 2.4 0.8 58%

1ST Phase cycles = 4 301 303 301.4 0.7 0.23 1.3 3.4 2.8 0.7 62%

1ST Phase cycles = 5 301 303 301.5 0.7 0.23 1.4 4.6 2.9 1.1 47%

Algorithms 2013, 6 302

As shown in Table 15, setting the value of population size equal to 2 assists the algorithm to

achieve the lowest best and average fitness values and the highest success rate.

Table 15. Investigating the effect of population size for input instance, LLR.

Input instance

LLR

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 301 305 302.2 1.6 0.53 0.74 2.38 1.5 0.6 50%

POPSIZE = 2 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67%

POPSIZE = 3 301 303 301.7 1.06 0.35 0.98 7.08 2.9 2.2 60%

POPSIZE = 4 301 303 301.8 0.8 0.27 0.23 3.21 1.32 0.9 45%

POPSIZE = 5 301 303 301.6 0.7 0.23 0.38 4.03 1.72 1.2 55%

As shown in Table 16, setting the value of swapping probability equal to 0.5 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times,

respectively, as well as the highest success rate.

Table 16. Investigating the effect of swapping probability for input instance, LLR.

Input instance

LLR

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability = 0.4 301 303 301.6 0.9 0.29 0.85 5.23 2.1 0.33 55%

Swapping probability = 0.45 301 303 301.5 0.55 0.18 1.27 5.66 2.2 1.36 63%

Swapping probability = 0.5 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67%

Swapping probability = 0.55 301 303 301.5 0.4 0.13 1.2 2.6 2.4 1.6 65%

Swapping probability = 0.6 301 303 301.5 0.7 0.23 1.1 4.9 2.2 1.1 64%

In Tables 17–19, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance, BCV4-13.1, are presented.

As shown in Table 17, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times.

For this specific input instance, if we do not use the first phase at all (first phase cycles = 0),

experimental results are much less the same.

Table 17. Investigating the effect of first phase’s number of cycles for input

instance, BCV4-13.1.

Input instance

BCV4-13.1

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

First phase cycles = 0 10 10 10 0 0 5.84 7.23 6.21 0.52 100%

First phase cycles = 1 10 10 10 0 0 3 14.2 7.1 2.65 100%

First phase cycles = 2 10 10 10 0 0 6.95 12.3 8.43 1.66 100%

First phase cycles = 3 10 10 10 0 0 7.46 14.4 10.36 1.99 100%

First phase cycles = 4 10 10 10 0 0 9.42 14.3 10.99 1.45 100%

First phase cycles = 5 10 10 10 0 0 9.35 15 13.15 1.77 100%

Algorithms 2013, 6 303

As shown in Table 18, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 18. Investigating the effect of population size for input instance, BCV4-13.1.

Input instance

BCV4-13.1

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 10 10 10 0 0 5.3 8.5 6.98 2.1 100%

POPSIZE = 2 10 10 10 0 0 3 14.2 7.1 2.65 100%

POPSIZE = 3 10 10 10 0 0 6.2 8 7.23 0.64 100%

POPSIZE = 4 10 10 10 0 0 6 8.3 6.95 0.9 100%

POPSIZE = 5 10 10 10 0 0 6.4 9.8 7.8 1.31 100%

As shown in Table 19, setting the value of swapping probability equal to 0.97 assists the algorithm

to achieve the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 19. Investigating the effect of swapping probability for input instance, BCV4-13.1.

Input instance

BCV4-13.1

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability

= 0.85
10 10 10 0 0 5.72 7.8 7.3 0.51 100%

Swapping probability

= 0.9
10 10 10 0 0 5.23 7.55 7.3 0.61 100%

Swapping probability

= 0.95
10 10 10 0 0 5.14 7.45 7.2 0.69 100%

Swapping probability

= 0.97
10 10 10 0 0 3 14.2 7.1 0.7 100%

Swapping probability

= 0.99995
10 10 10 0 0 3.87 22.1 12.45 6.61 100%

In Tables 20–22, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance, WHPP, are presented.

As shown in Table 20, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution times.

Except for that, if we do not use the first phase at all (first phase cycles = 0), execution times and

success rate are rather worse.

Algorithms 2013, 6 304

Table 20. Investigating the effect of first phase’s number of cycles for input

instance, WHPP.

Input instance

WHPP

Fitness value Execution time (s) Success

Rate Best Worst Average STD CV (%) Best Worst Average STD

First phase cycles = 0 5 7 5.2 0.63 12.1 16.45 97.43 43.3 21.8 90%

First phase cycles = 1 5 5 5 0 0 9.1 27.2 16.2 5.9 100%

First phase cycles = 2 5 8 5.3 0.95 17.9 25.74 42.4 37 5.4 90%

First phase cycles = 3 5 5 5 0 0 23.43 51.6 33.8 9.35 100%

First phase cycles = 4 5 5 5 0 0 25.19 39.9 34.3 5.6 100%

First phase cycles = 5 5 5 5 0 0 21 54.3 38 9.7 100%

As shown in Table 21, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 21. Investigating the effect of population size for input instance, WHPP.

Input instance

WHPP

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 5 8 5.3 0.95 17.9 9.9 78.2 34.5 20.84 90%

POPSIZE = 2 5 5 5 0 0 9.1 27.2 16.2 5.9 100%

POPSIZE = 3 5 7 5.2 0.63 12.12 12.4 58.1 31 16.8 90%

POPSIZE = 4 5 8 5.3 0.95 17.9 19.2 51.3 33.6 10.71 90%

POPSIZE = 5 5 5 5 0 0 18.5 89.8 37.6 21.9 100%

As shown in Table 22, setting the value of swapping probability equal to 0.45 assists the algorithm

in achieving the lowest best and average fitness values in the lowest best and average execution

times, respectively.

Table 22. Investigating the effect of swapping probability for input instance, WHPP.

Input instance

WHPP

Fitness value Execution time (s) Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability = 0.4 5 8 5.3 0.95 38.4 87.3 55 14.76 90%

Swapping probability = 0.45 5 5 5 0 0 9.1 27.2 16.2 5.9 100%

Swapping probability = 0.5 5 5 5 0 0 7.72 50.25 20 10.97 100%

Swapping probability = 0.55 5 5 5 0 0 19.23 98.2 37.3 22.7 100%

Swapping probability = 0.6 5 5 5 0 0 24.3 54.4 40.3 10.53 100%

In Tables 23–25, experimental results that investigate the effect of parameter setting to algorithms’

performance and behavior regarding input instance, HED01, are presented.

Algorithms 2013, 6 305

As shown in Table 23, setting the first phase’s number of cycles equal to 1 assists the algorithm in

achieving the lowest best fitness value = which is the lowest fitness value ever reported in the

literature, in the lowest execution time. Except for that, if we do not use the first phase at all

(first phase cycles = 0), the lowest best fitness value achieved is rather worse.

Table 23. Investigating the effect of first phase’s number of cycles for input

instance, HED01.

Input instance

HED01

Fitness value Execution time Success

rate Best Worst Average STD CV (%) Best Worst Average STD

First phase cycles = 0 131 144 136 4.24 1 min, 30 s 4 min, 28 s 3 min, 6 s 0.97 8%

First phase cycles = 1 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6%

First phase cycles = 2 131 146 135.9 5.82 1 min, 28 s 5 min, 15 s 3 min, 40 s 1.37 8%

First phase cycles = 3 130 142 134.7 4.34 1 min, 31 s 6 min, 33 s 4 min 1.23 7%

First phase cycles = 4 130 138 132.8 2.53 2 min, 6 s 5 min, 36 s 4 min 1.13 9%

First phase cycles = 5 132 150 140.7 5.17 2 min, 12 s 5 min, 29 s 4 min 1.22 7%

As shown in Table 24, setting the value of population size equal to 2 assists the algorithm in

achieving the lowest best fitness value, which is the lowest fitness value ever reported in the literature.

Table 24. Investigating the effect of population size for input instance, HED01.

Input instance

HED01

Fitness value Execution time Success

rate Best Worst Average STD CV (%) Best Worst Average STD

POPSIZE = 1 133 151 142 7.69 5.4 2 min, 57 s 6 min 4 min, 18 s 1.1 12%

POPSIZE = 2 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6%

POPSIZE = 3 132 151 139.6 6.63 4.76 2 min, 20 s 4 min, 50 s 3 min, 30 s 0.78 10%

POPSIZE = 4 131 146 139.5 5.15 3.77 1 min, 30 s 5 min, 30 s 3 min, 40 s 1.04 9%

POPSIZE = 5 131 147 136.7 5.68 4.15 2 min, 45 s 12 min, 25 s 5 min 2.79 11%

As shown in Table 25, setting the value of swapping probability equal to 0.85 assists the algorithm

in achieving the lowest best fitness value, which is the lowest fitness value ever reported in the

literature, in the lowest execution time.

Table 25. Investigating the effect of swapping probability for input instance, HED01.

Input instance

HED01

Fitness value Execution time Success

rate Best Worst Average STD CV (%) Best Worst Average STD

Swapping probability = 0.8 131 151 137.9 7.31 1 min, 20 s 4 min, 28 s 2 min, 55 s 0.93 5%

Swapping probability = 0.82 132 148 138.5 5.28 2 min, 6 s 6 min, 26 s 3 min, 50 s 1.34 6%

Swapping probability = 0.85 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6%

Swapping probability = 0.88 131 135 133.4 1.84 1 min, 35 s 2 min, 30 s 2 min, 30 s 1.01 7%

Swapping probability = 0.9 130 153 134 7.05 1 min, 50 s 3 min, 7 s 2 min, 5 s 1.62 5%

6. Conclusions and Future Work

In this contribution, a generic two-phase stochastic variable neighborhood search algorithm has

been designed, implemented and applied to the nurse rostering problem in order to create feasible and

Algorithms 2013, 6 306

efficient rosters. The algorithm has been tested with seven different real-world nurse rostering

instances in order to demonstrate its quality and efficiency. Computational results showed that the

proposed algorithm achieves better results compared to six other very effective algorithms published in

the literature that have been applied to the same nurse rostering input instances using the same

evaluation criteria. Moreover, the proposed algorithm manages in one case to beat the best-known

fitness achieved in the literature till now. In addition, in the other six cases, it manages to reach the

best-known fitness achieved in the literature and prove experimentally that there are at least two

different best ever reported rosters for these instances. Finally, the application of the proposed

algorithm and its verifications to other newly published nurse rostering instances and to problems

belonging to other timetabling or scheduling domains will be one of the main issues of our

future work.

References

1. Cooper, T.B.; Kingston, J.H. The Complexity of Timetable Construction Problems; Technical

Report No. 495; Basser Department of Computer Science, The University of Sidney: Sidney,

Australia, 1995.

2. White, G.; Xie, B.; Zonjic, S. Using tabu search with longer term memory and relaxation to create

examination timetables. Eur. J. Oper. Res. 2004, 153, 80–91.

3. Yang, S.; Jat, S.N. Genetic algorithms with guided and local search strategies for university

course timetabling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 41, 93–106.

4. Burke, E.K.; de Causmaecker, P.; Vanden Berghe, G.; van Landeghem, H. The state of the art of

nurse rostering. J. Sched. 2004, 7, 441–499.

5. Van den Bergh, J.; Beliën, J.; de Bruecker, P.; Demeulemeester, E.; de Boeck, L. Personnel

scheduling: A literature review. Eur. J. Oper. Res. 2013, 226, 367–385.

6. Aickelin, U.; Dowsland, K.A. An indirect genetic algorithm for a nurse-scheduling problem.

Comput. Oper. Res. 2004, 31, 761–778.

7. Bai, R.; Burke, E.K.; Kendall, G.; Li, J.; McCollum, B. A hybrid evolutionary approach to the

nurse rostering problem. Trans. Evolut. Comput. 2010, 14, 580–590.

8. Maenhout, B.; Vanhoucke, M. An evolutionary approach for the nurse rostering problem.

Comput. Oper. Res. 2011, 38, 1400–1411.

9. Burke, E.; Soubeiga, E. Scheduling Nurses Using a Tabu-search Hyperheuristic. In Proceeding of

the 1st Multidisciplinary International Scheduling Conference (MISTA 2003), Nottingham, UK,

13–16 August 2003; pp. 197–218.

10. Oughalime, A.; Ismail, W.R.; Yeun, L.C. A Tabu Search Approach to the Nurse Scheduling

Problem. In Proceeding of the International Symposium on Information Tecnhology 2008 (ITSim

2008), Kuala Lumpur, Malaysia, 26–28 August 2008; pp. 1–7.

11. Parr, D.; Thompson, J.M. Solving the multi-objective nurse scheduling problem with a weighted

cost function. Ann. Oper. Res. 2007, 155, 279–288.

Algorithms 2013, 6 307

12. Kundu, S.; Mahato, M.; Mahanty, B.; Acharyya, S. Comparative Performance of Simulated

Annealing and Genetic Algorithm in Solving Nurse Scheduling Problem. In Proceeding of the

International Multi Conference on Engineers and Computer Sciences 2008 (IMECS 2008),

Hong Kong, 19–21 March 2008; pp. 19–21.

13. Burke, E.K.; de Causmaecker, P.; Petrovic, S.; Vanden Berghe, G. Variable Neighborhood Search

for Nurse Rostering Problems. In Metaheuristics: Computer Decision-Making; Resende, M.C.G.,

Pinho de Sousa, J., Eds.; Kluwer Academic Publishers B.V.: Dordrecht, The Netherlands, 2003;

Chapter 7, pp. 153–172.

14. Burke, E.K.; Curtois, T.; Post, G.; Qu, R.; Veltman, B. A hybrid heuristic ordering and variable

neighbourhood search for the nurse rostering problem. Eur. J. Oper. Res. 2008, 188, 330–341.

15. Lü, Z.; Hao, J.-K. Adaptive neighborhood search for nurse rostering. Eur. J. Oper. Res. 2012,

218, 865–876.

16. Burke, E.K.; Curtois, T.; Qu, R.; Vanden Berghe, G. A scatter search methodology for the nurse

rostering problem. J. Oper. Res. Soc. 2010, 61, 1667–1679.

17. Maenhout, B.; Vanhoucke, M. New computational results for the nurse scheduling problem:

A scatter search algorithm. Lect. Notes Comput. Sci. 2006, 3906, 159–170.

18. Bellanti, F.; Carello, G.; Della Croce, F.; Tadei, R. A greedy-based neighborhood search approach

to a nurse rostering problem. Eur. J. Oper. Res. 2004, 153, 28–40.

19. Burke, E.K.; Curtois, T.; van Draat, L.F.; van Ommeren, J.K.; Post, G. Progress control in iterated

local search for nurse rostering. J. Oper. Res. Soc. 2011, 62, 360–367.

20. Gunther, M.; Nissen, V. Particle swarm optimization and the agent-based algorithm for a problem

of staff scheduling. Lect. Notes Comput. Sci. 2010, 6025, 451–461.

21. Ozcan, E. Memetic algorithms for nurse rostering. Lect. Notes Comput. Sci. 2005, 3733, 482–492.

22. Gutjahr, W.J.; Rauner, M.S. An ACO algorithm for a dynamic regional nurse-scheduling problem

in Austria. Comput. Oper. Res. 2007, 34, 642–666.

23. Brimberg, J.; Hansen, P.; Mladenovic, N.; Taillard, E. Improvements and comparison of heuristics

for solving the multisource Weber problem. Oper. Res. 2000, 48, 444–460.

24. Fleszar, K.; Hindi, K.S. Solving the resource-constrained project scheduling problem by a

variable neighborhood search. Eur. J. Oper. Res. 2004, 155, 402–413.

25. Avanthay, C.; Hertz, A.; Zufferey, N. A variable neighborhood search for graph coloring. Eur. J.

Oper. Res. 2003, 151, 379–388.

26. Lü, Z.; Hao, J.-K.; Glover, F. Neighborhood analysis: A case study on curriculum-based course

timetabling. J. Heuristics 2011, 17, 97–118.

27. Di Gaspero, L.; Schaerf, A. Multi-neighborhood local search with application to course

timetabling. Lect. Notes Comput. Sci. 2003, 2740, 262–275.

28. Burke, E.K.; Li, J.; Qu, R. A hybrid model of integer programming and variable neighborhood

search for highly-constrained nurse rostering problems. Eur. J. Oper. Res. 2010, 203, 484–493.

29. Burke, E.K.; Eckersley, A.; McCollum, B.; Petrovic, S.; Qu, R. Hybrid variable neighbourhood

approaches to exam timetabling. Eur. J. Oper. Res. 2010, 206, 46–53.

30. Hansen, P.; Mladenovic, N.; Pérez-Brito, D. Variable neighborhood decomposition search.

J. Heuristics 2001, 7, 335–350.

Algorithms 2013, 6 308

31. Hansen, P.; Mladenovic, N.; Perez, J.A.M. Variable neighbourhood search: Methods and

applications. Ann. Oper. Res. 2010, 175, 367–407.

32. Valouxis, C.; Housos, E. Hybrid optimization techniques for the workshift and rest assignment of

nursing personnel. Artif. Intell. Med. 2000, 20, 155–175.

33. Li, H.; Lim, A.; Rodrigues, B. A Hybrid AI Approach for Nurse Rostering Problem.

In Proceeding of the ACM Symposium on Applied Computing (SAC 2003), Melbourne, FL,

USA, 9–12 March 2003; ACM: New York, NY, USA, 2003; pp. 730–735.

34. Brucker, P.; Burke, E.; Curtois, T.; Qu, R.; Vanden Berghe, G. A shift sequence based approach

for nurse scheduling and a new benchmark dataset. J. Heuristics 2010, 16, 559–573.

35. Puente, J.; Gómes, A.; Fernández, I.; Priore, P. Medical doctor rostering problem in a hospital

emergency department by means of genetic algorithms. Comput. Ind. Eng. 2009, 56, 1232–1242.

36. Musa, A.A.; Saxena, U. Scheduling nurses using goal-programming techniques. AIEE Trans.

1984, 13, 216–221.

37. Weil, G.; Heus, K.; Francois, P.; Poujade, M. Constraint programming for nurse scheduling. IEEE

Eng. Med. Biol. Mag. 1995, 14, 417–422.

38. Automated employee scheduling benchmark instances. Available online: http://www.cs.nott.

ac.uk/~tec/NRP/ (accessed on 1 April 2013).

39. Roster::Valouxis-1. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/

Valouxis-1.Solution.20.html (accessed on 1 April 2013).

40. Burke, E.K.; de Causmaecker, P.; van den Berghe, G. Novel Meta-Heuristic Approaches to Nurse

Rostering Problems in Belgian Hospitals. In Handbook of Scheduling: Algorithms, Models and

Performance Analysis; Leung, J., Ed.; CRC Press: Boca Raton, FL, USA, 2004; Chapter 44,

pp. 1–18.

41. Roster::BCV-3.46.2. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/

BCV-3.46.2.Solution.894.html (accessed on 1 April 2013).

42. Roster::BCV-4.13.1. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/

BCV-4.13.1.Solution.10.html (accessed on 1 April 2013).

43. Roster::HED01. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/HED

01.Solution.136.html (accessed on 1 April 2013).

44. Roster LLR. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/LLR.

Solution.301.html (accessed on 1 April 2013).

45. Roster::Musa. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/Musa.

Solution.175.html (accessed on 1 April 2013).

46. Roster::WHPP. Available online: http://www.cs.nott.ac.uk/~tec/NRP/data/solutions/html/WHPP.

Solution.5.html (accessed on 1 April 2013).

47. Applying a stochastic variable neighborhood search algorithm on nurse rostering benchmark

instances. Executables and results. Available online: http://www.deapt.uwg.gr/nurse_rostering/

nurse_rostering.html (accessed on 1 April 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

