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Abstract: We extend the stable flow model of Fleiner to multicommodity flows. In addition
to the preference lists of agents on trading partners for each commodity, every trading pair
has a preference list on the commodities that the seller can sell to the buyer. A blocking
walk (with respect to a certain commodity) may include saturated arcs, provided that a
positive amount of less preferred commodity is traded along the arc. We prove that a stable
multicommodity flow always exists, although it is PPAD-hard to find one.
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1. Introduction

Just as network flows generalize bipartite matchings, the stable marriage problem can be generalized
to stable flows. An acyclic network model was presented by Ostrovsky [1], while Fleiner [2] introduced
a stable flow model where the network is not necessarily acyclic. The aim of this paper is to extend the
model of Fleiner to multicommodity flows, but first we briefly describe his model and results.

An instance of the stable flow problem consists of a network on digraphD = (V,A) with s, t ∈ V and
capacities c ∈ RA

+, and additionally for each node v ∈ V a linear order<v on the arc set incident to v. We
assume that s has no incoming arcs and t has no outgoing arcs. The network along with the set of these
preference orders is called a network with preferences. We note that outgoing arcs are never compared
with incoming arcs, so the information that we really need is a linear order on the set of outgoing arcs
δout(v) and one on the set of incoming arcs δin(v).
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We refer to directed walks simply as walks in this paper. Let f be a flow of network (D, s, t, c). A
walk P = (v1, a1, v2, a2, . . . , ak−1, vk) is said to block f if the following hold:

(i) each arc ai is unsaturated in f ,

(ii) v1 = s or there is an arc a′ = v1u for which f(a′) > 0 and a′ <v1 a1,

(iii) vk = t or there is an arc a′′ = wvk for which f(a′′) > 0 and a′′ <vk
ak−1.

A flow is called stable if there is no walk blocking it. Note that this definition is slightly different from
the one in [2], but it is equivalent.

The problem can be motivated by a network trading model: the nodes are traders that can buy and sell
amounts of a certain product along the arcs of the digraph, and have preferences with whom they would
like to trade (a <v a

′ means that trader v prefers trading along a′ to trading along a). A blocking walk
represents a possible chain of transactions that offers a better selling option for the first trader of the walk
than the current f , and also offers a better buying option for the last trader. In this interpretation, nodes
s and t represent the producers and the consumers.

Since it will be convenient in the proofs to consider only finitely many walks, we introduce a finite
subclass of walks that already determines stability. A walk P = (v1, a1, v2, a2, . . . , ak−1, vk) is called
a quasi-path if v2, a2, . . . , ak−2, vk−1 is a path. It is easy to see that every blocking walk contains a
blocking quasi-path, so we may restrict the condition of stability to quasi-paths.

Fleiner [2] proved the following result, by reducing the stable flow problem to the stable allocation
problem of Baïou and Balinski [3]. A different proof based on the Gale–Shapley algorithm, as well as
an extension to flows over time, was given by Cseh, Matuschke, and Skutella [4].

Theorem 1.1 (Fleiner [2]). Every network with preferences has a stable flow. If the capacities are
integral, then there is an integral stable flow.

1.1. Stable Multicommodity Flows

In this paper we present a way to include multiple commodities in the above network trading model.
In the multicommodity setting, every arc has individual capacities for specific commodities as well as a
cumulative capacity, and each trader has a preference order for each commodity on the possible buyers
and sellers, so the preferred trading partners may be different for different commodities. In addition, for
each trading pair (i.e., arc in D) there is a preference order on the commodities, which expresses that the
pair is more inclined to trade certain goods than others.

A blocking walk in our model represents a chain of transactions for a specific commodity, with which
the first and the last trader of the walk would be more pleased than before (the chain may also start at the
producers, or end at the consumers), and each intermediate transaction either corresponds to an arc with
free capacity or it can replace the trade of a less preferred commodity.

The formal definitions are as follows. The network consists of a digraph D = (V,A) with capacities
c ∈ RA

+ (these will be called cumulative capacities, in order to distinguish from capacities of individual
commodities). There are ` commodities, and each has its own capacity bound cj ∈ RA

+ (j ∈ [`]). Each
commodity has a source sj ∈ V and a sink tj ∈ V . Sources and sinks of different commodities may
coincide, but we assume that cj is 0 on every arc entering sj and on every arc leaving tj .
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For each commodity j ∈ [`], there are linear orders <j
v for each node v ∈ V \ {sj, tj} on the arc set

incident to v. In addition, for each arc a ∈ A there is a linear order <a on the set of commodities. The
network, together with these preference orders, is called a multicommodity network with preferences.

We say that f = (f 1, . . . , f `) is a feasible multicommodity flow of the network if f j : A → R+

satisfies Kirchhoff’s law at every node except at sj and tj , f j(a) ≤ cja for every a ∈ A and j ∈ [`], and∑`
j=1 f

j(a) ≤ ca for every a ∈ A.
A walk P = (v1, a1, v2, a2, . . . , ak−1, vk) is said to be blocking with respect to commodity j if the

following hold:

(i) each arc ai is unsaturated by f j , that is, f j(ai) < cjai
,

(ii) v1 = sj or there is an arc a′ = v1u for which f j(a′) > 0 and a′ <j
v1
a1,

(iii) vk = tj or there is an arc a′′ = wvk for which f j(a′′) > 0 and a′′ <j
vk
ak−1,

(iv) if an arc ai of P is saturated by f , i.e.,
∑`

j=1 f
j(ai) = cai

, then there is a commodity j′ such that
f j
′
(ai) > 0 and j′ <ai

j.

The last condition expresses that a chain of transactions can be blocking even if some of them have to
replace transactions of other commodities, provided that the latter are less preferred commodities for the
trading pairs.

A feasible multicommodity flow is called stable if there is no walk blocking it. As in the single
flow case, it is enough to prohibit blocking quasi-paths, since each blocking walk contains a blocking
quasi-path.

Remark. It can be decided in polynomial time if a feasible multicommodity flow is stable. To see this,
we show that for a given commodity j and nodes u, v, checking whether there is a blocking walk from
u to v with respect to commodity j can be done in polynomial time. Conditions (i) and (iv) restrict the
possible arcs that can appear in the walk. Among these, condition (ii) determines which arcs can be the
starting arcs of the walk, and condition (iii) determines the possible ending arcs. Any uv-walk using
only these arcs is automatically blocking, and we can use BFS to decide if such a walk exists.

Before proving the main result on the existence of stable multicommodity flows, we describe a version
of Sperner’s Lemma that serves as the main tool in our proof.

1.2. A Polyhedral Version of Sperner’s Lemma

The following polyhedral version of Sperner’s Lemma was introduced in [5], and it was used in [6]
to give an alternative proof of Theorem 1.1. An extreme direction of a polyhedron is an extreme ray
of its characteristic cone. For a colouring of the facets of a pointed polyhedron P , a vertex of P is
multicoloured if it lies on facets of every colour.

Theorem 1.2 ([5]). Let P ⊆ Rn be an n-dimensional pointed polyhedron whose characteristic cone
is generated by n linearly independent vectors. If the facets of the polyhedron are coloured with
n colours such that facets containing the i-th extreme direction do not get colour i, then there is a
multicoloured vertex.
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We note that there is no known polynomial algorithm to find a multicoloured vertex; in fact, it is
shown in [7] that this problem is PPAD-complete.

2. Existence of a Stable Multicommodity Flow

Theorem 2.1. In every multicommodity network with preferences there exists a stable
multicommodity flow.

Proof. Let us consider a multicommodity network with preferences, as defined in Section 1.1. Let P
denote the set of all quasi-paths, and for an arc a ∈ A let Pa be the set of quasi-paths that contain a.
Furthermore, for a node v ∈ V , let Pout

v and P in
v denote the set of quasi-paths that start and end at

v, respectively.
Let us introduce the variables xjP (j ∈ [`], P ∈ P) and yja (j ∈ [`], a ∈ A). Given a set of quasi-paths

P ′ ⊆ P , we use the notation xj(P ′) for
∑

P∈P ′ x
j
P .

These variables do not have a clear meaning in terms of the problem that we want to solve; in
order to help understanding their role, we describe the overall structure of the proof. We will define a
full-dimensional polyhedron Π in the space of these variables that satisfies the conditions of Theorem
1.2, and has the property that we remain in Π if we decrease a coordinate xjP or if we increase it to 0,
and we remain in Π if we increase a coordinate yja or if we decrease it to cja. In place of Kirchhoff’s law,
we use the inequalities that at every node in V \ {sj, tj} the incoming xj is at most the outgoing yj , and
the outgoing xj is at most the incoming yj . The face

F = {(x, y) ∈ Π : xjP = 0 if P is not a single arc, xja = yja for every a ∈ A and j ∈ [`]}

corresponds to the set of multicommodity flows. We will prove the following:

• We can define a suitable colouring of the facets of Π such that any multicoloured vertex of Π is on
the face F ,

• We show that a multicoloured vertex corresponds to a stable multicommodity flow. This is where
the variables xjP (where P has length at least 2) play a role: in some sense, they correspond to
possibilities of changing a feasible solution along a blocking quasi-path.

Let us turn to the details of the proof. We consider the polyhedron Π described by the
following inequalities:

yja ≥ 0 ∀a ∈ A ∀j ∈ [`] (1)

xj(P ′)− yja ≤ 0 ∀P ′ ⊆ Pa ∀a ∈ A ∀j ∈ [`] (2)

xj(P ′) ≤ cja ∀P ′ ⊆ Pa ∀a ∈ A ∀j ∈ [`] (3)

xj(P ′)− yj(δ′) ≤ cj(δin(v) \ δ′) ∀∅ 6= P ′ ⊆ Pout
v , δ′ ⊆ δin(v), v ∈ V \ {sj, tj}, j ∈ [`] (4)

xj(P ′)− yj(δ′) ≤ cj(δout(v) \ δ′) ∀∅ 6= P ′ ⊆ P in
v , δ

′ ⊆ δout(v), v ∈ V \ {sj, tj}, j ∈ [`] (5)∑̀
j=1

xj(P ′j) ≤ ca ∀P ′j ⊆ Pa (j ∈ [`]) ∀a ∈ A (6)
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First let us determine the set of extreme directions of Π. Clearly −xjP for P ∈ P , j ∈ [`] and yja
for a ∈ A, j ∈ [`] give infinite directions. Since xjP is bounded from above and yja from below, there
is no infinite direction that is not in the cone of the above. So the number of extreme directions equals
the dimension.

Now let us assign colours (that is, variables, since each variable corresponds to an extreme direction
of Π) to each inequality:

• to an inequality of type (1) or type (2) we assign yja,

• to an inequality of type (3) we assign xjP for a longest possible quasi-paths P ∈ P ′,
• to an inequality of type (4) we assign xjP for a quasi-path P ∈ P ′ in which the outgoing arc from
v is smallest possible in the order <j

v from P ′, and among these, we choose P to be one of the
longest quasi-paths,

• to an inequality of type (5) we assign xjP for a quasi-path P ∈ P ′ in which the incoming arc to v is
smallest possible in the order <j

v from P ′, and among these, we choose P to be one of the longest
quasi-paths,

• to an inequality of type (6) we assign xjP where j is the commodity that is smallest in the order <a

among those with nonempty P ′j , and from P ′j we choose P to be one of the longest quasi-paths.

Since the assigned colour of each inequality is a coordinate with nonzero coefficient, the colouring
fulfils the criteria of Theorem 1.2. Thus there exists a multicoloured vertex (x, y) of Π.

Claim 2.2. x ≥ 0, and yj ≤ cj for every j ∈ [`].

Proof. Suppose that xjP is negative for some P ∈ P . Then by increasing xjP to zero we get a vector that
is still in Π, because every inequality where xjP has positive coefficient is also present with the coefficient
changed to zero (except for the inequalities where P ′ = {P}, but changing the coefficient of xjp in those
to zero is satisfied too since yja and cja are nonnegative). On the other hand we know that −xjP is an
infinite direction, so (x, y) could not have been a vertex. Thus xjP is nonnegative for every P ∈ P and
j ∈ [`]. Similarly we get that yja ≤ cja for every a ∈ A and j ∈ [`]. ♦

Claim 2.3. xj(Pa) = yja for every arc a ∈ A and j ∈ [`].

Proof. Since (x, y) is multicoloured, there is a tight inequality that has colour yja. If this inequality is of
type (1), then using Claim 2.2 we have 0 ≤ xj(Pa) ≤ yja = 0, thus equality holds. If the tight inequality
is of type (2) for some P ′ ⊆ Pa, then by Claim 2.2, xj(Pa) ≥ xj(P ′) = yja ≥ xj(Pa), so equality
holds again. ♦

Claim 2.4. For every j ∈ [`], xjP = 0 for every quasi-path P that has at least 2 arcs.

Proof. Suppose that xjP > 0 for a quasi-path P = (v1, a1, . . . , vk), where k ≥ 3. Let Q be the one-arc
path (v1, a1, v2) and let R be the quasi-path (v2, a2, . . . , vk).

Consider the inequality that (x, y) satisfies with equality and has colour xjQ. It cannot be of type (3),
since because of P , we would not have chosen xjQ as colour. It also cannot be of type (4) or type (6) for
the same reason. Thus it is of type (5). This means that there exists some P ′ ⊆ P in

v2
and δ′ ⊆ δout(v2) for

which xj(P ′) − yj(δ′) = cj(δout(v2) \ δ′). Using Claim 2.2, this holds also for the whole sets P in
v2

and
δout(v2), that is, xj(P in

v2
) = yj(δout(v2)).
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Using xjP > 0, and considering the sum of inequalities of type (2) for the arcs in δin(v2), we get

yj(δout(v2)) = xj(P in
v2

) < xj(
⋃

a∈δin(v2)

Pa) ≤ yj(δin(v2)) .

By the same argument for the subwalk R, we get

yj(δin(v2)) = xj(Pout
v2

) < yj(δout(v2))

which is a contradiction. ♦

We obtained that x is positive only on the arcs (that is, on quasi-paths of length 1), and by Claim 2.3,
xja = yja for every arc a and every j ∈ [`]. By inequalities (4) and (5), we have

xj(δout(v)) ≤ yj(δin(v)) = xj(δin(v)) ≤ yj(δout(v)) = xj(δout(v))

for every v ∈ V \ {sj, tj}, so yj is a flow. By inequality (3), it satisfies the capacity constraints for
commodity j, and by inequality (6), y satisfies the cumulative capacity constraints, so it is a feasible
multicommodity flow. We are done by proving our last claim.

Claim 2.5. No quasi-path blocks y with respect to any commodity.

Proof. Let P = (v1, a1, . . . , vk) be an arbitrary quasi-path and j an arbitrary commodity. Since (x, y) is
a multicoloured vertex, there is a tight inequality of colour xjP . If it is of the form (3), then the arc a is
saturated for commodity j, so P does not block y with respect to commodity j.

If it is of the form (4) for node v1, P ′ ⊆ Pout
v1

and δ′ ⊆ δin(v1), then a′ /∈ P ′ whenever a′ ∈ δout(v1)

and a′ <j
v1
a1. Thus xja′ = 0, because if xja′ was positive, then adding xja′ to this tight inequality would

not hold for (x, y), although it is also an inequality of the system. This implies that P does not block the
flow y with respect to commodity j.

The case when the tight inequality of colour xjP is of type (5) is analogous. Finally, if the inequality
of colour xjP is of type (6), then the arc a is saturated, and furthermore a /∈ P ′j′ whenever j′ <a j since
xjP is selected as colour. This implies that xj′a = 0 whenever j′ <a j: if xj′a > 0 would hold, then by
adding a to P ′j′ we would obtain an inequality that is violated by (x, y). Again, this means that P is not
blocking for commodity j. ♦

We obtained that there is no blocking quasi-path, so y is a stable multicommodity flow.

We remark that even if the capacities are integer, there might be no integer stable multicommodity
flow. In fact, for any integer N there is an instance where there is no stable solution with denominators
at most N . As an example, consider the network consisting of nodes v1, . . . , vn and arcs vivi+1 (i ∈ [n]),
where we use the notation vn+1 = v1. There are n commodities; the sources and sinks are defined by
sj = vj+1, tj = vj , and the capacity cj is 1 on all arcs except for vjvj+1 where it is 0. This means that
commodity j has a unique quasi-path from sj to tj , namely (vj+1, vj+2, . . . , v1, . . . , vj), so the preference
orders at the nodes do not play any role. The cumulative capacity c is 1 everywhere. The preference order
at arc a = vivi+1 is defined by i− 1 >a · · · >a 1 >a n >a · · · >a i+ 1 (commodity i does not appear in
the ordering because it has capacity 0 on this arc). We claim that the only stable multicommodity flow is
obtained by setting f j(a) = 1

n−1
on every arc a except for vjvj+1. Indeed, the all-zero flow is not stable,



Algorithms 2013, 6 167

and if f is a nonzero feasible multicommodity flow different from the above, then there must be an index
j such that commodity j has positive flow and the arc vjvj+1 is unsaturated. It can be checked that the
path (vj+2, vj+3, . . . , v1, . . . , vj+1) is blocking with respect to commodity j + 1.

3. PPAD-Hardness

In this section, we prove that it is PPAD-hard to find a stable multicommodity flow. This is true
even if the digraph is acyclic, a special case relevant for example in economic applications like supply
chains (see [1]). The problem that we reduce to it is the following stable fractional hypergraph matching
problem. We are given a hypergraph H = (V, E), and for every node v ∈ V a linear order ≺v on the
hyperedges containing v. A fractional matching of H is a vector x ∈ RE+ such that∑

e3v

xe ≤ 1 for every v ∈ V .

A fractional matching is stable if for every e ∈ E there exists v ∈ e for which∑
e′�ve

xe′ = 1 .

Kintali et al. [8] showed that finding a stable fractional hypergraph matching is PPAD-complete. We
reduce this problem to the stable multicommodity flow problem in order to prove the following theorem.

Theorem 3.1. It is PPAD-hard to find a stable multicommodity flow in a multicommodity network with
preferences, even if the network is acyclic.

Proof. Let (H = (V, E),≺) be an instance of the stable fractional hypergraph matching problem. We
use the notation V = {v1, v2, . . . , vn} and |E| = m. We construct a network whose node set consists
of nodes se, te (e ∈ E) and v′i, v

′′
i (i ∈ [n]). There are m commodities, one corresponding to each

hyperedge e ∈ E , with source se and sink te. The arc set of the network contains the arcs v′iv
′′
i (i ∈ [n])

with cumulative and individual capacities all 1. Furthermore for each hyperedge e, whose elements
are vi1 , vi2 , . . . , vik with increasing indices, we add the arcs sev′i1 , v′′i1v

′
i2
, . . . , v′′ik−1

v′ik , v′′ikte. On these
edges we set the cumulative capacity and the capacity of the commodity e to 1, and the other individual
capacities to 0.

By the construction, each commodity has only one possible path, so we do not have to define
precedence orderings for the nodes. In addition, only the arcs v′iv

′′
i can be used by more than one

commodity, so it is enough to define precedence orderings for these arcs: let the ordering <v′iv
′′
i

be
the same as ≺vi

.
It is easy to see that the feasible multicommodity flows of this network correspond to the fractional

matchings of the hypergraph H . Furthermore, the stability of a multicommodity flow is equivalent to the
stability of the corresponding fractional matching. Since the constructed network is acyclic, this proves
the theorem.
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4. Open problems

It was shown in the previous section that finding a stable multicommodity flow is hard. The proof
relies on the use of individual capacities, which enables the restriction of a commodity to a subset of the
arcs. It is open whether the problem remains PPAD-hard if there are no individual capacities. Another
interesting question is the complexity of the problem if there are only a constant number of commodities.
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