
Algorithms 2013, 6, 136-160; doi:10.3390/a6010136
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Review

Algorithms for Non-Negatively Constrained Maximum
Penalized Likelihood Reconstruction in Tomographic Imaging
Jun Ma

Department of Statistics, Macquarie University, North Ryde, New South Wales 2109, Australia;
E-Mail: jun.ma@mq.edu.au; Tel.: +61-2-9850-8548; Fax: +61-2-9850-7669

Received: 28 November 2012; in revised form: 18 February 2013 / Accepted: 19 February 2013 /
Published: 12 March 2013

Abstract: Image reconstruction is a key component in many medical imaging modalities.
The problem of image reconstruction can be viewed as a special inverse problem where
the unknown image pixel intensities are estimated from the observed measurements. Since
the measurements are usually noise contaminated, statistical reconstruction methods are
preferred. In this paper we review some non-negatively constrained simultaneous iterative
algorithms for maximum penalized likelihood reconstructions, where all measurements are
used to estimate all pixel intensities in each iteration.
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1. Introduction

Image reconstruction in medical imaging, in general, considers estimating pixel intensities or
attenuations from measurements obtained from an imaging system. For example, for positron emission
tomography (PET), the measurements are obtained according to the procedure summarized below;
see [1,2] for more details. A type of radioactive isotope is introduced into the body of a patient and,
due to the decay of radioisotope, it emits positrons. Each positron moves in the body for a small distance
(usually less than 1 mm) and then interacts with an electron to produce a pair of gamma photons that
travel in almost opposite directions. The scanning device in the imaging system can detect each pair of
gamma photons with a certain probability and all such detections form the measurements that can appear
in a histogram or a list form [3]. It is usually assumed that the detection probabilities are known and they
can be pre-computed and stored or computed on-the-fly.
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Note that a special feature of measurements is that they are contaminated by noises, which can be a
severe problem particularly if each measurement is small in value due to dose safety limit. It is possible
that, if the noises are not properly addressed, the reconstructed image can be distorted by excessive
noises. For example, for low dose X-ray CT (a type of transmission tomography), the metal streak artifact
(e.g., [4]) can be a severe problem for the traditional filtered backprojection method. Statistical iterative
reconstruction methods, due to their ability to model the physics and measurements more accurately, are
capable to reduce metal streak artifacts [5].

To deal with the noise contamination problem, statistical image reconstruction methods in emission,
transmission, X-ray CT, etc. have been developed based on specified probability models for
measurements. For example, for single photon emission computed tomography (SPECT), possible
options include: weighted least squares (equivalent to variable variance Gaussian) [6], fixed variance
Gaussian [7] and Poisson [8] models. These models can also be used for transmission scans.
Since accidental coincidences are the main source of background noise in PET, most PET scans are
precorrected for accidental coincidences by real-time subtraction of the coincidences in the delayed
window [9]. For randoms-precorrected PET scans, possible measurement models are Gaussian, ordinary
Poisson and shifted Poisson [9], and all of these are just approximations as the true probability density
function (pdf) for the measurements is difficult. Shifted Poisson is also used to model X-ray CT
measurements [10].

Different algorithms have been proposed to maximize their corresponding objective functions. For
example, for emission tomography, the expectation-maximization (EM) algorithm [8] is designed to
maximize the log-likelihood formulated from Poisson distributed measurements, or the iterative space
reconstruction algorithm (ISRA) [7] for maximizing the log-likelihood formulated from Gaussian (with
fixed variances) distributed measurements. An attractive aspect of both EM and ISRA is that they are
very easy to implement and both respect the non-negativity constraint on the reconstructions. However,
if the objective function contains a penalty term, which is normally used to smooth the reconstruction,
then both EM and ISRA become impractical as they involve, in each iteration, a non-linear system
of equations that is tedious to solve exactly due to the large number of unknowns in these equations.
Moreover, the penalty function also adds an extra inconvenience when searching for a non-negative
solution is desirable.

To simplify notations, both the measurements and the unknown image are lexicographically ordered
into vectors. More specifically, we use y = (y1, . . . , yn)T to present the measurement vector and
x = (x1, . . . , xn)T to denote the unknown image vector, where superscript T denotes matrix transpose.
Note although the notations are unified for different reconstruction problems in this paper, the meaning
of these notations, such as x and y, can be different for different imaging modalities. Vectors y and
x are related through a system matrix A; see Equation (4) below for some examples. For tomographic
reconstruction problems, matrix A is usually assumed known so its estimation is not covered by this
paper. Rather, we focus on how to estimate x from the observed y and the known system matrix A. We
denote the estimate of x by x̂.

Statistical reconstruction x̂ obtained by maximum penalized likelihood (MPL) (also known as
maximum a posteriori (MAP)) is defined by

x̂ = arg maxx≥0Ψ(x) (1)
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where Ψ(x) is an objective function derived from the probability distribution for measurements and the
penalty function. When the yi’s are assumed independent (given x), the penalized likelihood objective
function is

Ψ(x) = l(x)− hJ(x) (2)

where l(x) is the log-likelihood function given by

l(x) =
n∑
i=1

li(µi(x); yi) (3)

Here h > 0 is the smoothing parameter and J(x) is the penalty function used to smooth x̂. In
Equation (3), li denotes the log-density function for measurement yi, and µi is a function of x ∈ Rp

+

(here Rp
+ denotes the non-negative orthant of Rp) representing the mean measurement of camera bin i.

Examples of µi include

µi(x) =

{
ηi(x) + ri emission
bie
−ηi(x) + ri transmission

(4)

where ηi(x) = Aix with Ai being the ith row of matrix A, bi is the known blank scan counts of the
ith detector and ri the known mean background counts. Another example is polyenergetic transmission
scans (such as X-ray CT) where

µi(x) =
M∑
m=1

bime
−Aixm + ri (5)

and here xm = (x1m, . . . , xpm)T denotes the attenuation map corresponding to the m-th energy
spectrum, x is a vector formed by the xm’s and bim is the blank scan count from energy spectrum m.

In Equation (3) the notation li(µi; yi) is used to emphasize that li is a function of µi and it also involves
measurement yi. We can also write this function as li(ηi) or li(x) in different contexts when there is no
ambiguity. However, the functional properties of li may change with respect to its different arguments.
For example, if assuming yi follows a Poisson distribution for either emission or transmission scans, then

li(µi) = −µi + yi log µi (6)

This is clearly a concave function of µi for both emission and transmission cases. However, for li(x)

(treated as a function of x), it may be no longer concave for transmission but still concave for emission
scans. Concavity is an important property exploited by the optimization transfer algorithms.

Let µ be an n-vector of all µi. The first term of Equation (2), i.e., l(x), measures similarity
between y and µ. Different probability distributions have been used to model yi even under the
same imaging modality. For example, for emission tomography, if assuming the Poisson model for yi
(i.e., yi ∼ Poisson(µi)) then li is given by Equation (6), or if considering the weighted least squares then

li = −(yi − µi)2/wi (7)

where wi is the weight. When wi = µi we have the weighted least squares model as suggested in [11].
Another example in emission (or transmission) tomography is the randoms-precorrected PET scan
(assume no scattering to simplify). In this context, the observed measurements are yi = yPrompt

i − yDelay
i ,
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where yPrompt
i and yDelay

i (both unavailable directly) denotes the number of coincidences of the prompt
and delayed windows respectively. Although we can assume yPrompt

i ∼ Poisson(Aix + ri) and
yDelay
i ∼ Poisson(ri) and that they are independent, the exact distribution of yi cannot be derived directly

(e.g., [9]). An approximate probability model suggested in [9] is the shifted Poisson distribution, namely
yi + 2ri ∼ Poisson(Aix+ 2ri), which gives

li = −(Aix+ 2ri) + (yi + 2ri) log(Aix+ 2ri) (8)

or the weighted least squares given by

li = −(yi − Aixi)2/(Aix+ 2ri) (9)

Note that the shifted Poisson approximation matches the first two moments with the true probability
model for yi + 2ri when both the prompt and delayed measurements are assumed independent and
follow Poisson distributions.

In this paper, we present and discuss several important non-negatively constrained penalized
likelihood reconstruction algorithms. When designing a reconstruction algorithm in tomographic
imaging, one considers the following important issues: (i) the algorithm is computationally efficient, and
ideally it involves only forward-projection (e.g., Ax) and back-projection (e.g., ATy) operations; (ii) the
algorithm can be easily applied to different measurement probability models and imaging modalities;
(iii) the algorithm can impose the non-negativity constraint; (iv) the algorithm converges fast. Our
discussions on the algorithms in this paper will mainly focus on these points.

In tomographic imaging, it is important to produce smoothed reconstructions as severe noise in a
reconstruction can cause false diagnoses. Smoothing can generally be achieved by one of the following
five practices: (i) early termination of the iterations (e.g., [12]); (ii) MPL reconstructions with an
appropriate smoothing parameter (e.g., [13]); (iii) functional representation of the unknown image by
a set of smooth basis functions (e.g., [14]); (iv) post smoothing of the reconstruction within each
iteration (e.g., [15]) or after all iterations ([16]); and (v) pre-smoothing of the camera data (i.e., sinogram)
followed by filter backprojection (FBP) (e.g., [17,18]). We focus on the penalized likelihood approach
to smoothing in this paper. In Equation (2), the smoothing parameter h balances two conflicting targets:
fidelity of the µis to the yis and smoothness of x. Although an appropriate choice of h is important for
achieving a reconstruction with balanced fidelity and smoothness, we will not consider how to estimate
h in this paper. A penalty function J(x) is used to smooth or regulate the estimate x̂. Usually, J(x)

takes the form of

J(x) =

p∑
j=1

ρ(Cjx) (10)

where Cjx represents a neighborhood operation (such as the first or second order difference) on pixel
j, and function ρ(·) measures the magnitude of Cjx. A common choice of ρ is the quadratic function:
ρ(v) = 1

2
v2. Generally, a quadratic penalty tends to produce images with over-smoothed edges. Possible

edge preserving penalties include total variation (TV) (e.g., [19]) Huber [20] and hyperbolic functions
(e.g., [21]). Note that ρ(·) is convex for all these options.

The optimal choice of the penalty function J and the smoothing parameter h are unsolved problems
in image processing and will not be further elaborated in this paper. We emphasize that smoothing by
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MPL indeed produce visually improved reconstructions over the tradition filtered-backprojection method
particularly in dose-limited tomography such as low dose X-ray CT. The edge preserving penalties are
extremely useful, such as TV and Huber penalties; see [22–24]. However, the MPL reconstructions
can have unnatural noise textures very different from the familiar filtered-backprojection method. Its
impact on diagnostic tasks is still unknown and this is an active research area; see [25] for examples
and discussions.

We adopt the following notations throughout this paper. Let x(k) be the estimate of x obtained at
iteration k of an algorithm. The notation ∇b(·) indicates the derivative of function b with respect to
the variable in the brackets. For example, ∇b(Aix) represents the derivative of b with respect to Aix
and ∇b(x;x(k)) the derivative of b with respect to x. We use ∇jb(x) to denote the derivative of b with
respect to xj , the j-th element of vector x. We also let ∇b(x(k)) and ∇jb(x

(k)) represent, respectively,
∇b(x) and ∇jb(x) evaluated at x = x(k).

Non-negatively constrained MPL image reconstruction algorithms can be classified into simultaneous
and block-iterative (a.k.a. ordered subset (OS)) algorithms. For simultaneous algorithms, all elements
in y are used to update x in each iteration, and for block-iterative algorithms, distinct portions of y are
used in turn to update x. We discuss in this paper some simultaneous algorithms for non-negatively
constrained MPL reconstructions, and the block-iterative algorithms are not included in our discussions.
The rest of this paper is arranged as follows. The expectation-maximization algorithm for emission
tomography is discussed in Section 2. Section 3 explains the alternating minimization algorithm
designed specifically for transmission tomography. Section 4 contains explanations on the optimization
transfer algorithms and their applications to tomographic reconstructions. The multiplicative iterative
(MI) algorithms for tomographic imaging are provided in Section 5 and the Fisher scoring based Jacobi
or Gauss–Seidel over-relaxation algorithms are presented in Section 6. Section 7 explains another
Gauss–Seidel method named the iterative coordinate ascent algorithm. Finally, Section 8 includes
discussions and remarks about this paper.

In this paper we focus on explaining and summarizing different non-negatively constrained
tomographic imaging algorithms. Numerical comparisons of some of these algorithms are available
in [26], and therefore will not be given in this paper.

2. EM Algorithm for Maximum Likelihood Reconstruction in Emission Tomography

The expectation-maximization (EM) algorithm [27] is a statistical algorithm for iteratively computing
maximum likelihood estimates when data contain random missing values. Here “random” means these
missing values do not provide extra information about the parameters we wish to estimate. We first give
a brief summary of the EM algorithm below.

Since there exist the missing and the observed (or incomplete) components, we can define the
complete data set as a combination of the incomplete and the missing data. Note, however, that our
aim is to estimate the unknown parameters by maximizing the log-likelihood of the incomplete data.
The rationale for the EM algorithm is that if maximizing the incomplete data likelihood is difficult
while maximizing the complete data likelihood is easy, then EM can be used to compute iteratively
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the maximum of the incomplete data likelihood by maximizing the complete data likelihood in each
iteration.

Let C be the complete data set given by C = [Y ,M], where Y denotes the incomplete data andM the
missing data. Let lC(x) be the log-likelihood based on the complete data C and l(x) the log-likelihood
of the incomplete data Y , where x is a p-vector for the unknown parameters. Let x̂ be the maximum
likelihood (ML) estimate of x. Then iteration k + 1 of the EM algorithm comprises two steps:

1. E-Step: Compute the conditional expectation of the complete data log-likelihood given the
incomplete data and x(k), and denote this function by

Q(x;x(k)) = E(lC(x) | Y ,x(k)) (11)

2. M-Step: Update the x estimate by maximizing the Q function, namely

x(k+1) = argmax
x

Q(x;x(k)) (12)

One major advantage of EM is that it guarantees, under certain regularity conditions, that the incomplete
data log-likelihood l(x) increases in consecutive iterations before convergence. Note that EM requires
availability of the Q function in a closed form; otherwise, a Monte-Carlo E-step can be used to replace
the E-step [28].

The EM algorithm was first applied to emission tomograph by Shepp and Vardi [8] and Lange and
Carson [29]. Both papers adopt the Poisson model for emission counts, namely yi are independent
Poisson random variables with mean µi = Aix. This model assumes ri = 0; otherwise, we can depict yi
as the value after subtracting ri from the bin i measurement. From this Poisson model, we can formulate
the complete data as C = {yij : yi =

∑p
j=1 yij}, where yij follows the Poisson distribution with mean

µij = aijxj . Clearly, each yij represents the unknown portion of measurement on camera bin i attributed
to image pixel j. The corresponding complete data log-likelihood is

lC(x) =
n∑
i=1

p∑
j=1

{−µij + yij log µij} (13)

and the corresponding Q function is

Q(x;x(k)) =
n∑
i=1

p∑
j=1

{
−µij + y

(k)
ij log µij

}
(14)

where y(k)
ij = E(yij | yi,x(k)). Since the conditional distribution of yij | yi is Binomial(yi;µij/µi),

we have y(k)
ij = yiaijx

(k)
j /

∑p
t=1 aitx

(k)
t . Thus after solving ∇jQ(x;x(k)) = 0, the M-step of the EM

algorithm gives the following updating formula for x:

x
(k+1)
j =

x
(k)
j∑n

i=1 aij

n∑
i=1

aijyi∑p
t=1 aitx

(k)
t

(15)

for j = 1, . . . , p. It has been pointed out in [23,30] that formula (15) can also be explained by the
Bayes conditional probability formula. This EM algorithm possesses the following properties making it
attractive for emission tomography; they are:
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1. If the initial x(0) ≥ 0 then x(k) ≥ 0 for all k ≥ 1; i.e., it automatically satisfies the non-negativity
constraint on x.

2. The algorithm is easy to implement as it only involves forward- and back-projections.
3. The updating formula in Equation (15) increases the incomplete data log-likelihood: l(x(k+1)) ≥
l(x(k)), where equality holds only when the iteration has converged.

4. x(k) satisfies
∑

i µ
(k)
i =

∑
i yi, where µ(k)

i is µi with x = x(k). Thus the x estimate at any iteration
satisfies that the total expected and the total observed counts are equal.

The above EM is easy to implement and possesses some attractive properties on the
reconstructions. This algorithm, however, is restricted only to emission tomography with Poisson
distributed measurements. It cannot be easily extended to other reconstruction tasks. For example,
application of the EM algorithm to transmission tomography does not lead to an exact updating formula
due to the fact that its M-step does not produce a closed-form solution; see [29]. Another limitation is
that this EM algorithm can only be used for maximum likelihood reconstructions, and its application
to the MPL reconstruction will not in general result in closed-form updating formula. To rectify this
problem, Green [31] developed a one-step-late (OSL) algorithm for the MPL reconstruction by replacing
x in the derivative of the penalty function by its current estimate x(k), and therefore an “exact” solution
can still be accomplished. But this method suffers from the deficiencies that (i) the algorithm may be
non-convergent; and (ii) some estimates may be negative.

De Pierro [32] reproduced the EM updating formula using a totally different argument. In his
derivation, there is no missing data and hence no E-step. Although the algorithm is named “modified
EM”, it is not a real EM. In fact, this algorithm belongs to a more general class called the optimization
transfer algorithms, since the Poisson log-likelihood optimization problem is transferred to a simpler
optimization in each iteration. We will summarize the optimization transfer algorithms in the Section 4.

3. Alternating Minimization Algorithms for Transmission Tomography

We have explained in Section 2 that the EM algorithm is not directly suitable for transmission scans
as its M-step cannot be computed exactly. In this section, we summarize an alternating minimization
algorithm designed to solve the transmission tomographic problem, including X-Ray CT. This algorithm
is a generalization to the EM algorithm [33] and its application to transmission tomography can be found
in [34].

Following [34], we explain this algorithm using the polyenergetic transmission tomography example.
In this context, if assuming transmission scans follow Poisson distributions, the corresponding
log-likelihood is

l(z) =
n∑
i=1

{yi log µi(z)− µi(z)} (16)

where yi is the scan count of detector i and µi (now expressed as a function of vector z, which will
be defined below) is given by Equation (5). Moreover, elements of the attenuation map associated with
spectrum m, namely elements of xm in Equation (5), are further modeled by

xmj =
a∑
r=1

umrzrj (17)
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where j indexes pixels, r represents different types of materials, umr are known linear attenuation
coefficients and zrj are the unknown partial densities (e.g., [34]) we wish to estimate. In Equation (16),
z is a vector of size pa× 1 formed by column-wise stacking the vectors zj = (z1j, . . . , zaj)

T .
Define set

E = {qim; i = 1, . . . , n and m = 0, 1, . . . ,M} (18)

where
qim = bime

−
∑p

j=1 aij
∑a

r=1 umrzrj (19)

for m = 1, . . . ,M and qim equals the background noise ri for m = 0. Clearly, µi given in Equation (5)
can now be expressed as µi =

∑M
m=0 qim. Define another set

L = {pim : pim ≥ 0 and
∑
m

pim = yi; i = 1, . . . , n and m = 0, 1, . . . ,M} (20)

In [34], E is called the exponential family and L the linear family. Let p and q be the vectors created
from pim and qim respectively. It can be shown that the problem of maximizing the log-likelihood
Equation (16) can be re-written as

max
z

l(z) = min
q∈E

min
p∈L
{I(p ‖ q)} (21)

subject to zrj ≥ 0, where I(p ‖ q) is the I-divergence [35] given by

I(p ‖ q) =
n∑
i=1

M∑
m=0

(
pim log

pim
qim
− pim + qim

)
(22)

Thus, maximizing the log-likelihood in Equation (16) can be achieved iteratively. Assuming the
estimates p(k), q(k) and z(k) are obtained at iteration k, then iteration k + 1 contains two steps:

(i) compute p(k+1) by minimizing I(p ‖ q(k)) subject to p ∈ L;
(ii) compute q(k+1) by minimizing I(p(k+1) ‖ q) subject to q ∈ E .

Note that the second step is equivalent to minimizing I(p(k+1) ‖ q) over zrj ≥ 0 with qim being given by
the expression in Equation (19).

Minimizing I(p ‖ q(k)) over p ∈ L is easily achieved using the Lagrange multiplier, and the result is

p
(k+1)
im = q

(k)
im

yi∑M
m′=0 q

(k)
im′

(23)

On the other hand, direct optimization of I(p(k+1) ‖ q) over zrj ≥ 0 is an unmanageable task as the zrj’s
are mixed (i.e., not decoupled or separated from each other) within the objective function. One approach
to overcome this problem is by using a decoupled objective function representing an upper bound of the
original objective function. In fact, it can be shown that for qim given by Equation (19),

I(p(k+1) ‖ q) ≤
a∑
r=1

p∑
j=1

n∑
i=1

M∑
m=0

(
p

(k+1)
im aijumrzrj+q̂imaijumr

1

v0

ev0(ẑrj−zrj)

)
+ terms independent of zrj

(24)
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where v0 = max(i,m)

∑
j

∑
r aijumr and q̂im is an estimate of qim corresponding to the estimate ẑrj ≥ 0

of zrj . This inequality is obtained from the fact that I(p(k+1) ‖ q) is a convex function of zrj . Clearly,
zrj on the right hand side of Equation (24) are decoupled and thus their non-negatively constrained
optimizations will result in closed-form solutions. When we take ẑrj = z

(k)
rj , the optimal solution to

zrj is

z
(k+1)
rj = max

{
0, z

(k)
rj −

1

v0

log

(
w̃

(k+1)
r

ŵ
(k)
r

)}
(25)

where w̃(k+1)
r =

∑
i

∑
m aijurmp

(k+1)
im and ŵ(k)

r =
∑

i

∑
m aijurmq

(k)
im . We give some remarks about this

algorithm below.

Remarks

(1) This algorithm is designed for maximum likelihood estimation. However, it can be easily extended
to MPL where the penalty function must be convex and therefore can also be decoupled.

(2) This algorithm is developed for the likelihood function derived from the simple Poisson
measurement noise. Note that the alternating minimization algorithm was also developed
for a compound Poisson noise model in [36] and its comparison with the simple Poisson
alternating minimization was provided in [37]. For other measurement distributions, however,
the corresponding algorithms have to be completely re-developed.

(3) The convergence properties of the alternating maximization algorithm have been studied in [34].
Particularly, it is monotonically convergent under certain conditions.

(4) It will become clear in Section 5 (Example 5.3) that the multiplicative-iterative algorithm can be
derived more easily for this transmission reconstruction problem.

(5) The trick of decoupling the objective function using its convex (or concave) property is also the
key technique of the optimization transfer algorithms discussed in Section 4.

4. Optimization Transfer Algorithms

Details of the optimization transfer (OT) algorithm (also called the minorization–maximization (MM)
algorithm for maximizations) can be found in, for example, [38]. In this section we present this algorithm
briefly and explain its application in emission and transmission tomography.

The fundamental idea of the OT algorithm is that it employs a surrogate function to minorize (see the
definition below) the objective function Ψ(x) in each iteration, and then update the parameter estimate
by maximizing this surrogate function.

More specifically, a function Φ(x;x(k)) is said to minorize Ψ(x) at x(k) if it satisfies the following
“minorization” conditions:

(i) Ψ(x(k)) = Φ(x(k);x(k)), and
(ii) Ψ(x) ≥ Φ(x;x(k)) for all x.

Then at iteration k + 1, x is estimated by maximizing Φ(x;x(k)), i.e.,

x(k+1) = arg max
x≥0

Φ(x;x(k)) (26)
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If the exact maximum is not easy to obtain, we can find an x(k+1) by simply increasing Φ(x;x(k)), as
this will also guarantee that the monotonic condition stated below remains for Ψ(x).

An attractive property when using this surrogate function is that x(k+1) satisfies the monotonic
condition, namely

Ψ(x(k+1)) ≥ Ψ(x(k)) (27)

where equality holds only when the iteration has converged. This monotonic property can be easily
verified by the minorization conditions since

Ψ(x(k+1)) = Φ(x(k+1);x(k)) + Ψ(x(k+1))− Φ(x(k+1);x(k)) ≥ Φ(x(k);x(k)) + Ψ(x(k))− Φ(x(k);x(k))

= Ψ(x(k))

For implementation of the OT algorithm to medical imaging, a surrogate function Φ(x;x(k)) must be
determined. There exist different ways of choosing the surrogate function, such as those listed in [38].
We mainly consider two approaches in this paper: (i) the method based on the inequality on concave
functions (called the concave inequality hereafter); and (ii) the method based on quadratic lower bounds
(also known as paraboloidal surrogates [39]). These ideas are summarized below.

Let G(x) =
∑n

i=1 gi(Aix) be the objective function we wish to maximize, where Ai is the i-th row
of matrix An×p and x is a p-vector. For matrix A, we assume its elements aij are non-negative and∑

j aij 6= 0. We also assume that all gi(·) are concave functions. Let πij ≥ 0 be weights satisfying∑p
j=1 πij = 1. Then according to the concave inequality we have

gi(Aix) = gi

(
p∑
j=1

πij
aijxj
πij

)
≥

p∑
j=1

πijgi

(
aijxj
πij

)
(28)

There are different ways of choosing weights πij . For example, we can use πij = aijxj/Aix, which is
also adopted in [32]. In this case since each πij is a function of x, the surrogate function corresponding
to Equation (28) is

Φ(x;x(k)) =

p∑
j=1

n∑
i=1

aijx
(k)
j

Aix(k)
gi

(
Aix

(k)

x
(k)
j

xj

)
(29)

and it is easy to verify that this surrogate satisfies the minorization conditions. The right hand side of
Equation (29) is a weighted summation of functions gi, each involving a single xj only (i.e., decoupled),
and therefore maximization with respect to x of Φ(x;x(k)) can be achieved by a sequence of 1-D
optimizations. Another trick, due to De Pierro [32], uses the following concave inequality:

gi(Aix) = gi

(
p∑
j=1

πij[
1

πij
aij(xj − x(k)

j ) + Aix
(k)]

)
≥

p∑
j=1

πijgi

(
1

πij
aij(xj − x(k)

j ) + Aix
(k)

)
(30)

If the weights πij do not depend on xj , then Equation (30) leads to the surrogate function of

Φ(x;x(k)) =

p∑
j=1

n∑
i=1

πijgi

(
aij
πij

(xj − x(k)
j ) + Aix

(k)

)
(31)

which clearly also meets the minorization conditions. In Equation (31), the choice of πij is again flexible,
and one popular option is to use πij = aij/

∑
r air.
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The above two surrogates are developed based on the concave inequality. Another useful approach
is to employ a quadratic lower bound (e.g., [40]). Assume gi is twice differentiable with its second
derivative denoted by∇2gi. Let d(k)

i be a number such that d(k)
i ≤ ∇2gi(Aix) for all Aix > 0, then

gi(Aix) ≥ gi(Aix
(k)) + (x− x(k))TATi ∇gi(Aix(k)) +

1

2
(x− x(k))TATi d

(k)
i Ai(x− x(k)) (32)

The right hand side of Equation (32) is a parabola surrogate of gi and the condition on d(k)
i guarantees

that this function lies below gi. Unlike the previous surrogate functions, this surrogate is not separable
in x, and therefore its maximization with respect to x cannot be reduced to a series of 1-D problems.
To overcome this problem we can find another function surrogating the above parabola surrogate but
with separable x. Towards this, we denote the right hand side quadratic function of Equation (32) by
q
(k)
i (Aix). Since q(k)

i is concave in Aix, we can use either Equations (29) or (31) to find a surrogate to
q
(k)
i and the resulting algorithm is called the separable paraboloidal surrogate (SPS) algorithm [39]. For

example, corresponding to Equation (31), a separable parabola surrogate of q(k) is

Φ(x;x(k)) =

p∑
j=1

n∑
i=1

πijq
(k)
i

(
aij
πij

(xj − x(k)
j ) + Aix

(k)

)
(33)

A careful selection of the curvature b
(k)
i in Equation (32) can lead to fast convergence of the

SPS algorithm. Erdoǧan and Fessler [39] derived the optimal curvature for the SPS algorithm in
transmission tomography.

Next, we present two examples explaining how to implement the OT algorithm to emission and
transmission tomography.

Example 4.1 (OT for emission scans with Poisson noise).
In this example we explain the application of OT for MPL reconstruction in emission tomography,

where measurements are assumed to follow Poisson distributions. De Pierro’s modified EM (MEM) [32]
coincides with the method discussed below when ri = 0. Firstly, under the Poisson model for emission
scans, the penalized log-likelihood function is

Ψ(x) =
n∑
i=1

{−(Aix+ ri) + yi log(Aix+ ri)} − h
p∑
t=1

ρ(Ctx) (34)

where ρ is assumed a convex function. Let

li(ηi) = −(ηi + ri) + yi log(ηi + ri) (35)

where ηi = Aix. It is easy to verify that li is concave with respect to ηi, so we can use Equation (28) to
define its surrogate function. On the other hand, for the penalty function in Equation (34),−ρ is concave,
so we can use Equation (31) to construct its surrogate. Combining them together we have the following
surrogate for Ψ(x):

Φ(x;x(k)) =

p∑
j=1

[
n∑
i=1

aijx
(k)
j

η
(k)
i

li

(
η

(k)
i

x
(k)
j

xj

)
− h

p∑
t=1

πtjρ

(
ctj
πtj

(xj − x(k)
j ) + Ctx

(k)

)]
(36)
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where πtj = ctj/
∑

r ctr. Now

∇jΦ(x;x(k)) =
n∑
i=1

aij

(
−1 +

yi

xjη
(k)
i /x

(k)
j + ri

)
− h

p∑
t=1

ctj∇ρ
(
ctj
πtj

(xj − x(k)
j ) + Ctx

(k)

)
(37)

The equation ∇jΦ(x;x(k)) = 0 has a closed-form solution for xj when ρ(v) = v2/2 and ri = 0 for all
i. In this context, Equation (37) reduces to a quadratic function so we wish to solve for xj from(

h

p∑
t=1

c2tj
πtj

)
x2
j +

[
n∑
i=1

aij + h

p∑
t=1

(
ctjCtx

(k) −
c2tj
πtj

x
(k)
j

)]
xj − x(k)

j

n∑
i=1

aij
yi

η
(k)
i

= 0 (38)

subject to xj ≥ 0, and its analytic solution is readily available. If ri 6= 0 or ρ is not quadratic, the analytic
solution to Equation (37) does not exist. In this case, one can use an 1-D optimization method to solve it,
or alternatively, one may use a separable parabola surrogate rather than Equation (36). An example of the
latter is explained in the next example where the reconstruction problem is for transmission tomography.

Example 4.2 (OT for transmission scans with Poisson noise).
This example considers the application of OT to MPL reconstruction in transmission tomography. Our

explanations follow [39] closely. For transmission scans with Poisson noise, the penalized log-likelihood
is given by

Ψ(x) =
n∑
i=1

{
−(bie

−Aix + ri) + yi log(bie
−Aix + ri)

}
− h

p∑
t=1

ρ(Ctx) (39)

where ρ is convex. Let ηi = Aix and

li(ηi) = −(bie
−ηi + ri) + yi log(bie

−ηi + ri) (40)

Since li(ηi) is concave with respect to ηi, a separable parabola surrogate can be defined according to
Equation (33). For the first term of Equation (39) (i.e., the log-likelihood part), a separable parabola is
given by

Φ1(x;x(k)) =

p∑
j=1

n∑
i=1

πijq
(k)
i

(
aij
πij

(xj − x(k)
j ) + Aix

(k)

)
(41)

where
q
(k)
i (ηi) = li(η

(k)
i ) +∇li(η(k)

i )(ηi − η(k)
i ) +

1

2
d

(k)
i (ηi − η(k)

i )2 (42)

and here d(k)
i satisfies d(k)

i ≤ ∇2li(ηi) for all ηi ≥ 0. For the second term of Equation (39) (i.e., the
penalty part), let γt = Ctx and let the weights ξtj = ctj/

∑
r ctr. Its separable parabola surrogate is

Φ2(x;x(k)) =

p∑
j=1

p∑
t=1

ξtjw
(k)
t

(
ctj
ξtj

(xj − x(k)
j ) + Ctx

(k)

)
(43)

where
w

(k)
t (γt) = ρ(γ

(k)
t ) +∇ρ(γ

(k)
t )(γt − γ(k)

t ) +
1

2
e
(k)
t (γt − γ(k)

t )2 (44)
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Here e(k)t is chosen such that e(k)t ≥ ∇2ρ(γt) for all γt in its range; this curvature e(k)t ensures that
w

(k)
t (γt) lies above ρ(γt). Aggregating Equations (41) and (43) we obtain a separable parabola surrogate

for Ψ(x):
Φ(x;x(k)) = Φ1(x;x(k))− hΦ2(x;x(k)) (45)

We have

∇jΦ(x;x(k)) =
n∑
i=1

aij

[
∇li(η(k)

i ) +
d

(k)
i aij
πij

(xj − x(k)
j )

]

− h
p∑
t=1

ctj

[
∇ρ(γ

(k)
t ) +

e
(k)
t ctj
ξtj

(xj − x(k)
j )

]
(46)

and for this example

∇li(η(k)
i ) = bie

−η(k)
i

(
− yi

bie−η
(k)
i + ri

+ 1

)
(47)

Let ai· =
∑

r air and ct· =
∑

r ctr. The solution of ∇jΦ(x;x(k)) = 0, subject to xj ≥ 0, is given by
x

(k+1)
j = max{0, x̃(k+1)

j }, where

x̃
(k+1)
j = x

(k)
j −

∑n
i=1 aij∇li(η

(k)
i )− h

∑p
t=1 ctj∇ρ(γ

(k)
t )∑n

i=1 aij(ai·d
(k)
i )− h

∑p
t=1 ctj(ct·e

(k)
t )

(48)

This is in fact a special gradient algorithm with a diagonal preconditioning matrix.

5. Multiplicative Iterative Algorithms

The OT algorithms presented in the last section have the following important achievements: (1) they
manage to transform a high dimensional optimization problem into a series of 1-D optimizations; (2) due
to 1-D optimizations, the non-negativity constraints can be easily enforced by simply resetting negative
estimates to zero in each iteration; (3) the surrogate given by the separable parabola approach is general
enough to be applicable to different tomographic reconstructions. A limitation of OT is that it requires
all li(·) (log-density) and −J(·) (negative penalty) to be concave functions.

In this section we discuss a competitive alternative to the OT method called the multiplicative iterative
(MI) algorithm; its application to tomographic imaging can be found in [26] and to box-constrained
image processing in [41].

The main motivation of the MI algorithm is that it can be easily derived under different imaging
modalities and different measurement noise models. Moreover, for some difficult penalties, such as
TV, or even non-convex penalties [42], MI can be easily implemented to solve the corresponding
optimization problems.

A general MI updating formula can be developed suitable for all tomographic reconstruction problems
regardless of the mean function model, measurement probability distribution and penalty function. The
simulation study reported in [26] reveals that MI has competitive convergence speed when compared
with OT and other reconstruction algorithms. The MI algorithm does not require concavity of the
functions li and−J and therefore is more general than the OT algorithm. It requires existence of the first
derivatives of li(·) and J(·). It is possible that the objective function Ψ(x) in Equation (2) has multiple
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local maxima. In this case, MI finds one of the local non-negative maxima, depending on the starting
value of the algorithm.

Here are some notations needed to explain the MI algorithm. For a function b(z), let b(z)+ be the
positive component of b(z) and b(z)− the negative component so that b(z) = b(z)+ + b(z)−. For a
number b, Let [b]+ = max(0, b) and [b]− = min(0, b) so that b = [b]+ + [b]−. Thus, for the numerical
value of function b(·) at point z∗, we can also write b(z∗) = [b(z∗)]+ + [b(z∗)]−.

We develop the MI algorithm from the Karush–Kuhn–Tucker (KKT) necessary conditions for the
non-negatively constrained optimization of Ψ(x). They are:

∇jΨ(x) = 0 if xj > 0 and (49)

∇jΨ(x) ≤ 0 if xj = 0 (50)

for j = 1, . . . , p. Therefore, we aim to solve for x from

xj

(
n∑
i=1

∇li(µi)∇jµi(x)− h∇jJ(x)

)
= 0 (51)

Note that the expression inside the brackets of Equation (51) represents ∇jΨ(x), and xj is included in
Equation (51) to reflect the conditions in Equations (49) and (50).

The key step in developing the MI algorithm is to rearrange Equation (51) such that its positive and
negative terms appear on different sides of the Equation (51). Hence we rewrite Equation (51) as

xj

{
−

n∑
i=1

(∇li(µi)+∇jµi(x)− +∇li(µi)−∇jµi(x)+) + h[∇jJ(x)]+

}

= xj

{
n∑
i=1

(∇li(µi)+∇jµi(x)+ +∇li(µi)−∇jµi(x)−)− h[∇jJ(x)]−

}
(52)

This equation naturally suggests the following fixed point algorithm to update x:

x
(k+1/2)
j = x

(k)
j

δ
(k)
j1 + ε

δ
(k)
j2 + ε

(53)

where δ(k)
j1 and δ(k)

j2 denote respectively the right and left hand side of Equation (52), namely,

δ
(k)
j1 =

n∑
i=1

{∇li(µ(k)
i )+∇jµi(x

(k))+ +∇li(µ(k)
i )−∇jµi(x

(k))−} − h[∇jJ(x(k))]− (54)

and

δ
(k)
j2 = −

n∑
i=1

{∇li(µ(k)
i )+∇jµi(x

(k))− +∇li(µ(k)
i )−∇jµi(x

(k))+}+ h[∇jJ(x(k))]+ (55)

and ε is a small positive constant, such as ε = 10−5, used to avoid zero denominate of Equation (53). Note
that the ε value does not affect where the algorithm converges to. As both numerator and denominator
of Equation (53) are positive, x(k+1/2)

j ≥ 0 whenever x(k)
j ≥ 0.
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In Equation (53) the updated xj is denoted by x(k+1/2)
j indicating this is not the final estimate for

iteration k + 1. In fact, this update does not ensure monotonic increment of Ψ(x) and a line search step
must be included to rectify this problem. We first express Equation (53) as a gradient algorithm:

x
(k+1/2)
j = x

(k)
j + s

(k)
j ∇jΨ(x(k)) (56)

where s(k)
j = sj(x

(k)) with sj(x) = xj/(δj2(x) + ε). Note that s(k)
j > 0 when x(k)

j > 0. When x(k)
j = 0

we set s(k)
j = 0 only if ∇jΨ(x(k)) < 0 (since x(k)

j satisfies the KKT condition in this case); otherwise,
we set s(k)

j = ε̃/(δj2(x
(k)) + ε), where ε̃ is another small constant such as 10−2. Equation (56) explains

that x(k+1/2)
j emanates from x

(k)
j in the gradient direction of Ψ with a non-negative step size s(k)

j . For the
line search step, the search direction is d(k) = x(k+1/2) − x(k) with α(k) > 0 denoting the line search
step size. Sine α(k) ≤ 1 guarantees x(k+1) ≥ 0, we only search in the fixed range of 0 < α(k) ≤ 1. After
including a line search step x(k+1) is obtained according to

x(k+1) = x(k) + α(k)d(k) (57)

Due to the fixed search interval, this line search is remarkably simple. One simple and efficient search
strategy is provided by the Armijo’s rule (e.g., [43]). Armijo line search is a finite terminating algorithm.
Briefly, it starts with α = 1, and for each α it checks if the following Armijo condition is satisfied:

Ψ(x(k) + αd(k)) ≤ Ψ(x(k))− ξα∇Ψ(x(k))Td(k) (58)

where 0 < ξ < 1 is a fixed parameter such as ξ = 10−2. If Equation (58) is true then stop; otherwise,
reset α = ρα (such as ρ = 0.6) and reevaluate the Armijo condition (58). Note that the repeated
evaluations of Ψ(x(k) + αd(k)) can be made with Ad(k) being computed only once. Therefore, the line
search step does not add extra major computations to the MI algorithm.

Convergence properties of the MI algorithm are given in [26,41]. Briefly, under certain regular
conditions, MI converges monotonically to a local maxima satisfying the KKT conditions.

For the mean functions given in Equation (4), we have ∇jµi(x) = aij for emission and ∇jµi(x) =

−bie−Aixaij for transmission tomography; the corresponding updating formula (53) becomes:

x
(k+1/2)
j = x

(k)
j

∑n
i=1∇li(µ

(k)
i )+aij − h[∇jJ(x(k))]− + ε

−
∑n

i=1∇li(µ
(k)
i )−aij + h[∇jJ(x(k))]+ + ε

(59)

for emission tomography, and

x
(k+1/2)
j = x

(k)
j

−
∑n

i=1∇li(µ
(k)
i )−bie

−Aix
(k)
aij − h[∇jJ(x(k))]− + ε∑n

i=1∇li(µ
(k)
i )+bie−Aix(k)aij + h[∇jJ(x(k))]+ + ε

(60)

for transmission tomography. The derivative ∇li(µi) in the above formulae depends on the log-density
li(µi). Some examples are presented below.

Example 5.1 (MI for emission scans with Poisson noise).
For emission tomography with Poisson noise, we have the log-density function for yi:

li(µi) = −µi + yi log µi (61)
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where µi = Aix + ri. Thus ∇li(µi) = −1 + yi/µi, which gives ∇li(µi)+ = yi/µi and ∇li(µi)− = −1.
The updating formula (59) becomes, for j = 1, . . . , p,

x
(k+1/2)
j = x

(k)
j

∑n
i=1 aijyi/µ

(k)
i − h[∇jJ(x(k))]− + ε∑n

i=1 aij + h[∇jJ(x(k))]+ + ε
(62)

Note that when h = 0 (i.e., maximum likelihood reconstruction), ri = 0 and ε = 0, this algorithm
coincides with the EM algorithm for emission tomography. After line search, the estimate of x at
iteration k + 1 is given by Equation (57). In this algorithm, there is only one back-projection (for
the numerator of Equation (62)) and one forward-projection in each iteration; its computational burden
is the same as EM.

Example 5.2 (MI for randoms-precorrected PET emission scans).
Some PET scans produce measurements that have already been corrected for randoms [44] and their

measurements no longer follow Poisson distributions. We consider in this example the model weighted
least squares which is also used in [11] but under a different context, i.e., we reconstruct from randoms-
precorrected measurements yi by maximizing the objective Equation (2) where

li(µi) = − (yi − µi)2

(µi + 2ri)
(63)

Here µi is used to denote Aix, and for this µi formula (59) still applies. Now since

∇li(µi) =

(
yi + 2ri
µi + 2ri

)2

− 1 (64)

we have ∇li(µi)+ = [(yi + 2ri)/(µi + 2ri)]
2 and ∇li(µi)− = −1. The MI algorithm updates x first

according to

x
(k+1/2)
j = x

(k)
j

∑n
i=1 aij

(
yi+2ri

µ
(k)
i +2ri

)2

− h[∇jJ(x(k))]− + ε∑n
i=1 aij + h[∇jJ(x(k))]+ + ε

(65)

and then, after the line search step, computes x(k+1) according to Equation (57).

Example 5.3 (MI for polyenergetic transmission scans with Poisson noise).
Application of the MI algorithm to polyenergetic X-ray CT is again extremely easy. Under the

assumption of Poisson noise, the log-density for measurement yi is identical to Equation (61) but now
with µi =

∑M
m=1 bime

−
∑

j aij
∑

r umrzrj + ri; see Equation (17). In Example 5.1 we have already derived
∇li(µi)+ and ∇li(µi)− for the Poisson noise log-density. On the other hand, the derivative of µi with
respect to zrj (denoted by∇rjµi) is

∇rjµi = −
∑
m

bime
−
∑

j aij
∑

r umrzrjaijumr (66)

Thus, the updating formula for ployenergetic transmission is

z
(k+1/2)
rj = z

(k)
rj

∑n
i=1 aij

∑M
m=1 umrbime

−
∑

j aij
∑

r umrz
(k)
rj − h[∇jJ(z(k))]− + ε∑n

i=1 aij(yi/µ
(k)
i )
∑M

m=1 umrbime
−
∑

j aij
∑

r umrz
(k)
rj + h[∇jJ(z(k))]+ + ε

(67)
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for r = 1, . . . , a and j = 1, . . . , p. After the line search step specified in Equation (57), z(k+1) is
obtained. This iterative formula involves one forward- and two back-projections in each iteration, and
therefore it demands similar amount of computations when compared with the alternative minimization
algorithm in [34]. When h = 0, ri = 0 ε = 0 and m = 1, this MI algorithm is identical to the algorithm
given in [45] for maximum likelihood reconstruction in transmission tomography. Note that unlike the
optimization transfer and alternating minimization algorithms, the MI algorithm can be easily derived
for other objective functions, such as the weighted least-squares function.

The above examples demonstrate that the MI algorithms are easy to derive and to implement in
tomographic imaging. The line search step it requires does not incur significant computational burden.

6. Modified Fisher’s Method of Scoring Using Jacobi or Gauss–Seidel Over-Relaxations

In this section we elaborate on another non-negatively constrained method for tomographic imaging,
which is a modification to the standard Fisher’s method of scoring (FS) algorithm. This method is
developed based on the following steps. Firstly, the objective function Ψ(x) is approximated by a
quadratic function in each iteration, where the Fisher information matrix (e.g., [46]) is used to define
the quadratic term; secondly, an over-relaxation method, either the Jacobi over-relaxation (JOR) or
the Gauss–Seidel over-relaxation (also called the successive over-relaxation (SOR)), is employed to
solve approximately the linear system derived from zeroing the derivative of this quadratic function.
The resulting algorithms are called FS-JOR and FS-SOR and their detailed descriptions can be found
in [47,48]. Descriptions of the JOR and SOR methods are available, for example, in [49].

FS is a general optimization algorithm for computing maximum likelihood estimates. Its advantages
over the traditional Newton’s method have been documented in [50]. Briefly, FS iterations are well
defined due to the non-negativeness of the Fisher information matrix, but for the Newton’s method, the
negative Hessian matrix may not even be non-negative definite, making it unnecessarily proceed in the
uphill direction in some applications. Transmission tomography is an example where this problem for
the Newton’s method indeed occurs; see Example 6.2.

We assume the objective function Ψ(x) in Equation (2) is twice differentiable and let F (x) be the
Fisher information matrix, namely F (x) = E(−∇2Ψ(x)). At iteration (k + 1) of the Fisher scoring
algorithm, Ψ(x) is approximated by the following quadratic function:

Ψ(x) ≈ Ψ(x(k)) + (x− x(k))T∇Ψ(x(k))− 1

2
(x− x(k))TF (k)(x− x(k)) ≡ Ψ(k)(x) (68)

where F (k) denotes the Fisher information matrix at x(k). Then the x estimate is updated by constrained
maximization of Ψ(k)(x), namely

x(k+1) = arg max
x≥0

Ψ(k)(x) (69)

The KKT conditions for this optimization are

∇jΨ
(k)(x) = 0 if xj > 0 and (70)

∇jΨ
(k)(x) ≤ 0 if xj = 0 (71)



Algorithms 2013, 6 153

where
∇jΨ

(k)(x) = ∇jΨ(x(k))− F (k)
j (x− x(k)) (72)

Here F (k)
j denotes the j-th row of matrix F (k). The JOR and SOR methods solve, for j = 1, . . . , p,

∇jΨ
(k)(x) = 0 (73)

in different manners: JOR solves it by fixing all the x elements, except xj , at their estimates from the
last iteration (i.e., iteration k), but SOR solves it by fixing all the x elements, except xj , at their most
current estimates.

The above illustrations describe how to incorporate JOR or SOR sub-iterations into the FS algorithm.
In fact, in each iteration, JOR or SOR is used to solve approximately the linear system of equations
determined by the FS algorithm, and then this approximate solution is used as the starting value for
the next FS iteration. These new schemes modify the standard FS method, and are feasible for large
estimation problems.

Usually it suffices to run one JOR or SOR sub-iteration. But running more than one sub-iterations
is also attractive as it has the potential to reduce the computations for the entire optimization process.
Suppose within each Fisher scoring iteration we run m sub-iterations of JOR or SOR. The resulting
algorithms are called the m-step FS-JOR and m-step FS-SOR algorithms respectively. Let r be the
sub-iteration index for the over-relaxation method and x(k,r) the estimate of x at the r-th over-relaxation
sub-iteration of the k-th FS iteration. Let f (k)

jt be the (j, t)-th element of F (k). Assume f (k)
jj > 0 for all j.

At iteration k + 1, first set x(k,0) = x(k). If using JOR to solve Equation (73) we have

x
(k,r+1)
j = x

(k,r)
j + ω

1

f
(k)
jj

(
∇jΨ(x(k))−

p∑
t=1

f
(k)
jt (x

(k,r)
t − x(k)

t )

)
(74)

and if using SOR to solve we then have

x
(k,r+1)
j = x

(k,r)
j + ω

1

f
(k)
jj

(
∇jΨ(x(k))−

j−1∑
t=1

f
(k)
jt (x

(k,r+1)
t − x(k)

t )−
p∑
t=j

f
(k)
jt (x

(k,r)
t − x(k)

t )

)
(75)

where r = 0, . . . ,m − 1 and ω > 0 is the relaxation parameter. If any x(k,r+1)
j < 0 then it is reset to

zero. This resetting is correct since the only possibility for x(k,r+1)
j < 0 is that the expressions in the

round brackets of Equations (74) and (75) are negative since x(k,r)
j ≥ 0 and f (k)

jj > 0. Hence resetting
x

(k,r+1)
j to zeros assures that the FS-JOR and FS-SOR algorithms converge to, when they converge, the

solution satisfying the KKT conditions. At the end of the sub-iterations set x(k+1) = x(k,m). Note that
when m = 1, the last term in the round brackets of either Equation (74) or (75) becomes zero. Thus
1-step FS-JOR is basically a gradient algorithm and we can therefore replace ω by a line search step size
ω(k), where the search range is fixed at 0 < ω(k) ≤ 1 as this range will keep the estimate non-negative.

The relaxation parameter ω is used to achieve convergence of the FS-JOR and FS-SOR algorithms.
Results contained in [47] give convergence properties when n → ∞ and when the non-negativity
constraint is ignored. In fact in this context FS-SOR converges if 0 < ω < 2 and FS-JOR converges if
0 < ω < ξmax, where ξmax is the maximum eigenvalue of DF (x̂)−1/2F (x̂)DF (x̂)−1/2. Here x̂ is the
MPL solution.
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From the updating formulae given in Equations (74) and (75) we can see that both FS-JOR and
FS-SOR involve the gradient ∇Ψ(x) and the Fisher information matrix based operation F (x)δ. The
gradient is standard for most reconstruction algorithms, but the computation of F (x)δ requires more
careful consideration. It will become clear in Examples 6.1 and 6.2 that for tomographic reconstructions
F (x) usually exhibits as ATW (x)A+∇2J(x), where W (x) = diag(wx(x), . . . , wn(x)). It is not wise
to computeATW (x)A first as this involves multiplications of two huge matricesA andAT . For FS-JOR,
a feasible alternative is to use the forward projection to find Aδ first, then to multiply it with the diagonal
values of W to get W (x)Aδ, and finally to back-project W (x)Aδ to obtain F (x)δ (ignoring the penalty
term). This approach involves only one forward- and one back-projections in every sub-iteration. The
situation for FS-SOR is more complicated since δ changes with the pixel index j. The above approach
for FS-JOR cannot be used here as otherwise each FS-SOR sub-iteration will demand infeasible p pairs
of forward- and back-projections. To confront this problem, let

x
(k,r)
�j = (x

(k,r+1)
1 , . . . , x

(k,r+1)
j−1 , x

(k,r)
j , . . . , x(k,r)

p )T (76)

The Fδ part of Equation (75) involves A(x
(k,r)
�j − x(k)). Note that

Ai(x
(k,r)
�j − x(k)) = Ai(x

(k,r)
�j−1 − x(k)) + aij(x

(k,r+1)
j−1 − x(k,r)

j−1 ) (77)

so we can start with A(x
(k,r)
�0 − x(k)) ≡ A(x

(k,r−1)
�p+1 − x(k)) and obtain A(x

(k,r)
�j − x(k)) by applying

Equation (77). Although here the number of multiplications for Aδ (where vector δ varies with its
index j) becomes the same as Ax, it requires column access to the system matrix A, which can be a
problem if A is generated on-the-fly.

We next provide examples of applying FS-JOR and FS-SOR to emission and transmission
tomography.

Example 6.1 (Emission scans with Poisson noise).
For emission reconstruction with Poisson noise, the log-density of yi is given by Equation (61). Thus

for the corresponding object function Ψ(x) of Equation (2), its gradients are

∇jΨ(x) =
n∑
i=1

aij

{
−1 +

yi
µi

}
− h∇jJ(x) (78)

and its Fisher information matrix elements are

fjt = E[−∇2
jtΨ(x)] =

n∑
i=1

aijait
µi

+ h∇2
jtJ(x) (79)

where µi = Aix + ri, j and t = 1, . . . , p. Assuming we run only one sub-iteration for FS-JOR or
FS-SOR (i.e., m = 1), the FS-JOR iterative formula is

x̃
(k+1)
j = x

(k)
j + ω

1∑
i a

2
ij/µ

(k)
i + h∇2

jjJ(x(k))

(
n∑
i=1

aij(yi − µ(k)
i )/µ

(k)
i − h∇jJ(x(k))

)
(80)

and the FS-SOR formula is

x̃
(k+1)
j = x

(k)
j + ω

1∑
i a

2
ij/µ

(k)
i + h∇2

jjJ(x(k))

(
n∑
i=1

aij(yi − µ(k)
i )/µ

(k)
i − h∇jJ(x(k))

−
j−1∑
t=1

{
n∑
i=1

aijait/µ
(k)
i + h∇2

jtJ(x(k))

}
(x

(k+1)
t − x(k)

t )

)
(81)
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Then x(k+1)
j = max{0, x̃(k+1)

j }. The formula given in Equation (80) is just a gradient algorithm so ω
can be replaced by a line search step size ω(k) ∈ (0, 1]. Efficient computation of Equation (81) requires
column access to matrix A as explicated before. Hudson et al. [48] reported simulation results and a
real data application for emission reconstruction. They compared FS-JOR and FS-SOR with EM. The
computer time required per iteration for the EM and one-step FS-JOR algorithms were similar. By
comparison with the EM algorithm, FS-JOR and FS-SOR accelerated convergence when an appropriate
value of ω was used. Particularly, FS-SOR had a superior speed of convergence when ω = 1.

Example 6.2 (Transmission scans with Poisson noise).
For transmission reconstructions with Poisson noise, we can easily work out the gradient and Fisher

information matrix from its penalized likelihood function. The gradients are

∇jΨ(x) =
n∑
i=1

aijbie
−ηi

{
1− yi

µi

}
− h∇jJ(x) (82)

and the Fisher information matrix elements are

fjt = E[−∇2
jtΨ(x)] =

n∑
i=1

aijait(bie
−ηi)2

µi
+ h∇2

jtJ(x) (83)

where ηi = Aix, µi = bie
−ηi + ri and j and t = 1, . . . , p. Note that for this example, the Fisher

information matrix is non-negative but the negative Hessian matrix may not be non-negative, making the
Newton method non-applicable. Corresponding to m = 1, the FS-JOR iterative formula is

x̃
(k+1)
j = x

(k)
j + ω

1∑
i a

2
ij(bie

−η(k)
i )2/µ

(k)
i + h∇2

jjJ(x(k))

(
n∑
i=1

aijbie
−η(k)

i (−yi + µ
(k)
i )/µ

(k)
i

−h∇jJ(x(k))
)

(84)

and the FS-SOR formula is

x̃
(k+1)
j = x

(k)
j + ω

1∑
i a

2
ij(bie

−η(k)
i )2/µ

(k)
i + h∇2

jjJ(x(k))

(
n∑
i=1

aijbie
−η(k)

i (−yi + µ
(k)
i )/µ

(k)
i

−h∇jJ(x(k))−
j−1∑
t=1

{
n∑
i=1

aijait(bie
−η(k)

i )2/µ
(k)
i + h∇2

jtJ(x(k))

}
(x

(k+1)
t − x(k)

t )

)
(85)

Then x(k+1)
j = max{0, x̃(k+1)

j }. Again, Equation (84) is a gradient algorithm so that a line search can be
used, and efficient implementation of Equation (85) demands unpleasant column access to A.

This section explains the Fisher scoring based image reconstruction algorithms using JOR or SOR
sub-iterations. For these algorithms, any negative estimates in each iteration can be corrected by simply
resetting to zero, as this way of resetting enforces the KKT conditions. If only one sub-iteration is
used, FS-JOR is equivalent to a gradient algorithm. For efficient implementation of FS-SOR, it requires
column retrieval of the system matrix A, which can be infeasible for some reconstruction problems.
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7. Iterative Coordinate Ascent Algorithms

Another method using SOR is the method of iterative coordinate ascent (ICA) (or iterative coordinate
descent (ICD) for minimization problems). ICA was first implemented to tomographic imaging
in [51,52]. The basic idea of ICA is to apply SOR directly to the objective function Ψ(x), resulting
in a sequence of 1-D functions where each xj is associated with one of these 1-D functions. Then each
function is solved exactly or approximately to update the corresponding xj . More specifically, using the
SOR principle we can define a function for xj according to

ψ
(k+1)
j (xj) = Ψ(x

(k+1)
1 , . . . , x

(k+1)
j−1 , xj, x

(k)
j+1, . . . , x

(k)
p ) (86)

This is a function of xj only and we can update the xj estimate by

x
(k+1)
j = arg max

xj≥0
ψ

(k+1)
j (xj) (87)

Since this is a 1-D function, the constraint xj ≥ 0 can be easily enforced using, for example, the resetting
to zero approach.

One computational issue with ICA when applied to tomographic imaging is that it requires repeated
calculations of ηi(x) =

∑
j aitxt for all i when updating xj . This problem can be rectified by the

following approach. Let
xk�j = (x

(k+1)
1 , . . . , x

(k+1)
j−1 , x

(k)
j , . . . , x(k)

p )T (88)

Consider the evaluation of ηi(xk�j). Assuming the update of xj−1 is given by x(k+1)
j−1 = x

(k)
j−1 + δ

(k)
j−1, then

ai,j−1x
(k+1)
j−1 = ai,j−1x

(k)
j−1 + ai,j−1δ

(k)
j−1, and therefore

ηi(x
k
�j) = ηi(x

k
�j−1) + ai,j−1δ

(k)
j−1 (89)

This relationship explains that ηi(xk�j) can be cheaply computed using the ηi value before the xj update
plus a correction term. However, similar to FS-SOR, it necessitates column access to A. This can be a
potential issue if A is generated on-the-fly.

Next we use again the emission and transmission examples to elaborate the ICA algorithm.

Example 7.1 (Emission scans with Poisson noise).
Firstly, we define

x
(k)
(j) = (x

(k+1)
1 , . . . , x

(k+1)
j−1 , xj, x

(k)
j+1, . . . , x

(k)
p )T (90)

From the penalized log-likelihood function of emission measurements yi (see, for example,
Equation (34)), function ψj(xj) is given by

ψj(xj) =
n∑
i=1

{
−(ηi(x

(k)
(j)) + ri) + yi log(ηi(x

(k)
(j)) + ri)

}
− hJ(x

(k)
(j)) (91)

Since this is a non-quadratic function of xj , exact maximization is infeasible. We can find its approximate
optimization by running a single or multi- step of, for example, the Newton or Fisher scoring algorithm.
In this example we consider using the Fisher scoring algorithm to optimize ψj(xj) and call the resulting
algorithm ICA-FS. After a single step of Fisher scoring we have

x̃
(k+1)
j = x

(k)
j + ω

(k)
j

1∑
i a

2
ij/µi(x

k
�j) + h∇2

jjJ(xk�j)

(
n∑
i=1

aij(yi/µi(x
k
�j)− 1)− h∇jJ(xk�j)

)
(92)
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where µi(xk�j) = ηi(x
k
�j) + ri and ω

(k)
j is a line search step size enforcing ψj(x

(k+1)
j ) ≥ ψj(x

(k)
j ),

where equality holds only when the algorithm is converged. This monotonic condition eventually leads
to Ψ(x(k+1)) ≥ Ψ(x(k)). The update for xj is then x(k+1)

j = max{0, x̃(k+1)
j }.

Example 7.2 (Transmission scans with Poisson noise).
For this example we have

ψj(xj) =
n∑
i=1

{
−(bie

−Aix
(k)
(j) + ri) + yi log(bie

−Aix
(k)
(j) + ri)

}
− hJ(x

(k)
(j)) (93)

where x(k)
(j) is defined in Equation (90). The ICA-FS algorithm gives

x̃
(k+1)
j = x

(k)
j + ω

(k)
j

1∑
i a

2
ij

(
bie
−Aixk

�j

)2

/µi(xk�j) + h∇2
jjJ(xk�j)

×

(
n∑
i=1

aijbie
−Aix

k
�j
(
−yi/µi(xk�j) + 1

)
− h∇jJ(xk�j)

)
(94)

where µi(xk�j) = bie
−Aix

k
�j + ri, and then x(k+1)

j = max{0, x̃(k+1)
j }.

8. Conclusions

Image reconstruction from projections has wide applications, particularly in medical imaging.
Emission and transmission tomography and X-ray CT all fall into this category. Three types of
reconstruction methods are available: Fourier methods, algebraic methods and likelihood based
reconstruction methods. Our attention in this paper is on the penalized likelihood approaches.

In this paper we present and discuss several important simultaneous MPL reconstruction algorithms,
where the non-negativity constraint is enforced. The EM algorithm is limited to maximum likelihood
reconstruction problems in emission tomography and is difficult to extend to other imaging modalities
and probability models for the likelihood. One variation of EM, called the alternating minimization, is
developed for transmission tomography. Another variation of EM, called the OT algorithm, is suitable
for any imaging modalities and probability models, but its derivation is often cumbersome as the option
for the surrogate function is flexible. The OT algorithm based on the separable parabola surrogate is
relatively easy to implement to different tomographic imaging. The MI algorithm, on the other hand,
is easy to derive and to implement as its line search step is cheap to compute. Its convergence speed,
according to the simulation study, is similar to the separable parabola surrogate algorithm. The FS-JOR
and FS-SOR algorithms first apply the Fisher information matrix to obtain a quadratic approximation
to the objective function, and then optimize it using JOR or SOR schemes. Implementation of ICA-FS
reverses the order of FS and SOR in FS-SOR. For both FS-SOR and ICA-FS, their convergence speeds
are usually superior, but their potential problem is that both involves column retrieval of A, which may
not be pre-generated and stored.

For some of the algorithms covered in this paper, their corresponding block-iterative algorithms
have been developed. Block-iterative algorithms can usually achieve faster convergence than their
simultaneous counterpart. However, discussions of the block-iterative algorithms are not included in
this paper.
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