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Abstract: Grammar-based compression is a well-studied technique to construct a
context-free grammar (CFG) deriving a given text uniquely. In this work, we propose an
online algorithm for grammar-based compression. Our algorithm guarantees O(log2 n)-
approximation ratio for the minimum grammar size, where n is an input size, and it runs in
input linear time and output linear space. In addition, we propose a practical encoding, which
transforms a restricted CFG into a more compact representation. Experimental results by
comparison with standard compressors demonstrate that our algorithm is especially effective
for highly repetitive text.
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1. Introduction

Grammar-based compression [1] finds a small context-free grammar (CFG) that generates a given
string uniquely. Let us express grammar-based compression by an intuitive example. If a string
w contains many occurrences of a substring γ, we can replace all of them by a single variable A

which is associated with γ like A → γ. The text is thus compressed to a shorter one according
to the frequency of γ. The expression of grammar-compressed strings is simple, yet it is powerful
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because they can derive a string of its exponential length. In fact, it was recently reported that
grammar-based and LZ77-based [2] compressors can achieve effective compression for highly-repetitive
text [3–5] by comparison with entropy-based encoders. Grammar-compressed strings are also suitable
for accelerating string processing, for examples, combinatorial pattern matching [6–11], edit-distance
computation [12], q-gram computation [13,14], mining characteristic patterns [15,16], and so on. We
note above compressed string algorithms, mainly from theoretical approaches, are considered on the
straight-line programs (SLPs). An SLP is a CFG in the Chomsky normal form that derives a single
string. This situation is reasonable because any CFG deriving a single string can be straightforwardly
converted into an SLP without paying significant time and space penalties. The smaller a given CFG
is, the more these compressed string algorithms are accelerated to running time, so they desire effective
compression algorithms which can guarantee to produce small CFGs in any case. Also, we should pay
attention to working costs for the compression phase when we need to consider total time and space.
One of our interests is, therefore, to translate an input string into a good CFG under the conditions of
efficient working time and space.

In a theoretical sense, the NP-hardness and its approximation hardness for finding the smallest
CFG from the input text was proved [17]. For this reason, there exist many characteristic
compression algorithms proposed so far. In the grammar-based compression, some algorithms
based on greedy strategies are known to achieve high compression ratios for the real-world texts,
e.g., SEQUITUR [18], RE-PAIR [19], GREEDY [20], LFS2 [21], etc. Their upper bound of approximation
ratios were theoretically analyzed in [22]. The best approximation ratio among greedy algorithms
is O((n/ log n)1/2), where n is the input string length (In this paper, log stands for log2). On
the other hand, several algorithms achieving a logarithmic approximation ratio were proposed. For
the minimum grammar size g∗, the first O(log(n/g∗))-approximation algorithm was developed by
Charikar et al [22]. Independently, Rytter [23] presented anotherO(log(n/g∗))-approximation algorithm
using the suffix tree. Sakamoto [24] also proposed a linear-time O(log(n/g∗))-approximation algorithm
based on RE-PAIR. However, these algorithms require Ω(n) space and this weakness prevents us from
applying them to huge texts. This space complexity was improved by several multi-pass algorithms
over read/write streams. Sakamoto et al. [25] proposed the LCA algorithm that requires O(g∗ log g∗)

space with linear running time and O(log n log g∗)-approximation ratio. LCA was modified to achieve
O(log n log∗n)-approximation ratio withinO(n log∗n) running time [26], where log∗n, called the iterated
logarithmic function, is the number of times the log function is applied to n to produce a constant. On the
other hand, Gagie and Gawrychowski [27] proposed O(min(g∗,

√
n log n))-approximation algorithm in

a streaming model where the algorithm works in constant space and logarithmic passes over a constant
number of streams. Here, we must point out that these lightweight algorithms require large external
memory space for managing read/write streams, and thus the practical running time is affected by the
I/O response time. Moreover, the main results of approximation algorithms almost consist of theoretical
achievements and their practical compressive performance is either not known or worse than popular
compression programs.

Because of these factors, we assume more empirical situation. Many practical data compressors
mandate linear running time in the length of the input string. Ideally, a compressor should also be online;
that is, it processes the characters of the input string from left to right, one by one, with no need to know
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the whole string beforehand. Preferably, the space consumption throughout compression processing
should depend on the size of the compressed string, not the size of the string being compressed. We
thus focus on the compression with a restricted resource and develop an online algorithm preserving
a good approximation ratio. The proposed algorithm is based on LCA. Thanks to its simplicity, LCA
does not require special data structures and it runs in linear time and an economical space. The required
space by proposed algorithm is O(g∗ log2 n) and the approximation ratio is O(log2 n). The main task
of LCA is to replace long and frequent substrings with a common nonterminal within a smaller work
space than Ω(n). Thus, an obtained CFG is much smaller with highly repetitive texts, so we implement
the online LCA algorithm as a more practical compressor. To do this, we introduce a practical encoding
technique that cuts off the constant factor of the output grammar size. The proposed encoding is based
on the binary tree representation of CFGs. The space complexity of the improved LCA algorithm is
proportional to the size of the produced CFG. Therefore, it can be expected that the smaller work space
is required when the given text is extremely compressible. Our experiments show that the online LCA
achieves effective compression for highly-repetitive text compared with other standard compressors, and
the space consumption is smaller than the input size.

2. Preliminary

This section gives the notations and definitions for string and grammar-based compression.

2.1. Basic Notations

We assume a finite alphabet Σ for the symbols forming input strings throughout this paper. The set
of all strings over Σ is denoted by Σ∗, and Σi denotes the set of all strings of length just i. The length of
w ∈ Σ∗ is denoted by |w|, and the cardinality of a set C is similarly denoted by |C|.

Strings x and z are said to be a prefix and suffix of the string w = xyz, respectively. Also, x, y, z are
called substrings of w. The ith symbol of w is denoted by w[i]. For integers i, j with 1 ≤ i ≤ j ≤ |w|,
the substring of w from w[i] to w[j] is denoted by w[i, j].

A repetition is a string xk for a symbol x and an integer k ≥ 2. A repetition w[i, j] = xk is maximal
if w[i − 1], w[i + 1] 6= x. It is simply referred to by x+ if the length is unnecessary. Substrings w[i, j]

and w[k, `] are overlapping if i < k ≤ j < `. A string of length two is called a pair.

2.2. Grammar-Based Compression

A context-free grammar (CFG) is a quadruple G = (Σ, N,D, S) of disjoint finite alphabets Σ and
N , a finite set (a dictionary) D ⊂ N × (N ∪ Σ)∗ of production rules, and the start symbol S ∈ N .
Symbols in N are called nonterminals. A production rule A → b1, . . . , bk in D derives β ∈ (Σ ∪ N)∗

from α ∈ (Σ ∪ N)∗ by replacing an occurrence of A ∈ N in α with b1, . . . , bk, denoted by α ⇒ β.
Similarly we say that D derives β from α provided α⇒∗ β, where⇒∗ is the reflexive, transitive closure
of ⇒. If a string is derived from the start symbol, we also say that the CFG derives the string. In this
paper, we assume that any CFG is admissible [1]; that is G derives just one string in Σ∗ and for each
nonterminal A ∈ N , exactly one production rule A → α is defined in D. We also assume that any
A ∈ N is appropriate, that is, A → α,B → α ∈ D implies A = B. The size of G is the total length of
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strings on the right hand sides of all production rules, and is denoted by |G|. The aim of grammar-based
compression is formalized as a combinatorial optimization problem as follows:

Problem 1. GRAMMAR-BASED COMPRESSION

Input: A string w ∈ Σ∗.
Output: An admissible CFG G that derives w.
Measure: The size of G.

In the following, we assume that every admissible CFG is restricted such that the length of right hand
side of any production rule is two. Note that for any CFG G, there is an equivalent restricted CFG G′

whose size is at most 2|G|. Thus this restriction is reasonable.
An important relation is known to exist between an admissible CFG and the following factorization.

The LZ-factorization LZ(w) of w is the decomposition of w into f1, . . . , fk, where f1 = w[1], and for
each 1 < ` ≤ k, f` is the longest prefix of suf ` = f`, . . . , fk that appears in f1, . . . , f`−1, and otherwise
f` = suf `[1]. Each f` is called a factor. The size |LZ(w)| of LZ(w) is the number of its factors. The
following result is used in the analysis of the approximation ratio of our algorithm.

Theorem 1 (Rytter [23]). For any stringw and its admissible CFGG, the inequality |LZ(w)| ≤ |G|holds.

3. Compression Algorithm

This section presents our proposed algorithm and analyzes its performance.

3.1. Basic Idea

The basic task of the algorithm is to replace a pair XY occurring in a string by a new symbol Z and
generate a production Z → XY to D, where all occurrences of XY that are determined to be replaced
are replaced by a same Z. We note, however, that not all occurrences of XY are replaced by Z. The
critical task is to determine which occurrence of XY is replaced such that replaced pairs in common
substrings are almost synchronized as shown in Figure 1. That is, the aim of this algorithm becomes to
minimize the number of different nonterminals generated.

Figure 1. An example of replacing pairs. Our aim is to replace pairs that are almost
synchronized in common substrings.

Common substrings

z   a   b   r   a   k   a   d   a   b   r   a   k   a   d   a   b   r   a   zk d b k d b

X1 X2 X3 X1 X2 X3 X1 X4

Here we explain the three decision rules for the replacement. The rules introduced in this paper are
modified version of the Sakamoto et al.’s algorithm [25] to extend to our online compression in the
next subsection.
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The first rule (repetitive pair): Let a current string S contain a maximal repetition S[i, j] = ak. We
generate A → aa ∈ D for an appropriate nonterminal A, and replace S[i, j] = Ak/2 if k is even, or
replace S[i, j − 1] = A(k−1)/2 if k is odd.

The second rule (minimal pair): We assume a total order over Σ ∪ N ; that is, any symbol is
represented by an integer. If a current string contains a substring AiAjAk such that j < i, k, then the
occurrence ofAj is called minimal. The second decision rule is to replace all such pairsAjAk inAiAjAk

by an appropriate nonterminal.
In order to introduce the third decision rule, we explain the notion of the lowest common ancestor on

a tree.

Definition 1. Let p be a positive integer and k = dlog pe. The index tree Tp is the rooted, ordered
complete binary tree whose leaves are labeled with 1, . . . , 2k from the left. The height of a node v refers
to the number of edges in the longest path from v to a descendant of v. Then, the height of the lowest
common ancestor of leaves i, j is denoted by lca(i, j) (We can get the lca for any leaves i and j of
(virtual) complete binary tree in O(1) time/space under RAM model [28].) for short.

Figure 2 shows an example of the index tree and lowest common ancestor.

Figure 2. The (virtual) index tree T16 for Σ ∪N = {a1, a2, . . . , a16}.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

lca(2, 5)

= lca(5, 2) = 3

1

2

3

4

The third rule (maximal pair): For a fixed order of alphabet, let a current string contain a substring
AiAjAkA` such that the integers i, j, k, ` are either increasing or decreasing in this order. If lca(j, k) >

lca(i, j), lca(k, `), then the occurrence of the middle pair AjAk is called maximal. The third decision
rule is to replace all such pairs by an appropriate nonterminal.

We call pairs replaced by the above rules special pairs which appear in almost synchronized position
in the common substrings. Be careful that we need to set the priority of the decision rules because
such cases possibly overlap and we cannot apply the repetitive and minimal rules simultaneously. For
example, the substring a2a1a3a3a3 contains such overlapping pairs. We therefore apply the repetitive
and minimal rules in this order to keep uniqueness of the replacement. Indeed, no cases overlap with this
priority.

If pairs w[i− 2, i− 1] and w[j + 1, j + 2] (i < j) are special pairs and a substring w[i, j] contains no
special pairs, then we suitably determine replaced pairs in w[i, j] with left priority, that is, if j − i is odd
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then the pairs w[i, i+ 1], w[i+ 2, i+ 3], . . . , w[j − 1, j] are replaced, otherwise w[i, i+ 1], w[i+ 2, i+

3], . . . , w[j − 2, j − 1]. By this replacement, the length of the interval not replaced for a string becomes
at most one.

In the case of offline compression, it is easy to generate a grammar by the replacement rules. After
we replace pairs in a input string w, we recursively continue this process for a new string produced by
replacing pairs until the replaced string becomes only one symbol as shown in Figure 3. We note the
height of a parse tree is bounded by O(log n), where n = |w|, because the algorithm replace at least one
of w[i, i+1] or w[i+1, i+2]. In the next subsection, we will apply the basic idea to the online algorithm.

Figure 3. An example of a parse tree produced with our replacement rules.

a a a a b a b a a b a a a a b a b

X1 X1 b X2 X1 X1b X1 X2b

X3 X3X5X4 X4

X6 X5 X6

X6 X7

X8

3.2. Algorithmic Detail

The offline algorithm makes a bottom-up parse tree represented as a CFG. On the other hand, the
online algorithm approximates the compression by simulating the left to right construction of a parse
tree. To do this, we must determine a replaced pair by only a short substring. By the priority of the
rules, we can determine that the pair for any position is the special pair or not by checking the rules
simultaneously. In addition, the following lemma enable us to determine a replaced pair from the only a
substring of length five.

Lemma 1. Assume that replaced pairs in w[1, i−1] are already determined, whether w[i, i+1] becomes
a replaced pair or not depends on the interval w[i− 1, i+ 3].

Proof. We consider to decide whether the substring w[i, i + 2] includes the special pair under the
assumption that w[i− 2, i− 1] is already replaced. We first need to check a repetitive pair is included or
not because of the strongest rule. For the case that w[i, i+ 2] = araras(r 6= s), we replace w[i, i+ 1] as
a repetitive pair. For the case that w[i, i+ 2] = arasas(r 6= s), we preferentially select w[i+ 1, i+ 2] as a
replaced pair. We also pay attention to the case such that w[i, i+ 3] = arasatat(s 6= t), then we forcibly
replace w[i, i + 1] because w[i + 2, i + 3] is the beginning of maximal repetition. For the minimal or
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maximal pair, we can decide w[i, i + 1] is minimal and maximal pair by computing with w[i− 1, i + 1]

and w[i − 1, i + 2], respectively. If w[i + 1, i + 2] is minimal or maximal pair, then w[i] is not selected
as a replaced pair by the priority. Thus there is no conditional statement using the outside of the interval
w[i− 1, i+ 3] for computing special pairs.

From the Lemma 1, we describe the Algorithm 1 that is the statement to determine w[i, i + 1] is
replaced or not. Note if w[i, i + 2] contains no special pair, we determine w[i, i + 1] as a replaced pair.
By using Algorithm 1, it is easy to replace pairs in one pass over a string.

Algorithm 1 replaced pair(w, i): a string w and a position i.

1: /* replaced pair(w, i) decides a pair w[i, i+ 1] is replaced or not */
2: if w[i, i+ 1] is the repetitive pair then
3: return true;
4: else if w[i+ 1, i+ 2] is the repetitive pair then
5: /* w[i+ 1, i+ 2] is preferentially replaced. */
6: return false;
7: else if w[i+ 2, i+ 3] is the repetitive pair then
8: /* w[i, i+ 1] is forcibly replaced by the priority of the repetitive pair. */
9: return true;

10: else if w[i, i+ 1] is the minimal or maximal pair then
11: return true;
12: else if w[i+ 1, i+ 2] is the minimal or maximal pair then
13: /* w[i+ 1, i+ 2] is preferentially replaced. */
14: return false;
15: else
16: /* w[i, i+ 2] contains no special pair. */
17: return true;
18: end if

The compression algorithm determine replaced pairs in short buffers corresponding to each level of a
parse tree. Let h is the height of the parse tree. We first prepare queues q1, q2, . . . , qh implemented by
circular buffers. Each qi has a role as a buffer to store a segment of string w at the ith level of the parse
tree, where the input string corresponds to first level of the tree. The number h of queues is bounded by
O(log n) because of the height of parse tree. We define basic operations for such queues as follows:

• enque(qi, x): add the symbol x into the tail of the queue qi.
• deque(qi): return the head of the queue qi and remove it.
• head(qi): return the head of the queue qi.
• len(qi): return the length of the queue qi.

The head of the queue qi is denoted by qi[0] and thus the tail corresponds to qi[len(qi)−1]. Each queue
is used for deciding a replaced pair using the function replaced pair(w, i) and its maximum length can
be bounded by O(1).
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By the Lemma 1, we can restrict the maximum length of any queue by a constant longer than five.
For linear time compression, we must prepare another data structure DR called reverse dictionary:

DR(x, y) returns a nonterminal z associated with the pair xy by z → xy ∈ D. In case z → xy /∈
D, DR(x, y) creates a new nonterminal symbol z′ /∈ N and returns z′. For instance, if we have a
dictionary D = {X1 → a1a2, X2 → a3a1, X3 → a2a2}, DR(a3, a1) returns X2, DR(a1, a1) creates a
new nonterminal X4 and returns it. If we use randomization, DR(x, y) can be computed in O(1) worst
case time and inserting a new production rule can be achieved in O(1) amortized time within O(|D|)
space using dynamic perfect hashing [29].

Next we outline the online algorithm. We describe the online version of LCA in Algorithm 2 as well
as its recursive function insert symbol(qi, x) in Algorithm 3. All queues are initialized to contain only
dummy symbol d /∈ Σ ∪ N , which is required to compute the first pair at the each queue. In the lines
2–5 of Algorithm 2, input characters are enqueued to q1 one by one. In Algorithm 3, if there is qi such
that len(qi) ≥ 5, the algorithm decides the replaced pair in qi[1, 3]. In case qi[1, 2] is replaced by an
appropriate nonterminal z, qi[0, 1] is dequeued and z is enqueued to qi+1. In case qi[2, 3] is replaced by
z, qi[0, 2] is dequeued and qi[1]z is enqueued to qi+1. The symbol qi[2] in the first case and qi[3] in the
second case are remaining in qj to determine the next replaced pair after a new symbol is enqueued to qi.
Figure 4 describes the action of the function insert symbol(qi, x). The algorithm recursively continues
the above process until all input characters are enqueued. As the post-processing, the symbols remaining
in the queues qi, . . . , qh are replaced by appropriate nonterminals in the left to right order. Finally the
produced dictionary is returned.

Algorithm 2 LCA-online.

1: D := ∅; initialize queues;
2: repeat
3: input a new character c;
4: insert symbol(q1, c);
5: until c is not the end of the inputs.
6: i := 1;
7: while qi is not empty do
8: replace the symbols remained in qi[1, 4],
9: and then enqueue the string replaced in qi[1, 4] into qi+1;

10: i := i+ 1;
11: end while
12: output D;
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Algorithm 3 insert symbol(qi, x): a queue qi and a symbol x.

1: enque(qi, x);
2: if len(qi) ≥ 5 then
3: if replaced pair(qi, 1) = true then
4: deque(qi);
5: y1 := deque(qi); y2 := head(qi);
6: z := DR(y1, y2);
7: D := {z → y1y2} ∪ D; /* update D */
8: insert symbol(qi+1, z);
9: else

10: deque(qi);
11: y1 := deque(qi);
12: insert symbol(qi+1, y1);
13: y2 := deque(qi); y3 := head(qi);
14: z := DR(y2, y3);
15: D := {z → y2y3} ∪ D; /* update D */
16: insert symbol(qi+1, z);
17: end if
18: end if

Figure 4. The action of insert symbol(qi, x).
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3.3. Performance Analysis

First, we estimate the running time of LCA-online. We use the following notation indicating the string
enqueued to a queue.

Definition 2. For each queue qi, let Si denote the string obtained by concatenating all symbols enqueued
to qi from left to right order.

Note that Si corresponds to the ith level of string in a parse tree produced by replacing pairs as shown
in Figure 3. We first prove the following characteristic.

Theorem 2. The running time of LCA-online is bounded by O(n), where n is the input length.

Proof. For any Sk, the inequality 1
2
|Sk| ≤ |Sk+1| ≤ 2

3
|Sk| holds because the algorithm replaces at least

one of Sk[i, i+ 1] and Sk[i+ 1, i+ 2]. Therefore, k ≤ O(log n) and the total number of symbols inserted
into all queues is bounded by O(n). In any queue, computing a replaced pair is O(1) time because we
can verify in O(1) time whether or not Sk contains one of the repetitive, minimal, and maximal pairs.
Also, computing the appropriate nonterminal for any pair can be computed in O(1) time. Hence, the
running time is bounded by O(n) time.

Next, we prove that the approximation ratio of LCA-online is reasonable. The approximation ratio
of the compression algorithm is the upper bound of g

g∗
for the output grammar size g and the minimum

grammar size g∗ when arbitrary input string is given.

Definition 3. Let S be a string and S[i, j] = α be an occurrence of a substring α in S. We call S[i, j] a
boundary occurrence if S[i] 6= S[i+ 1] and S[j] 6= S[j − 1].

Definition 4. Let St be a string enqueued to qt. Then Rt(i, j) is the shortest substring of St+1 which
derives a string containing St[i, j].

Lemma 2. Let St[i1, j1] = St[i2, j2] = α be any boundary occurrences. For input string length n, there
exists an integer k ≤ log n such that Rt(i1 + k, j1 − k) = Rt(i2 + k, j2 − k).

Proof. Let us consider the index tree Tn. If a string α = a`1 , a`2 , . . . , a`m of length m is a monotonic;
i.e., either `1 > `2 > . . . > `m or `1 < `2 < . . . < `m, and lca(`1, `2), lca(`2, `3), . . . , lca(`m−1, `m)

are monotonic, then m is bounded by log n. Therefore, at least one of minimal pair or maximal pair
must appear within log n consecutive symbols having no repetition. Thus, a prefix of St[i1, j1] longer
than log n contains at least one of minimal/maximal pair; it also appears in St[i2, j2] at the corresponding
position. Hence, the replacements of inside St[i1, j1] and St[i2, j2], i.e., St[i1 + k, j1 − k] and St[i2 +

k, j2 − k] completely synchronize. Hence, Rt(i1 + k, j1 − k) = Rt(i2 + k, j2 − k) for k ≤ log n.

Theorem 3. The approximation ratio g/g∗ of LCA-online is O(log2 n), where g is the output grammar
size, g∗ is the minimum grammar size, and n is the length of the input string.

Proof. We estimate the number of different nonterminals produced by LCA-online. Let w1, . . . , wm

be the LZ-factorization of an input string w. Let #(w) denote the maximum number of different
nonterminals generated in a single queue after the compression of w is completed. From the definition of
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LZ-factorization, any factor wi occurs in the prefix w1, . . . , wi−1, or |wi| = 1. First, we consider the case
that wi is a boundary occurrence. By Lemma 2, any two occurrences of wi are respectively transformed
to αβγ and α′βγ′ such that |α| = |α′|, |γ| = |γ′|, and |αγα′γ′| = O(log n). In the case that wi is not a
boundary occurrence, wi = a+λb+ for some string λ and repetitions a+, b+. For repetitions a+ and b+,
the number of different nonterminals produced by the replacement of a+ and b+ is bounded by O(1). If
λ is a boundary occurrence, this case is the same as the one in which wi is a boundary occurrence. If λ
is not a boundary occurrence, λ = c+λ′d+ for some string λ′, and c 6= a and d 6= b. In this case, any
occurrence of λ inside a+λb+ is transformed to exactly same string. Thus, for a single queue, we can
estimate #(w) = #(w1, . . . , wm−1) + O(log n) = O(m log n) = O(g∗ log n). Because the number of
queues is at most O(log n), the size of the final dictionary is O(g∗ log2 n).

Finally, we estimate the space complexity of our algorithm.

Theorem 4. The space required by LCA-online is bounded by O(g∗ log2 n), where g∗ is the minimum
grammar size and n is the input string length.

Proof. The number of queues is bounded by O(log n) and the length of any queue is O(1). Thus,
required space for the queues is O(log n). For the reverse dictionary, the space is bounded by the
generated grammar size. By the Theorem 3, the space of the reverse dictionary is bounded by
O(g∗ log2 n). Thus, the total space is bounded by O(g∗ log2 n).

4. Encoding Technique

This section proposes a compact representation for a restricted CFG G = (Σ, N,D, S). In the
following, we assume Σ = {1, 2, . . . , σ} for simplicity.

4.1. Encoded Representation of CFG

For the grammar G deriving w, we create the partial parse tree (This concept was introduced by
Rytter [23].) PTree(G), which is obtained by the following operation: Let T be the parsing tree for
w by G. If T contains a maximal subtree rooted by A ∈ N appearing in T at least twice, replace all
occurrences of the subtree by a single node labeled by A except the leftmost occurrence of the subtree.
When we continue this replacement, the final tree is denoted by PTree(G). Figure 5 shows an example
of the partial parse tree. PTree(G) has g internal nodes and g+ 1 leaves because PTree(G) is a binary
tree, where g = |N |. The construction of PTree(G) can be in O(g) time/space by expanding each
nonterminal only once.

The skeleton of PTree(G) is represented by a sequence of parentheses.
Let x1, x2, . . . , x2g+1 be a sequence of nodes sorted by post-order. We represent the sequence of nodes

by 2g + 1 parentheses as follows:

F [i] =

{
′(′ if xi is a leaf
′)′ otherwise

(1)
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Figure 5. The example of the encoding process for CFG G = ({a, b}, {A,B,C, S},D, S):
(1) the dictionary D; (2) the partial parse tree PTree(G); (3) the parentheses representation
of the tree and renamed labels where Yi = i+ σ; and (4) the encoded representation of G.
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We then make a sequence of leaf labels of PTree(G) to keep the information of the original string
w. Let E[1, g] ∈ N g be the sequence of internal node labels of PTree(G) in post-order. Let M [1, g +

1] ∈ (Σ ∪ N)g+1 be the sequence of leaf labels of PTree(G) in post-order. We note that E[1, g] is a
permutation on N because every internal node has a different label from each other. Let E−1(N) be a
function that maps any nonterminal z ∈ N to the position i such that E[i] = z. Hereby, we define the
sequence L[1, g + 1], which consists of renamed nonterminals for M by the following:

L[i] =

{
E−1(M [i]) + σ (M [i] ∈ N)

M [i] (M [i] ∈ Σ)
(2)

We then create the pair (F,L) as an encoded representation of CFG. Clearly the time/space to compute
(F,L) is O(g).

We estimate the bits of space required for (F,L). The space required for F is 2g + 1 bits because F
is the sequence over a binary alphabet representing g internal nodes and g + 1 leaves. Because L is the
sequence over {1, 2, . . . , g + σ} whose length is g + 1, L can be represented in (g + 1)dlog(g + σ)e bits
of space. Thus, the total space for (F,L) is approximately gdlog(g + σ)e + 2g bits. A naı̈ve encoding
represented by a sequence of right-hand sides of g production rules requires 2gdlog(g+σ)e bits of space.
Thus, our representation reduces the space to almost half.

We note two array F and L can be combined into one array such that each symbol L[i] is embedded
after ith open parenthesis of F . The representation of the combined array has an advantage that
the decoding processing can be done in one pass over the compressed text. We can also apply
simple variable-length coding like LZW [30] for each element of L because the number of allocatable
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nonterminals for any leaf node is limited by the number of internal nodes that appear before the leaf node
in post-order. The efficiency of compression is further improved using such variable-length coding.

4.2. Decoding Process

We can decode the encoded representation of CFG because any nonterminal z in L indicates the
position of the internal node corresponding to z. We describe the process in Algorithm 4. Scanning
the compressed text (combined F and L) from the left to right, we can simulate the post-order traversal
of the partial parse tree and restore the dictionary D. To do this, we use a stack stk with two basic
operations as follows:

• push(stk, x): add symbol x into the top of the stack stk.
• pop(stk): return the top of the stack stk and remove it.

Algorithm 4 Decode.
1: input a grammar size g, an alphabet size σ;
2: create an empty stack stk;
3: i := 1; j := 1; k := 1;
4: while i ≤ 2g + 1 do
5: input a parenthesis F [i];
6: if F [i] =’(’ then
7: input a symbol L[j];
8: output a string derived from L[j] using D;
9: push(stk, L[j]); j := j + 1;

10: else
11: y2 := pop(stk); y1 := pop(stk);
12: z := k + σ;
13: D := {z → y1y2} ∪ D; /* update D */
14: push(stk, z); k := k + 1;
15: end if
16: i := i+ 1;
17: end while

When we decode L[j] in the line 8, the required production rules are certainly contained in the current
dictionary D by the characteristics of the partial parse tree. Thus, the algorithm can correctly output the
original string by decoding the sequence L[1, g + 1]. The decoding time is bounded by O(n) to output
the original string, and the space is O(g) to store the dictionary D.

5. Experimental Results

We implemented three compressors based on the LCA algorithm, which are available from google
code project (http://code.google.com/p/lcacomp/). The first, denoted by LCA-online, is the online
algorithm of LCA proposed in Section 3. The second, denoted by LCA-offline, is a faithful
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implementation of the offline LCA algorithm, which requires o(g) space by usingO(n) external memory
space, where g is the output grammar size and n is the input text size. Therefore, the compression speed
of LCA-offline is affected by the I/O time. The third, denoted by LCA-fast, is another implementation
of offline LCA, which requires O(n) memory space and can thus achieve faster compression than
LCA-offline.

For each generated CFG, two encoding methods are applied: one is the naı̈ve encoding for the
production rules and the other is the improved encoding presented in Section 4. Recall that the improved
method requires O(g) space. We distinguish between the naı̈ve encoding and the improved one by the
signs :N and :I, respectively. For example, LCA-online:I means the implementation of LCA-online
with the improved encoding.

We compare our algorithms with other practical compressors. LZW [30] is a variant of
LZ78-encoding [31], which we implemented. Our LZW implementation does not reset the
codeword dictionary, unlike compress in UNIX programs. gzip (http://www.gzip.org) is based
on LZ77-encoding [2] with limited window size. bzip2 (http://www.bzip.org) is based on the
block-sorting compression using the Burrows Wheeler Transform [32]. For gzip and bzip2,
although we specified -9 option to obtain their best compressive performances, those programs
run in limited memory space because they output compressed texts before they have seen all of
the input. Re-Pair [19] (http://www.cbrc.jp/∼rwan/en/restore.html) is an offline grammar-based
compressor that recursively substitutes a new symbol for the most frequent pair. LZMA
(p7zip) (http://p7zip.sourceforge.net/) is a powerful compressor based on the LZ77-encoding with
unlimited window size. We set its window length as the input text length to achieve the best compressive
performance. Table 1 summarizes the comparison in space usage and online/offline separation, where g
is the output grammar size produced by LCAs, z is the number of output phrase parsed with LZW, and
n is the input text length.

Table 1. Summary of comparison methods.

Method Space usage Online/Offline

LCA-online:I O(g) online
LCA-online:N O(g) online
LCA-offline:I O(g) + external space offline
LCA-offline:N o(g) + external space offline
LCA-fast:I O(n) offline
LCA-fast:N O(n) offline
LZW O(z) online
gzip -9 limited space online
bzip2 -9 limited space offline per blocks
Re-Pair O(n) offline
LZMA O(n) online
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We used highly repetitive texts from repetitive corpus (Real) (http://pizzachili.dcc.uchile.cl/repcorpus
.html), which consists of DNA sequences (Escherichia Coli, Para, Cere, influenza),
source codes (coreutils, kernel), and natural language texts (einstein.de.txt, einstein.en.txt,
world leaders). More detailed documentation is available from the Pizza & Chili
(http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf). We also used general real world texts
(ENGLISH, XML) from the Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/texts.html). ENGLISH
is a natural language text collection written in English. XML is a structured text downloaded from
http://dblp.uni-trier.de. Our environments are OS:CentOS 5.5 (64-bit), CPU:Intel Xeon E5504 2.0GHz
(Quad)×2, Memory:144GB RAM. Our programs are written in the C language and compiled by
gcc 4.1.2 optioned with -O3 optimization. We measure the processing time by the time command, and
maximum memory usage in programs by the memusage command.

5.1. Comparison with Standard Compressors.

LCA-online:(I) is compared with other standard compressors in terms of the compression ratio, the
consumption of memory space, and the compression time. Table 2(a) shows the result of compression
ratio. Table 2(b) gives the result of main memory usage. Space usage is represented by the ratio to
input text size. For general texts, the compression ratio of LCA-online:(I) is worse compared with other
compressors. The repetitive substrings in typical texts are generally short, for example, single words
in English texts, short tags in XML documents. Our algorithm seems to be weak to capture such short
repetitive substrings. On the other hand, it achieves a higher compression ratio for the repetitive texts
because our algorithm can replace long common substrings by the same nonterminals from the analysis
of Section 3.3. LZW does not work well for the repetitive texts in spite of maintaining the dictionary.
This is because LZW(LZ78) parsing does not guarantee to capture long and frequent substrings. gzip
and bzip2 also do not work well because they compress the input text in limited segments, not using the
whole text. Re-Pair and LZMA use the whole text to powerful compression and thus they have a better
compression ratio than ours. Therefore, as seen in Table 2(b), they require more memory space than the
input text. On the other hand, the space requirement of ours and that of LZW depend on the output size.
Especially, our compression ratios for repetitive texts are very high than that of LZW. Thus, the space
usage becomes very small when the input text is sufficiently compressed.

Table 2(c) shows the average time per 1MiB for the compression processing. LCA-online:(I) can
achieve fast compression independent of the kind of texts. But it is a little slower in the case of general
texts than that of repetitive texts. This is because our implementation of the reverse dictionary seems to
cause a little slowdown with increasing of the size of the dictionary. The other compressors, especially
in gzip, Re-Pair and LZMA, are quite slow depending on the kind of text, especially in biological data
with small alphabet.
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Table 2. Experimental results for LCA-online versus standard compressors.
(a) Compression ratio (percentage of the compressed size over the text size); (b) Main
memory consumption (fraction of the text size); (c) Compression time (seconds per 1MiB).

Source online:I LZW gzip -9 bzip2 -9 Re-Pair LZMA

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 12.43 25.46 37.64 26.98 9.60 4.43

Para 429, 265, 758 4.48 23.56 27.04 26.15 2.74 1.24

Cere 461, 286, 644 3.25 22.59 26.20 25.22 1.86 1.05

influenza 154, 808, 555 4.57 11.55 6.87 6.59 3.26 1.55

coreutils 205, 281, 778 5.23 22.24 24.32 16.02 2.54 1.99

kernel 257, 961, 616 2.18 24.13 26.90 21.74 1.10 0.82

einstein.de.txt 92, 758, 441 0.30 10.61 31.04 4.32 0.16 0.11

einstein.en.txt 467, 626, 544 0.17 6.68 35.00 5.17 0.10 0.07

world leaders 46, 968, 181 3.40 12.48 17.65 6.94 1.79 1.39

General Text Size (bytes)
ENGLISH 209, 715, 200 40.86 33.06 37.64 28.07 31.79 21.12

XML 209, 715, 200 23.64 17.84 17.12 11.35 16.67 12.07

(a)

Source online:I LZW gzip -9 bzip2 -9 Re-Pair LZMA

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 0.81 1.59 0.0065 0.062 26.98 10.24

Para 429, 265, 758 0.26 1.24 0.0017 0.016 24.43 10.02

Cere 461, 286, 644 0.21 1.46 0.0016 0.015 25.00 10.00

influenza 154, 808, 555 0.41 0.72 0.0047 0.045 25.06 10.16

coreutils 205, 281, 778 0.38 1.23 0.0036 0.034 25.03 10.22

kernel 257, 961, 616 0.23 1.48 0.0028 0.027 24.39 9.76

einstein.de.txt 92, 758, 441 0.15 0.61 0.0079 0.076 23.74 9.54

einstein.en.txt 467, 626, 544 0.033 0.42 0.0016 0.017 22.42 9.87

world leaders 46, 968, 181 0.38 0.96 0.016 0.15 26.79 9.73

General Text Size (bytes)
ENGLISH 209, 715, 200 2.17 1.95 0.0035 0.034 27.00 10.00

XML 209, 715, 200 1.53 1.05 0.0035 0.034 25.00 10.00

(b)
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Table 2. Cont.

Source online:I LZW gzip -9 bzip2 -9 Re-Pair LZMA

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 0.11 0.14 1.56 0.16 1.65 1.76

Para 429, 265, 758 0.11 0.16 1.57 0.15 1.21 1.35

Cere 461, 286, 644 0.091 0.19 1.48 0.15 1.10 1.19

influenza 154, 808, 555 0.082 0.13 0.38 0.35 0.67 0.35

coreutils 205, 281, 778 0.14 0.18 0.12 0.20 0.94 0.37

kernel 257, 961, 616 0.14 0.20 0.11 0.15 0.80 0.72

einstein.de.txt 92, 758, 441 0.12 0.14 0.12 0.33 0.63 0.15

einstein.en.txt 467, 626, 544 0.11 0.16 0.11 0.34 0.67 0.16

world leaders 46, 968, 181 0.076 0.10 0.089 0.11 0.50 0.21

General Text Size (bytes)
ENGLISH 209, 715, 200 0.21 0.22 0.18 0.16 3.42 0.92

XML 209, 715, 200 0.18 0.15 0.06 0.23 1.76 0.42

(c)

By these results, we can say LCA-online:(I) has practical properties for compressing huge highly
repetitive texts with economical space, fast compression, and powerful compressive performance.

5.2. Comparison with Different Variations on LCA

Table 3(a), Table 3(b) and Table 3(c) show the compression ratio, the maximum memory usage,
and the compression time within the variations of LCA, respectively. In Table 3(a) and Table 3(c), we
can see that the improved encoding brings more efficient compression than the naı̈ve encoding, and
the processing time of the improved encoding is almost the same as that of the naı̈ve encoding. On
the other hand, regarding the grammar size, there is really not much difference between the online
and offline algorithm. From Table 3(b) and Table 3(c), the running time of LCA-online is almost the
same as that of LCA-offline and a bit slower than LCA-fast. However, we recall that the compression
speed of LCA-offline depends on the I/O time of the computing environment; and LCA-fast always
needs more memory space than the input text. In addition, LCA-online has an advantage to enable us
incremental compression.
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Table 3. Experimental results for LCA variations. (a) Compression ratio (percentage of
the compressed size over the text size); (b) Main memory consumption (fraction of the text
size); (c) Compression time (seconds per 1MiB).

Source online:I online:N offline:I offline:N fast:I fast:N

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 12.43 24.58 12.21 24.19 12.21 24.19

Para 429, 265, 758 4.48 8.69 4.39 8.53 4.39 8.53

Cere 461, 286, 644 3.25 6.39 3.17 6.24 3.17 6.24

influenza 154, 808, 555 4.57 8.99 4.48 8.83 4.48 8.83

coreutils 205, 281, 778 5.23 10.05 5.22 10.05 5.22 10.05

kernel 257, 961, 616 2.18 4.17 2.17 4.16 2.17 4.16

einstein.de.txt 92, 758, 441 0.30 0.58 0.30 0.57 0.30 0.57

einstein.en.txt 467, 626, 544 0.17 0.33 0.17 0.33 0.17 0.33

world leaders 46, 968, 181 3.40 6.70 3.41 6.71 3.41 6.71

General Text Size (bytes)
ENGLISH 209, 715, 200 40.86 79.37 40.41 78.538 40.41 78.54

XML 209, 715, 200 23.64 45.50 23.84 45.85 23.84 45.85

(a)

Source online:I online:N offline:I offline:N fast:I fast:N

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 0.81 0.81 0.51 0.30 4.37 4.37

Para 429, 265, 758 0.26 0.26 0.17 0.078 4.15 4.15

Cere 461, 286, 644 0.21 0.21 0.13 0.036 4.09 4.09

influenza 154, 808, 555 0.41 0.41 0.20 0.095 4.09 4.09

coreutils 205, 281, 778 0.38 0.38 0.22 0.08 4.16 4.16

kernel 257, 961, 616 0.23 0.23 0.098 0.057 4.07 4.07

einstein.de.txt 92, 758, 441 0.15 0.15 0.15 0.15 4.07 4.07

einstein.en.txt 467, 626, 544 0.032 0.032 0.031 0.031 3.81 3.81

world leaders 46, 968, 181 0.38 0.38 0.31 0.31 4.20 4.20

General Text Size (bytes)
ENGLISH 209, 715, 200 2.17 2.17 1.51 0.58 6.00 6.00

XML 209, 715, 200 1.53 1.53 0.92 0.26 5.54 5.54

(b)
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Table 3. Cont.

Source online:I online:N offline:I offline:N fast:I fast:N

Repetitive Text Size (bytes)
Escherichia Coli 112, 689, 515 0.11 0.12 0.11 0.11 0.086 0.083

Para 429, 265, 758 0.11 0.12 0.099 0.11 0.075 0.074

Cere 461, 286, 644 0.091 0.10 0.095 0.10 0.072 0.071

influenza 154, 808, 555 0.082 0.10 0.085 0.099 0.065 0.064

coreutils 205, 281, 778 0.14 0.16 0.13 0.13 0.10 0.10

kernel 257, 961, 616 0.14 0.16 0.12 0.12 0.098 0.098

einstein.de.txt 92, 758, 441 0.12 0.11 0.11 0.11 0.086 0.086

einstein.en.txt 467, 626, 544 0.11 0.12 0.11 0.11 0.087 0.087

world leaders 46, 968, 181 0.076 0.084 0.078 0.079 0.060 0.059

General Text Size (bytes)
ENGLISH 209, 715, 200 0.21 0.16 0.18 0.17 0.15 0.14

XML 209, 715, 200 0.18 0.14 0.16 0.15 0.13 0.12

(c)

By these results, LCA-online has sufficient performance compared with the offline version, and the
proposed encoding is very effective at CFG representation.

6. Summary

We developed an online algorithm for grammar-based compression. Our algorithm not only
guarantees a reasonable approximation ratio for the minimum grammar, it also achieves effective
compression for highly repetitive text, practically.

As future work, we will apply our grammar to string processing over compressed texts. For
example, compressed pattern matching [33], grammar-based self-index [34,35], random accessible data
structure [36] and so on. One property of our grammar is that the height of the parse tree is bounded by
O(log n); another property is that our algorithm can find long common substrings without Ω(n) space
data structures. These properties would be suitable for such compressed string processing.
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