
Algorithms 2012, 5, 176-213; doi:10.3390/a5020176
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Finding All Solutions and Instances of Numberlink and
Slitherlink by ZDDs
Ryo Yoshinaka 1, Toshiki Saitoh 2,3,*, Jun Kawahara 2,3, Koji Tsuruma 2, Hiroaki Iwashita 2,3 and
Shin-ichi Minato 2,3

1 Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan;
E-Mail: ry@i.kyoto-u.ac.jp

2 ERATO MINATO Project, Japan Science and Technology Agency, Kitaku North 14, West 9, Sapporo,
060-0814, Hokkaido, Japan; E-Mails: jkawahara@erato.ist.hokudai.ac.jp (J.K.);
tsuruma@erato.ist.hokudai.ac.jp (K.T.); iwashita@erato.ist.hokudai.ac.jp (H.I.);
minato@ist.hokudai.ac.jp (S.M.)

3 Graduate School of Information Science and Technology, Hokkaido University, Kitaku North 14,
West 9, Sapporo, 060-0814, Hokkaido, Japan

⋆ Author to whom correspondence should be addressed; E-Mail: t-saitoh@erato.ist.hokudai.ac.jp;
Tel.: +81-11-728-8280.

Received: 16 November 2011; in revised form: 29 February 2012 / Accepted: 19 March 2012 /
Published: 5 April 2012

Abstract: Link puzzles involve finding paths or a cycle in a grid that satisfy given local and
global properties. This paper proposes algorithms that enumerate solutions and instances of
two link puzzles, Slitherlink and Numberlink, by zero-suppressed binary decision diagrams
(ZDDs). A ZDD is a compact data structure for a family of sets provided with a rich family
of set operations, by which, for example, one can easily extract a subfamily satisfying a
desired property. Thanks to the nature of ZDDs, our algorithms offer a tool to assist users to
design instances of those link puzzles.

Keywords: link puzzles; Slitherlink; Numberlink; solvers; instance generations

Algorithms 2012, 5 177

1. Introduction

Link puzzles, for example Slitherlink, Numberlink, Masyu, etc., are logic puzzles that involve finding
paths or a cycle in a grid that satisfy given local and global properties. This paper focuses on two simple
link puzzles, Numberlink and Slitherlink, amongst others.

Numberlink is played on a grid where the rules are below [1].

1. Connect pairs of the same numbers with a continuous line.
2. Lines go through the center of the cells, horizontally, vertically, or changing direction, and never

twice through the same cell.
3. Lines cannot cross, branch off, or go through the cells with numbers.

Figure 1 describes an instance of Numberlink. Numberlink is known to be NP-complete [2–4].
Numberlink is also studied as a model of VLSI layout design [5].

Figure 1. An instance of Numberlink and its solution.

12 1

2

3

3

1

2

3

3

2 1

Slitherlink is played on a grid of lattice dots where we draw a loop satisfying below [1].

1. Connect adjacent dots with vertical or horizontal lines.
2. A single loop is formed with no crossing or branches.
3. The numbers indicate how many lines surround it, while empty cells may be surrounded by any

number of lines.

We describe an instance of Slitherlink in Figure 2. Slitherlink is known to be NP-complete [6,7].

Figure 2. An instance of Slitherlink and its solution.

s s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s s

0 2

2

0 0

3 0 3

s s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s s

0 2

2

0 0

3 0 3

Algorithms 2012, 5 178

Link puzzles have been popularized by a Japanese publisher Nikoli and many puzzle designers are
trying to produce good and interesting instances. The least common criterion on instances to be good
is to admit exactly one solution, but what should be good and interesting is quite a subjective issue to
respective designers. The complexity barrier suggests difficulties in the instance design.

On the other hand, as is usually the case for logic puzzles, computer scientists and programmers have
been proposed several automatic solvers targeting those link puzzles. Sugar [8] is a SAT based constraint
solver which is provided with formulation of Numberlink and Slitherlink. While it is often the case that
a solution for an instance of Numberlink is found just by inspiration, many local solution methods for
Slitherlink are known. Most Slitherlink solvers employ such methods [9–11].

Moreover, there are some attempts to automatically generate instances of Slitherlink. Shirai’s
algorithm [10] starts from a grid graph with no numbers, which admits many solutions, and repeatedly
puts a random number into a random cell one by one until the obtained instance admits a unique solution.
The opposite approached has been proposed by Shirai et al. [10] and Wan [11]. Their algorithm takes
a cycle, which is a predetermined solution, as input and starts from a grid whose cells are all fulfilled
by the numbers compatible with the solution. The algorithm then repeatedly removes the number in a
random cell one by one until the obtained instance admits an unexpected solution. The algorithm outputs
the instance obtained just before removing the last number.

Our contribution is located in this line of research. We propose solution and instance enumeration
algorithms for Numberlink and Slitherlink. Unlike existing algorithms, ours output all the qualified
solutions/instances at once in the form of a zero-suppressed binary decision diagram (ZDD). A ZDD is a
compressed data structure for representing and manipulating families of sets [12]. Recently, Knuth [13,
exercise 225] has proposed an algorithm, called SIMPATH, that constructs a ZDD representing all s-t
paths on a given graph and two vertices s and t, where a path is identified with the set of edges
constituting the path. If an instance of Numberlink has only one pair of numbers in a grid, SIMPATH

gives all solutions to it. Knuth has also proposed a modification of SIMPATH that enumerates all single
cycles on an input graph in the form of a ZDD. Recall that to be a cycle is a necessary condition to be
a solution for Slitherlink. Our solvers for the link puzzles construct a ZDD representing solutions in the
manner of SIMPATH with taking the constraints from the problem instance into account. By the nature
of enumeration, one can immediately decide whether an instance admits exactly one solution.

ZDDs can represent families of sets in a small space, yet an even more important and widely
appreciated virtue of ZDDs is that one can quite efficiently perform fundamental mathematical operations
on families of sets over ZDDs, like union, intersection, etc. Our algorithms for generating instances of
the link puzzles apply the virtue of ZDDs. Our method based on ZDDs offers users flexible means to
design puzzle instances. For example, puzzle designers can extract some specific kind of instances from
the whole which they think “interesting” by those set operations over ZDDs.

This paper is organized as follows. Formal definitions of ZDDs, Numberlink and Slitherlink are
given in Section 2. Section 3 introduces a variant of SIMPATH that enumerates all path matchings
over a graph, on which other algorithms of ours are based. Our Numberlink solver is presented in
Section 4 and Numberlink instance enumeration algorithm is proposed in Section 5. On the other hand,
our Slitherlink solver and instance enumeration algorithm are presented in Sections 6 and 7, respectively.
We also show experimental results on these algorithms in Section 8, where we compare the performance

Algorithms 2012, 5 179

of known solving algorithms and ours. Moreover, we demonstrate how our method may help puzzle
designers through presenting visually attractive instances of Slitherlink obtained by our algorithm. We
then conclude the paper in Section 9.

2. Preliminaries

2.1. Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram, ZDD for short, represents a family of sets over a universal
set E whose elements are linearly ordered [12]. We index the elements of E as e1, . . . , e|E| where we
write ei ≤ ej if and only if i ≤ j. A ZDD is defined to be a labeled directed acyclic graph that satisfies
the following properties.

• There is only one node with indegree 0, called the root node.
• There are just two nodes 0 and 1 with outdegree 0, called the 0-terminal and 1-terminal.
• Each node except terminals has just 2 outgoing arcs, which are labeled by 0 and 1 and called the

0-arc and 1-arc, respectively. We call the node pointed by the j-arc of a node n the j-child of n.
• Each node n except for the terminals is labeled by an element of E.
• The label of a non-terminal node is strictly smaller than those of its children.

If a node n is the j-child of another node n′, we call n′ a j-parent of n for j ∈ {0, 1}. We say that a
path from the root node of a ZDD Z is valid if it ends in a node which is not 0. To each valid path π we
assign a set Z(π) ⊆ E by

Z(π) = { ej | the 1-arc of a node labeled with ej appears in π }

By representing a path from the root node of a ZDD by a sequence of 0 and 1, which we call a
0, 1-sequence, we have an alternative inductive definition of the set:

Z(π · 0) = Z(π)

Z(π · 1) = Z(π) ∪ {e}

where e is the label of the node in which π ends. Each node n ̸= 0 is assigned a set Z(n) ⊆ 2E defined by

Z(n) = {Z(π) | a valid path π ends in n }

An equivalent inductive definition is given by

Z(n) = {S | S ∈ Z(n′) for some 0-parent n′ of n }
∪ {S ∪ {e} | S ∈ Z(n′) for some 1-parent n′ of n such that n′ is labeled with e }

The family of sets that a ZDD represents is defined to be Z(1). Figure 3 shows an example of a ZDD.

Algorithms 2012, 5 180

Figure 3. The reduced ZDD representing Z(1) = {{a}, {b}, {c}, {a,c}, {b,c}}.
E = {a,b,c} where a < b < c. Dotted lines represent 0-arcs and solid lines represent
1-arcs.

a
b

c c

0 1

A ZDD is said to be reduced if

• there is no distinct nodes that have the same label, 0-child and 1-child,
• there is no node whose 1-child is 0.

It is known that every ZDD admits a unique reduced one that represents the same family of sets.
Moreover the number of nodes of a ZDD is minimum amongst ZDDs representing the same family
if and only if it is reduced. A linear-time algorithm that reduces a ZDD can be found in [13, pp. 84–85,
algorithm R].

A (reduced) ZDD can represent a family of sets in a compact way by letting multiple sets in the
family share some subgraphs of the ZDD. If sets in the family have some “regular” structures, the size
of the ZDD can be logarithmically smaller than the sum of the cardinalities of the sets in it. An even
more important and widely appreciated virtue of ZDDs is that one can efficiently perform fundamental
mathematical operations on families of sets over ZDDs, like union, intersection, etc. The efficiency
depends on the size of the ZDDs rather than the cardinality of the sets in the target families. Some
packages of implementation of ZDDs are provided to users of different purposes, where for given two
ZDDs representing families of sets A and B, it can compute the ZDD for A ∪B, A ∩B, A \B, A⊕B

and so on. For e ∈ E, it can compute the ZDD for {S ∪ {e} | S ∈ A }, {S \ {e} | S ∈ A and e ∈ S },
{S | S ∈ A and e /∈ S } etc. Knuth [13] has discussed further operations for families of sets, which
enable us to extract maximal elements {S ∈ A | ¬∃T ∈ A, S (T }, minimal elements {S ∈
A | ¬∃T ∈ A, T (S } among others. For more details of ZDDs, readers are referred to [12,13],
for example.

2.2. Undirected Graphs

The link puzzles concerned in this paper are played on undirected graphs. This paper uses ZDDs to
represent subgraphs of graphs of puzzle instances. To avoid confusion among objects of those two kinds
of graphs simultaneously in concern, we reserve words “nodes” and “arcs” for ZDDs, while we call the
corresponding notions for graphs of puzzle instances “vertices” and “edges”.

An undirected graph is a pair G = (V,E) where V is a set of vertices and E ⊆ 2V is a set of edges,
which are sets of exactly two elements of V . An edge e ∈ E is said to be incident to v ∈ V if v ∈ e. The

Algorithms 2012, 5 181

degree of a vertex v in G is defined by |{ e ∈ E | v ∈ e }|, that is, the number of edges incident to v. For
an edge set E ′ ⊆ E, we also define the degree of v in E ′ by |{ e ∈ E ′ | v ∈ e }|. A vertex v is isolated if
its degree is 0.

A nonempty edge set P = {e1, . . . , e|P |} ⊆ E is called a simple path (or just a path) if there are
pairwise distinct vertices v0, . . . , v|P | ∈ V such that ei = {vi−1, vi} for i = 1, . . . , |P |. The path P is
also called a v0-v|P | path.

A nonempty edge set C = {e1, . . . , e|C|} ⊆ E is called a (simple) cycle if |C| ≥ 3 and there
are pairwise distinct vertices v1, . . . , v|C| ∈ V such that e1 = {v1, v|C|} and ei = {vi−1, vi} for
i = 2, . . . , |C|.

A possibly empty edge set P ⊆ E is called a path matching if there are simple paths P1, . . . , Pk with
k ≥ 0 such that P =

∪
1≤i≤k Pi and

∪
Pi ∩

∪
Pj = ∅ for distinct i, j ∈ {1, . . . , k} (For a family P of

sets over a universal set V , we define
∪

P =
∪

e∈P e = { v ∈ V | v ∈ e for some e ∈ P }.). We remark
that for a path matching P , a way of partitioning P into paths satisfying this definition is unique. We say
that P contains a u-v path if one of such paths is a u-v path.

A family T ⊆ 2V of sets over V is called a pair matching if T consists of pairwise disjoint sets of
size 2.

Lemma 1. For a graph G = (V, E), an edge set P ⊆ E is not a path matching if and only if there is a
vertex v ∈

∪
P of degree more than 2 in P or there is a subset C ⊆ P that is a simple cycle.

2.3. Link Puzzles

Definition 2 (Numberlink). An instance of the Numberlink problem is a pair of a graph (Usually the
graph G in an instance is a rectangular grid as described in the introduction, but this paper targets the
more general problem described here.) G = (V, E) and a pair matching h on V . A path matching on G

is said to be a solution of (G, h) if and only if it contains u-v paths for all {u, v} ∈ h but no other.

An instance (G, h) of the Numberlink problem is said to be good if (G, h) admits exactly one solution
P and moreover the unique solution P covers every vertex: i.e.,

∪
P = V .

Theorem 3. [2,3,5] For input G and h, deciding whether (G, h) admits a solution is NP-complete.

Definition 4 (Slitherlink). An instance of the Slitherlink problem is a pair of a graph G = (V, E) and
a partial mapping h : 2E ⇀ N such that h(E ′) ≤ |E ′| for all E ′ ∈ dom(h), where dom(h) denotes
the domain of h (Usually G is a grid graph and h(E ′) is defined only when E ′ is a cycle consisting
of just four edges.). We call h a hint assignment. A solution of (G, h) is a cycle C over G such that
h(E ′) = |C ∩ E ′| for all E ′ ∈ dom(h). An instance (G, h) of the Slitherlink problem is said to be good
if (G, h) admits exactly one solution.

Theorem 5. [14] For input G and h, deciding whether (G, h) admits a solution is NP-complete. For
input (G, h) and a solution C, deciding whether (G, h) admits another solution C ′ ̸= C is NP-complete.

In this paper, we assume that G is connected on both puzzles.

Algorithms 2012, 5 182

3. ZDD for Path Matchings

Knuth has proposed an algorithm that constructs a ZDD representing all the s-t paths on a given graph
G and two vertices s and t in G, as an answer to Exercise 225 in [13]. Based on Knuth’s algorithm, this
section presents an algorithm that constructs in a topdown manner a ZDD ZG representing all the path
matchings over a graph G = (V,E). This algorithm prepares for our puzzle solvers.

Let G = (V, E) be an undirected graph. The edge set E = {e1, . . . , e|E|} is the universal set of ZG,
where we have ei ≤ ej if and only if i ≤ j. We define E≥ei = { ej ∈ E | ej ≥ ei }. The root node nroot

of ZG is labeled with e1 and if a node is labeled with ei then its children are labeled with ei+1 unless they
are terminal nodes, 0 or 1. By Ni we denote the set of nodes with the label ei for i = 1, . . . , |E|. Hence
N1 is the singleton of the root node nroot and Ni+1 consists of the children of nodes in Ni. Every valid
path ending in 1 has length |E| in ZG. For a 0, 1-sequence π, we denote the length of π by |π|. For π

with |π| ≤ |E|, we define

E(π) = { ei ∈ E | the ith number of π is 1 }

We then have ZG(π) = E(π) if π is a valid path in ZG. For a valid path π, we let n(π) denote the node
in which π ends. We have ZG(n) = {E(π) | n(π) = n }. The ZDD ZG will be constructed so that

E(π) ⊆ E is a path matching if and only if π is valid in ZG (1)

Note that every subgraph of a path matching is a path matching.
Our algorithm constructs ZG in a top-down manner. The construction consists of |E| phases, where

we create nodes in Ni+1 as children of nodes in Ni in the ith phase. Figure 4 illustrates an example of
G and ZG, which would help the reader understand our algorithm. We first initialize Ni to be empty
for all i = 2, . . . , |E| and N1 to be the singleton of the root node nroot. We create nodes in Ni after the
upper part of ZG consisting of the nodes in

∪
j<i Nj and the arcs among them have been constructed for

i = 2, . . . , |E|.
The algorithm stores some topological information of the path matching E(π) at the node n = n(π)

reached by a valid path π. Let |π| = i − 1, where we have n ∈ Ni and n is labeled by ei unless n = 1.
We assign the node n a function maten : V ≥ei → V ∪ {0}, which we call a mate function, where
V ≥ei =

∪
E≥ei and 0 /∈ V . It is determined so that

maten(v) =


v if v /∈

∪
E(π)

u if E(π) contains a u-v path

0 otherwise

(2)

for each v ∈ V ≥ei . In other words, maten(v) = v if v has degree 0 in E(π), and maten(v) = 0 if v

has degree 2 in E(π). Particularly for the root node nroot, we have matenroot(v) = v for all v ∈ V ≥e1 ;
the set V ≥e1 is identical to V , since G has no isolated vertices. The domain of a mate function maten

is restricted to V ≥ei , which is the set of vertices to which at least one edge in E≥ei is incident. We
are not interested in the topological information on vertices that we will not visit any more. Note that
V ≥ei = V ≥ei+1 ∪ ei. Hereafter we stipulate that V ≥e|E|+1 denotes the empty set.

Algorithms 2012, 5 183

Figure 4. An example of G and ZG.

G :

p q

r s

e1

e2 e3

e4

ZG :

p q r s

p q r s

e1 = {p, q}

p q r s

p q r s

e2 = {p, r}

p q r s

q p r s

e2 = {p, r}

p q r s

∗ q r s

e3 = {q, r}

p q r s

∗ q p s

e3 = {q, r}

p q r s

∗ p r s

e3 = {q, r}

p q r s

∗ r q s

e3 = {q, r}

p q r s

∗ q ∗ s

e4 = {q, s}

p q r s

∗ r ∗ s

e4 = {q, s}

p q r s

∗ p ∗ s

e4 = {q, s}

p q r s

∗ 0 ∗ s

e4 = {q, s}

1 0

The table of each node n represents maten. For example,
p q r s

∗ 0 ∗ s
means that

maten(q) = 0, maten(s) = s and p, r are not in the domain.

In the example of Figure 4, we have V = V ≥e1 = V ≥e2 = {p, q, r, s}, V ≥e3 = e3 ∪ e4 = {q, r, s} and
V ≥e4 = e4 = {q, s}. For π = 1 · 1, E(π) = {e1, e2} is a path matching consisting solely of a q-r path.
The domain of the mate function maten(π) is V ≥e3 = {q, r, s} and maten(π)(q) = r, maten(π)(r) = q

and maten(π)(s) = s.
Let us consider the ith phase of our algorithm, where we already have constructed an incomplete ZDD

until the nodes in Ni. We determine the children of a node n(π) ∈ Ni for a valid path π. The arcs given
in this phase correspond to the choice whether or not we pick ei in a path matching. Let n = n(π).

Giving a 0-child to n involves no difficulty. By assumption E(π) is a path matching and by definition
E(π · 0) = E(π). We create a node n′ in Ni+1 as the 0-child of n and label n′ by ei+1. That is,
n(π · 0) = n′. The mate function maten′ of n′ should be identical to maten except that the domain

Algorithms 2012, 5 184

dom(maten′) = V ≥ei+1 may be smaller than dom(maten) = V ≥ei . In the case where i = |E|, the
0-child of n is 1.

On the other hand, E(π · 1) ̸= E(π) and it is not always the case that E(π · 1) is a path matching.
If E(π · 1) is not a path matching, the 1-child of n should be 0. Otherwise, we give a node n′′ with
an appropriate mate function as the 1-child of n. We must decide whether E(π) ∪ {ei} is still a path
matching or not. Let ei = {u, v}. We note that u and v are in the domain V ≥ei of maten. There exist
several cases depending on the topology of E(π). Recall that an edge set P ⊆ E is a path matching if
and only if the degree of every node in P is at most 2 and no subset P ′ ⊆ P is a cycle. In the case where
maten(u) = 0, the degree of u in E(π) is 2, so the degree of u will be 3 in E(π) ∪ {ei}, which is therefore
not a path matching. The same holds when maten(v) = 0. Moreover, if maten(u) = v (equivalently
maten(v) = u), which means that E(π) contains a u-v path Pu,v ⊆ E(π), then E(π) ∪ {ei} contains
a simple cycle Pu,v ∪ {ei}. We say that a mate function m rejects an edge {u, v} if m(u) ∈ {0, v} or
m(v) ∈ {0, u}. If maten rejects ei, then E(π · 1) is not a path matching, hence the 1-child of n should
be 0. On the other hand, if maten does not reject ei, E(π)∪ {ei} is a path matching. So we need to give
a node as the 1-child of n. Particularly in the case where i = |E|, the 1-child of n will be 1. If i < |E|,
we create a node n′′ in Ni+1 as the 1-child of n (i.e., n′′ = n(π · 1)) and assign a function maten′′ that
is consistent with the requirement of Equation (2). Actually one can compute maten′′ from maten and
ei = {u, v} by

maten′′(w) =


0 if w ∈ ei = {u, v} and maten(w) ̸= w

maten(v) if maten(w) = u

maten(u) if maten(w) = v

maten(w) otherwise

(3)

for w ∈ dom(maten′′) = V ≥ei+1 .
We explain why this is correct. The first case means that w has degree 1 in E(π). Hence, the degree

of w ∈ ei will be 2 in E(π) ∪ {ei} (Figure 5(a)). In the second case, maten(w) = u means either
that E(π) has a w-u path or that w = u and w is isolated in E(π). It is convenient for explanation
to regard an isolated vertex t as a t-t path. According to this terminology, E(π) contains a w-u path
and a v-maten(v) path. Then the edge ei = {u, v} will bridge those paths: E(π) ∪ {ei} contains a
w-maten(v) path (Figure 5(b)). The third case is similar to the second case. If none of those three cases
apply, adding ei does not matter for the vertex w. We note that by the assumption, the first three cases
are mutually exclusive.

Figure 5. updating mate.

ei

maten(w) 6= w

w

(a)

ei
w u

maten(w)

v

maten(v)

(b)

Summarizing the above, by observing maten, one can determine whether E(π · 1) is a path matching
or not. Moreover one can compute both maten′ and maten′′ for the 0-child n′ and 1-child n′′ of n,

Algorithms 2012, 5 185

respectively, unless they are 0 or 1. Consequently, if two nodes n1 and n2 with the same label have the
same mate function, their descendants will constitute subgraphs of exactly the same shape in ZG. This
means that such equivalent nodes n1 and n2 should be merged before generating children.

Our actual algorithm, shown as Algorithm 1, maintains each node set Ni not to contain distinct nodes
assigned the same mate function. This is realized by a procedure named GN (short for “getting a node”)
which takes two arguments: an edge index i ∈ {1, . . . , |E|} and a mate function m. GN(i,m) returns
a node labeled ei and assigned m. If such a node has already been created in Ni, that node is returned.
Otherwise, we create one in Ni and return it. It is conveniently assumed that GN(|E| + 1, m) gives the
terminal node 1. Note that this procedure may update Ni.

Algorithm 1: Enumeration of path matchings

Data: A graph G = (V, E)
1 begin
2 create a root node and two terminal nodes 0 and 1;
3 let N1 ← {nroot}, Ni ← ∅ for i = 2, . . . , |E| and matenroot be the identity on V ;
4 foreach i = 1, . . . , |E| do
5 foreach n ∈ Ni do
6 let the 0-child of n be GN(i + 1, maten|V ≥ei+1);
7 if maten rejects ei then let the 1-child of n be 0;
8 else let the 1-child of n be GN(i + 1, MU(maten, ei)|V ≥ei+1);

9 end
10 end
11 return the constructed diagram;

12 end

For a node labeled ei and assigned a mate function m which does not reject ei, the mate function of
its 1-child is given by MU(m, ei)|V ≥ei+1 in Algorithm 1, which is determined in the way described in
Equation (3). That is, MU (short for “mate update”) takes a mate function m and an edge ei and returns
a mate function defined by

MU(m, ei)(w) =


0 if w ∈ ei and m(w) ̸= w

m(v) if ei = {v, m(w)}

m(w) otherwise

for each w ∈ dom(m). The domain of MU(m, ei) is the same as that of m. By MU(m, ei)|V ≥ei+1 we
denote the subfunction of MU(m, ei) whose domain is restricted to V ≥ei+1 .

We prove the correctness of Algorithm 1 in Appendix A.

4. Numberlink Solver

This section presents a Numberlink solver, which constructs a ZDD that represents all the solutions
for a given instance (G, h) of Numberlink. Recall that a solution for an instance (G, h) of Numberlink

Algorithms 2012, 5 186

is a path matching that satisfies a property represented by the pair matching h. It is in fact rather easy to
modify Algorithm 1 to obtain a Numberlink solver.

Let us consider when we should connect an arc of a node to 0 in addition to the cases we have
discussed in Section 3. Suppose that we have chosen edges from {e1, . . . , ei} and by picking up other
edges from E≥ei+1 , we would like to form a solution. Let π be a 0, 1-sequence of length i that represents
the choice. It is easy to see that if one of the following conditions holds, E(π) ∪ P cannot be a solution
of (G, h) for any edge set P ⊆ E≥ei+1 .

• E(π) is not a path matching,
• there is v ∈

∪
h of degree 2 in E(π),

• there is v ∈
∪

h \ V ≥ei+1 of degree 0 in E(π),
• there are u, v ∈

∪
h such that E(π) contains a u-v path and {u, v} /∈ h,

• there is a vertex v /∈
∪

h ∪ V ≥ei+1 of degree 1 in E(π).

Our Numberlink solver, shown as Algorithm 2, constructs a ZDD so that if a path π of length i

satisfies one of the above, then (a prefix of) π leads to 0. While Algorithm 1 connects no 0-arcs to 0, our
Numberlink solver sometimes connects 0-arcs to 0 according to the above conditions. This judgement
is realized by observing the mate functions. For a mate function m : V ≥ei → V ∪ {0} and an edge
index i, we say that (m, i, 0) is incompatible with h if for some v ∈ ei \ V ≥ei+1 , one of the following
conditions holds.

• v ∈
∪

h and m(v) = v,
• v /∈

∪
h and m(v) /∈ {0, v}.

When (maten, i, 0) is incompatible with h for n ∈ Ni, the 0-arc of n should be connected to 0, since
P = E(π · 0) ∪ E ′ cannot be a solution for any E ′ ⊆ E≥ei+1 . In the first case, the degree of v ∈

∪
h is

0 in P . In the second case, the degree of v /∈
∪

h is 1 in P .

Algorithm 2: Numberlink solver

Data: A graph G = (V, E) and a pair matching h over V

1 begin
2 create a root node and two terminal nodes 0 and 1;
3 let N1 ← {nroot} and Ni ← ∅ for i = 2, . . . , |E|;
4 foreach i = 1, . . . , |E| do
5 foreach n ∈ Ni do
6 if (maten, i, 0) is incompatible with h then let the 0-child of n be 0;
7 else let the 0-child of n be GN(i + 1, maten|V ≥ei+1);
8 if (maten, i, 1) is incompatible with h then let the 1-child of n be 0;
9 else let the 1-child of n be GN(i + 1,MU(maten, ei)|V ≥ei+1);

10 end
11 end
12 return the constructed diagram;

13 end

We prove the correctness of Algorithm 2 in Appendix B.

Algorithms 2012, 5 187

We say that (m, i, 1) is incompatible with h if for ei = {u, v}, one of the following conditions holds.

• m rejects ei, i.e., m(v) ∈ {0, u},
• v ∈

∪
h and m(v) ̸= v,

• m(u),m(v) ∈
∪

h ∪ (V \ V ≥ei+1) and {m(u),m(v)} /∈ h.

When (maten, i, 1) is incompatible with h for n ∈ Ni, the 1-arc of n should be connected to 0, since
P = E(π ·1)∪E ′ cannot be a solution for any E ′ ⊆ E≥ei+1 . In the first case, P is not a path matching. In
the second case, v has degree more than 1 in P . In the third case, either P contains a maten(u)-maten(v)

path or the degree of maten(u) ∈
∪

h or maten(v) ∈
∪

h is more than 1 in P .

Remark 6. It is obvious that no proper superset of a solution for (G, h) can be another solution. One can
modify Algorithm 2 so that a path π directly leads to 1 if E(π) is a solution. Replace GN by GNh where

GNh(i,m) =

1 if for any u ∈ dom(m) and v ∈ V, we have ({u, v} ∈ h iff m(u) = v ̸= u)

GN(i,m) otherwise

Remark 7. An alternative definition of Numberlink requires a solution to cover all the vertices. This
constraint drastically shrinks the search space. It is easy to modify our algorithm to obtain only such
strict solutions. We say that (m, i, 0) is incompatible with h if it is incompatible in the above sense or
there is v ∈ V ≥ei \ V ≥ei+1 such that m(v) = v, which means that v is not covered.

5. Numberlink Instance Enumeration

This section presents an algorithm that enumerates all pair matchings h that give a good instance
(G, h) of the Numberlink problem for a given graph G. Fixing G, we say that a pair matching h is good
if (G, h) is a good instance. Let us first consider an easier task, which enumerates all the instances that
admit at least one solution. A solution for an instance of the Numberlink problem is a path matching
and conversely every path matching P on G consisting of ui-vi simple paths for all i = 1, . . . , k is
a solution for (G, hP) where hP consists of {ui, vi} for all i = 1, . . . , k. Our instance enumeration
algorithm, shown as Algorithm 3, is again based on Algorithm 1, but now what we should enumerate is
not edge sets but rather pair matchings. The ZDD ZG output by Algorithm 1 will be a part of the input
of Algorithm 3.

For a valid path π in ZG, the corresponding path matching E(π) consists of two kinds of simple paths:
fixed paths and unfixed paths. Fixed paths are u-v paths where u, v /∈ V ≥e|π|+1 = dom(maten(π)). In
other words, every fixed path in E(π) will be a constituent of any path matching represented as E(π · ρ)

(We note that whether a simple path in a path matching E(π) is fixed or unfixed depends on π rather
than E(π) itself. Yet we prefer a concise phrasing relying on the reader’s flexibility and assume that the
vertex set in concern is understood.). We note that by definition maten(π) does not tell us whether E(π)

contains a fixed u-v path. On the other hand, the presence of an unfixed u-v path is observed in the mate
function. If a u-v path is unfixed, at least one of u, v is in V ≥e|π|+1 = dom(maten(π)). Without loss of
generality, we assume u ∈ dom(maten(π)), where we have maten(π)(u) = v. Since u has an incident
edge in E≥e|π|+1 , the path may be extended so that u has degree 2.

Algorithms 2012, 5 188

Algorithm 3: Numberlink Generator

Data: A graph G = (V, E)
1 begin
2 let ZG be the output by Algorithm 1 for G;
3 let Sn(ϵ) ← {∅} and Bn(ϵ) ← ∅ for the root n(ϵ) of ZG;
4 let N|E|+1 ← {1};
5 foreach i = 2, . . . , |E|, |E|+ 1 do
6 foreach n ∈ Ni do
7 let Sn ←

∪
{Sn′,b | n′ ∈ Ni−1 is a b-parent of n };

8 let Bn ←
∪
{Sn1,b1 ∩ Sn2,b2 | nj ∈ Ni−1 is a bj-parent of n for j = 1, 2 and n1 ̸= n2 }

9 ∪
∪
{Sn′,0 | n′ is a 0-parent of n such that maten′(u) = u for some u ∈ ei \ V ≥ei+1 }

10 ∪
∪
{Bn′,b | n′ is a b-parent of n };

11 end
12 end
13 return S1 \B1;

14 end

We prove the correctness of Algorithm 3 in Appendix C.

Let T (π) denote the pair matching corresponding to the ends of fixed paths:

T (π) = { {u, v} ⊆ V | E(π) contains a u-v path with u, v /∈ V ≥e|π|+1 }

Note that T (π) ⊆ T (π ·ρ) for any π and ρ as long as E(π ·ρ) is a path matching. We decorate each node
n of the ZDD ZG with the family

Sn = {T (π) | n(π) = n }

When a path π ends in 1 in ZG, all the simple paths constituting E(π) are fixed. By definition, S1 will
be the family of pair matchings h such that (G, h) admits a solution. For different valid paths π and ρ

ending in the same node n = n(π) = n(ρ), E(π) and E(ρ) may have different fixed paths, but they
share the same unfixed paths. We present an example of T (π) and Sn in Appendix F.

Let us think about how to compute the family Sn of a node n from the pair matching families Sn′

assigned to its parents n′. By definition, it is not hard to see that

T (π · 0) \ T (π) = { {u, v} ⊆ V | E(π · 0) contains a u-v path with u ∈ ei and u, v /∈ V ≥ei+1 }
T (π · 1) \ T (π) = { {u, v} ⊆ V | E(π · 1) contains a u-v path P with ei ∈ P and u, v /∈ V ≥ei+1 }

where i = |π|+ 1. Define

Fix(m, i, 0) = { {u,m(u)} | u ∈ ei, m(u) /∈ {u, 0} and u,m(u) /∈ V ≥ei+1 }
Fix(m, i, 1) = { {m(u),m(v)} | {u, v} = ei and m(u), m(v) /∈ V ≥ei+1 }

We now have

T (π · b) = T (π) ∪ Fix(maten(π), |π|+ 1, b)

Algorithms 2012, 5 189

for both b = 0, 1. Therefore, for n ∈ Ni+1,

Sn =
∪
{Sn′,b | n′ is a b-parent of n for b ∈ {0, 1} }

where Sn′,b = {T ∪ Fix(maten′ , i, b) | T ∈ Sn′ }

In this way, one can recursively compute Sn for all nodes except 0 of ZG.
We would like to extract good ones from S1. In addition to Sn, we assign each node n another family

Bn ⊆ Sn such that no pair matching T ∈ Bn will be expanded to a good one. We construct Bn so that

Bn = {T (π1) ∈ Sn | there are distinct valid paths π1, π2 ending in n with T (π1) = T (π2) } (4)

∪{T (π) ∈ Sn | there is a valid path π ending in n with
∪

E(π) ∪ V ≥e|π|+1 ̸= V } (5)

This definition is explained as follows. For the first line Equation (4), suppose that there are distinct
valid paths π1 and π2 ending in the same node n = n(π1) = n(π2) such that T (π1) = T (π2). Then,
E(π1 · ρ) is a path matching if and only if so is E(π2 · ρ) for any ρ. Moreover, E(π1 · ρ) consists
of ui-vi paths for i = 1, . . . , k for some k if and only if so does E(π2 · ρ). That is, the instance
(G, { {ui, vi } | i = 1, . . . , k }) has two distinct solutions E(π1 · ρ) and E(π2 · ρ). The second part
Equation (5) of the definition of Bn is easier. If E(π)∪V ≥e|π|+1 ̸= V , then there is a vertex v /∈ V \V ≥ei+1

which has degree 0 in E(π) and thus in E(π · ρ) for any ρ. If E(π · ρ) is a path matching consisting of
ui-vi paths for i = 1, . . . , k for some k, the instance (G, { {ui, vi } | i = 1, . . . , k }) has a solution that
does not cover all the vertices.

We can compute the family Bn of a node n from the pair matching families assigned to its parents
according to the definition of Bn:

Bn =
∪
{Sn1,b1 ∩ Sn2,b2 | nj is a bj-parent of n for j = 1, 2 and n1 ̸= n2 } (6)

∪
∪
{Sn′,0 | n′ is a 0-parent of n such that maten′(u) = u for some u ∈ ei \ V ≥ei+1 } (7)

∪
∪
{Bn′,b | n′ is a b-parent of n } , (8)

where Bn,b = {T ∪ Fix(maten, i, b) | T ∈ Bn } for b ∈ {0, 1}. The lines Equations (6) and (7) come
from Equations (4) and (5), respectively. Suppose that T (π) ∈ Bn(π). Then regardless of whether it is
due to Equation (4) or Equation (5), we have T (π · ρ) ∈ Bn(π·ρ) for any ρ as long as π · ρ is valid. Those
pair matchings are captured by Equation (8).

6. Slitherlink Solver

The goal of this section is to give a Slitherlink solver, which constructs a ZDD that represents all the
solutions for a given instance (G, h) of Slitherlink. Recall that a solution is a simple cycle that satisfies
a property represented by the hint assignment h : 2E ⇀ N. As a preparation, we present an algorithm
that constructs a ZDD representing all the simple cycles on a given graph G. Actually this algorithm is
an answer to Exercise 226 of [13].

Based on the fact that any proper subgraph of a cycle is actually a path matching, it is easy to modify
Algorithm 1 so that simple cycles shall be enumerated. We allow vertices to have degree 1 temporarily
during the construction, but when we have determined which of the edges incident to a vertex v shall be

Algorithms 2012, 5 190

used, the degree of v must be 0 or 2. In addition, we allow to add an edge e = {u, v} to a path matching
E(π) if E(π) consists solely of a single u-v path: it completes a cycle.

Both conditions are judged by observing the mate functions. We say that a mate function m and an
edge ei form a cycle if for any v in the domain of m,

m(v) =

u if ei = {u, v}

v or 0 if v /∈ ei

If maten and ei form a cycle for n ∈ Ni, the 1-child of n should be 1.
We say that (m, i) has a fixed end if

m(v) /∈ {0, v} for some v ∈ ei \ V ≥ei+1

For a valid path π in ZG, if (maten(π), |π|) has a fixed end, E(π) ∪ E ′ has a vertex of degree 1 for any
E ′ ⊆ E≥ei+1 . We say that m declines ei if either m rejects ei or (MU(m, ei), i) has a fixed end. If maten

declines ei for n ∈ Ni, the 1-child of n should be 0.
In addition, since the empty edge set is not a cycle, the corresponding path in our ZDD should end

in 0.
Algorithm 4 constructs a ZDD for representing all the simple cycles on a graph G. We prove the

correctness of Algorithm 4 in Appendix D.

Algorithm 4: Enumeration of simple cycles

Data: A graph G = (V, E)
1 begin
2 create a root node and two terminal nodes 0 and 1;
3 let N1 ← {nroot} and Ni ← ∅ for i = 2, . . . , |E|;
4 foreach i = 1, . . . , |E| do
5 foreach n ∈ Ni do
6 if (maten, i) has a fixed end or i = |E| then let the 0-child of n be 0;
7 else let the 0-child of n be GN(i + 1, maten|V ≥ei+1);
8 if maten and ei form a cycle then let the 1-child of n be 1;
9 else if maten declines ei then let the 1-child of n be 0;

10 else let the 1-child of n be GN(i + 1, MU(maten, ei)|V ≥ei+1);

11 end
12 end
13 return the constructed diagram;

14 end

We are now ready to give our Slitherlink solver, shown as Algorithm 5, based on Algorithm 4.

Algorithms 2012, 5 191

Algorithm 5: Slitherlink solver

Data: A graph G = (V, E) and a partial map h : 2E ⇀ N
1 begin
2 create a root node and two terminal nodes 0 and 1;
3 let N1 ← {nroot} and Ni ← ∅ for i = 2, . . . , |E|;
4 foreach i = 1, . . . , |E| do
5 foreach n ∈ Ni do
6 if (maten, i) has a fixed end or (countn, i) is incompatible with h then
7 let the 0-child of n be 0;
8 else
9 let the 0-child of n be GN(i + 1, maten|V ≥ei+1 , countn);

10 end
11 if maten and ei form a cycle and CU(countn, ei) matches h then
12 let the 1-child of n be 1;
13 else if maten declines ei or (CU(countn, ei), i) is incompatible with h then
14 let the 1-child of n be 0;
15 else
16 let the 1-child of n be GN(i + 1, MU(maten, ei)|V ≥ei+1 , CU(countn, ei));
17 end
18 end
19 end
20 return the constructed diagram;

21 end

Let (G, h) be a Slitherlink instance. To ensure that the computed cycle is compatible with the hint
assignment h, we assign another function countn : dom(h) → N to each node n in addition to maten.
The function counts the number of picked edges in D in the domain of h. That is, for a valid path π, we
shall have countn(π)(D) = |E(π) ∩ D| for each D ∈ dom(h). Especially countnroot(D) = 0 for each
D ∈ dom(h). Updating the counter is very easy. For a mapping c : dom(h) → N and an edge e ∈ E,
we define CU(c, e) : dom(h)→ N (it stands for “counter update”) by

CU(c, e)(D) =

c(D) if e /∈ D

c(D) + 1 if e ∈ D

for every D ∈ dom(h).
For π of length i, when it is clear that there is no P ′ ⊆ E≥ei+1 such that E(π)∪P ′ is compatible with

h, the path π should end in 0. We say that (c, i) is incompatible with h if there is D ∈ dom(h) such
that either

• c(D) > h(D) or
• c(D) + |D ∩ E≥ei+1| < h(D).

We say that c matches h if c(D) = h(D) for all D ∈ dom(h).

Algorithms 2012, 5 192

The function GN is modified so that it handles a counter function in addition to a mate function. It
takes an edge index i ∈ {1, . . . , |E|}, a mate function m and a counter function c. GN(i,m, c) returns
a node labeled ei and assigned m and c. If such a node has already been created in Ni, that node is
returned. Otherwise, we create one in Ni and return it. Note that this procedure may update Ni.

We give a formal proof for the correctness of Algorithm 5 in Appendix E.

7. Slitherlink Instance Enumeration

In this section, we discuss instance enumeration for the Slitherlink problem, assuming that a graph
G = (V, E), a solution cycle C over G, and the maximum domain E ⊆ 2E of hint assignments are
given. Let h : E → N be a hint assignment such that h(E ′) = |C ∩ E ′| for all E ′ ∈ E . The objective
is to enumerate every E ′ ⊆ E that leads to a good instance (G, h′) of the Slitherlink problem such that
dom(h′) = E ′ and h′(E ′) = h(E ′) for all E ′ ∈ E ′. A good instance (G, h′) must not have any compatible
cycles other than C. Therefore, the instance enumeration problem is solved by computing

H =

{
E ′ ⊆ E

∣∣∣∣∣ ∨
E′∈E

(E ′ ∈ E ′ ∧ h(E ′) ̸= |C ′ ∩ E ′|) for all C ′ ∈ C \ {C}

}
(9)

where C is the set of all cycles on G. We use Algorithm 4 to construct a ZDD for C. For this sake, we
invoke the dynamic virtue of ZDDs that allows us to perform mathematical set operations quite easily.

A ZDD for the family C can be regarded as a function C(x) : {0, 1}|E| → {0, 1} such that

C(x) =

1 if {e | xe = 1} ∈ C

0 otherwise

where x = (xe1 , . . . , xe|E|) is a vector of binary variables representing if each edge is taken. A ZDD for
{C} can also be regarded as a function C(x) : {0, 1}|E| → {0, 1} such that

C(x) =

1 if {e | xe = 1} = C

0 otherwise

Let y = (yE′
1
, . . . , yE′

|E|
) be a vector of binary variables representing if the ith element E ′

i of E is included
in E ′. Now we can rewrite Equation (9) in terms of x and y as follows, which can be computed by
conventional operations on ZDDs:

H(y) = ∀x.

(
¬C(x) ∨ C(x) ∨

∨
E′∈E

(
yE′ ∧ h(E ′) ̸=

∑
e∈E′

xe

))
Once H(y) is computed, ZDD operations enable us to restrict it easily to some interesting subset,

such as instances with the minimum or minimal hints, and to output all instances explicitly.

8. Experiments

The following experiments for the Numberlink solvers, the Slitherlink solvers and the Slitherlink
generators are performed on AMD Opteron ProcessorTM 8393, 3.09 GHz with 512 GB memory running
SuSE 10, and those for the Numberlink generators are performed on AMD Opteron ProcessorTM 6136,
2.40 GHz with 256 GB memory running SuSE 10.

Algorithms 2012, 5 193

8.1. Solvers for Numberlink and Slitherlink

In this subsection, we discuss our experimental results on the comparison of our algorithm for solving
Numberlink and Slitherlink with existing methods which are based on CPLEX 12.3 and Sugar. We
implemented Algorithm 2 for Numberlink solver and Algorithm 5 for Slitherlink solver in C++ and
compiled them by G++ 4.6 with -O3 optimization option. In our implementation, a variable order (an
edge order) is lexicographical on sets of two vertices where vertices are labeled such as Figure 6.

Figure 6. Grid graph Gb,a and its vertex labels.

1 2 a

a+ 1 a+ 2
2a

a(b− 1) + 1 a(b− 1) + 2

ab

a

b

We prepared the benchmark programs. We formulated solving Numberlink [15] and Slitherlink [16]
as integer programs and solve them by CPLEX, which is an integer programming solver. Sugar is a SAT
based constraint solver [8]. Sugar provides the formulation of Numberlink [17] and Slitherlink [18]. We
also compared them with a heuristic solver slink [9] specialized for Slitherlink, which is published as a
C source code.

Table 1 shows the running times of these methods for solving Numberlink. In the table, BNx denotes
the xth instance in [19]. C88 is the Vol. 88 instance in Puzzle Championships 2010 [20]. Let Gα,β denote
the α × β grid graph. In Table 2, we show the running times of these methods with the restriction that
requires solutions to cover all vertices (see Remark 7).

Table 1. Running time in seconds for solving Numberlink. Our algorithm could not solve
C88 due to insufficient memory.

Instance Graph Time CPLEX Time Sugar
Time

Algorithm 2
Memory

Algorithm 2 (MB)

BN1 G8,8 0.02 1.179 0.008 2

BN15 G8,8 13.95 1.336 0.004 2

BN30 G10,10 88.32 1.896 0.016 5

BN43 G10,10 6, 410.67 1.924 0.072 18

Algorithms 2012, 5 194

Table 1. Cont.

Instance Graph Time CPLEX Time Sugar
Time

Algorithm 2
Memory

Algorithm 2 (MB)

BN52 G10,10 0.45 1.520 0.012 3

BN64 G10,10 108.07 1.704 0.136 11

BN72 G10,10 276.07 1.388 0.012 4

BN79 G10,10 15, 117.47 1.496 0.220 37

BN85 G20,15 >100, 000 7, 213.079 862.518 43, 846

BN99 G20,15 >100, 000 14.097 1, 658.772 67, 094

C88 G20,36 >100, 000 >100, 000 – –

Table 2. Running time in seconds for solving Numberlink with restriction that requires
solutions to cover all vertices.

Instance Graph Time CPLEX Time Sugar
Time

Algorithm 2
Memory

Algorithm 2 (MB)

BN1 G8,8 0.01 1.148 0.004 2
BN15 G8,8 0.40 0.964 0.000 2
BN30 G10,10 0.82 1.576 0.024 3
BN43 G10,10 21.97 1.552 0.012 5
BN52 G10,10 0.10 1.296 0.004 2
BN64 G10,10 18.40 1.368 0.012 5
BN72 G10,10 1.50 1.648 0.012 2
BN79 G10,10 26.74 1.452 0.048 10
BN85 G20,15 >100, 000 5, 431.991 185.264 8, 761
BN99 G20,15 >100, 000 12.585 175.147 9, 727

Table 3 describes the running time of these methods as Slitherlink solvers. BSx denotes the xth
instance in [21]. S10 is a large sample problem on [22]. C95 is the Vol. 95 instance in Puzzle
Championships 2010 [20].

Table 3. Running time in seconds for solving Slitherlink. Our algorithm could not solve C95
due to insufficient memory.

Instance Graph Time CPLEX Time Sugar Time slink
Time

Algorithm 5
Memory

Algorithm 5 (MB)

BS1 G11,11 0.07 5.460 0.001 0.116 34

BS12 G11,11 0.28 4.696 0.004 0.384 41

BS25 G11,11 0.12 6.496 0.001 0.060 34

BS37 G11,11 0.14 8.773 0.004 0.044 34

Algorithms 2012, 5 195

Table 3. Cont.

Instance Graph Time CPLEX Time Sugar Time slink
Time

Algorithm 5
Memory

Algorithm 5 (MB)

BS43 G19,11 0.17 8.349 0.001 0.060 36

BS54 G19,11 0.40 7.380 0.008 0.304 37

BS68 G25,15 0.39 12.433 0.004 0.384 39

BS77 G25,15 0.90 13.281 0.004 0.376 42

BS89 G37,21 1.56 48.035 0.016 9.329 407

BS96 G37,21 3.07 186.612 0.104 26.286 904

S10 G21,37 41.43 1, 411.944 0.036 4, 569.330 138, 053

C95 G32,46 95.93 1, 076.839 0.088 – –

This table shows that slink is by far the fastest. A reason is that slink is a heuristic solver for Slitherlink
which uses information specialized for Slitherlink. For example, when two adjacent cells are assigned
“0” and “3” respectively, 12 of the surrounding edges are immediately determined to be or not to be in
any solution (see Figure 7).

Figure 7. An example of information used by a heuristic Slitherlink solver.

30

8.2. Numberlink Generator

In this subsection, we show experimental results for enumerating all Numberlink instances for
grid graphs by a variant of Algorithm 3. Our actual implementation is purely top-down, which is
different from Algorithm 3. By interweaving the idea of Algorithm 3 into Algorithm 1, we construct
ZG assigning nodes mate functions as well as pair matching families representing the ends of fixed
paths simultaneously. In our algorithm, Sn and Bn are calculated by set operations such as union and
intersection. We implemented these sets by ZDDs whose variables are unordered pairs {v, v′} of vertices
v, v′ ∈ V . For efficiency, our implementation maintains ⟨Wn, Bn⟩ instead of ⟨Sn, Bn⟩ for each node n

in ZG, where Wn = Sn \Bn.
Tables 4, 5 and 6 show the running time of our algorithm, the number of good instances and that of

nodes of S1 \B1 for Gα,β .

Algorithms 2012, 5 196

Table 4. Running time of Numberlink generator for Gα,β .

α\β 2 3 4 5 6 7

2 <0.01 <0.01 <0.01 <0.01 0.01 0.02

3 – <0.01 0.01 0.08 0.48 2.67

4 – – 0.21 3.56 44.13 488.12

5 – – – 107.99 3, 553.29 >100, 000

6 – – – – >100, 000 >100, 000

7 – – – – – >100, 000

Table 5. The number of good instances of Numberlink for Gα,β .

α\β 2 3 4 5 6 7

2 2 10 36 126 454 1, 632

3 – 86 807 6, 690 58, 422 499, 733

4 – – 16, 410 338, 460 6, 901, 105 141, 123, 690

5 – – – 16, 027, 290 784, 030, 205 Time Out
6 – – – – Time Out Time Out
7 – – – – – Time Out

Table 6. The number of ZDD nodes of W1 in Numberlink generator for Gα,β .

α\β 2 3 4 5 6 7

2 4 18 50 117 235 419

3 – 99 491 1, 686 4, 918 12, 255

4 – – 3, 499 22, 599 108, 954 439, 506

5 – – – 226, 800 1, 977, 335 Time Out
6 – – – – Time Out Time Out
7 – – – – – Time Out

For G6,6, the computation did not finish within one week. We tried to compute the number of instances
with restricting the number of pairs to at most ℓ. Table 7 shows the result of this computation for G6,6

and G7,7. Let Wn,i = {T ∈ Wn | |T | = i } and Bn,i = {T ∈ Bn | |T | = i }. We maintain
⟨Wn,0, . . . , Wn,ℓ, Bn,0, . . . , Bn,ℓ⟩ instead of ⟨Wn, Bn⟩ in each node n. We omit the method of computing
Wn,i and Bn,i. Then, we obtain that the number of minimum pairs with which G6,6 gives a good instance
is 3 from this result. We give the complete list of those instances on the graph G6,6 with 3 pairs of
vertices in Appendix G.

Algorithms 2012, 5 197

Table 7. Running time, the number of good instances with at most ℓ pairs of numbers, and
that of ZDD nodes of W1 = S1 \B1.

Graph ℓ Time Good instances |Wn,ℓ|

G6,6 0 39.63 0 1

G6,6 1 141.13 0 1

G6,6 2 1, 329.35 0 1

G6,6 3 12, 161.5 304 472

G6,6 4 >1, 000, 000 – –
G7,7 0 2, 732.86 0 1

G7,7 1 14, 226 0 1

G7,7 2 >1, 000, 000 – –

8.3. Slitherlink Generator

For the Slitherlink generator, we tried to generate some interesting examples of Slitherlink instances
in order to confirm the usefulness of our tool. Our tool generates Slitherlink instances based on three
kinds of input: a graph, a solution cycle, and the maximum domain of hint assignments. In usual cases
where instances are made with grid graphs, a domain of hint assignments is represented by a set of
rectangular cells.

Figure 8 shows an example of Slitherlink generation. We drew a solution cycle on a 5 × 7 grid of
cells and marked all 35 cells as the maximum set of hint cells. When they were given as the input, our
tool successfully constructed a ZDD for a family of sets of hint cells in 8 s, from which we can obtain all
the 2,912,556,380 good Slitherlink instances that have the given solution cycle. The tool can optionally
restrict generated instances to minimal ones (instances such that any hint cannot be removed without
making the solution not unique). It took 0.1 s for this example and the number of instances was reduced
to 32,639. The output example shown in Figure 8 is the one selected automatically by our tool as the
most difficult instance among them in our criteria, in which the difficulty is evaluated by smallness of
the number of cells with hint values “4”, “0”, “3”, “1”, and “2” in this order of precedence. Another
output example was shown already in Figure 2, which is one of the 81 good instances that consist of
minimum hints.

Figure 8. Input and output of Slitherlink generation; example #1.s s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s s

√ √ √ √ √ √ √

√ √ √ √ √ √ √

√ √ √ √ √ √ √

√ √ √ √ √ √ √

√ √ √ √ √ √ √

s s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s ss s s s s s s s

2 2 2 2

2 2 2 2 2 2

1 2 1

2 2 2 2 2 2

2 2 2 2

Algorithms 2012, 5 198

Figure 9 shows another input example, in which the solution cycle is drawn on a 8 × 8 grid of
cells. Unfortunately, the computation could not be finished even in a day when all 64 cells are marked as
candidates of hint locations. Our tool, however, was still able to assist making instances of the Slitherlink
problem according to the designer’s intent. We reduced the candidate locations to 36 cells (the right
picture of Figure 9) and got 1,669,424 instances, 1,850 minimal instances, and 4 minimum instances
(Figure 10) in 2 s. It is also interesting that the same mechanism can be used to modify existing instances.
We found that hand-made instances often include many redundant hints (e.g., 12 out of 40) and our tool
can be used to make them more difficult to solve.

Figure 9. Input of Slitherlink generation; example #2.r r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r r

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

√ √ √ √ √ √ √ √

r r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r r

√ √ √ √ √ √ √ √

√ √

√ √ √ √

√ √

√ √ √ √ √ √

√ √

√ √ √ √

√ √ √ √ √ √ √ √

Figure 10. Output of Slitherlink generation; example #2.q q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q q

3 3
2 2
1 0 0 1
1 1

3 3

0 2 2 0
3 2 2 3

q q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q q

3 3 3
2
1 0 0 1
1 1

3 3

0 2 2 0
3 2 2 3

q q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q q

3 3 3
2

1 0 0 1
1 1

3 3

0 2 2 0
3 2 2 3

q q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q q

3 3 3 3

1 0 0 1
1 1

3 3

0 2 2 0
3 2 2 3

Finally, we introduce an enjoyable application of our tool, which can make a puzzle containing a
secret message. Unlike the original Slitherlink, we allow multiple cycles as its solution in order to
embed multiple letters into the puzzle. The algorithm of Slitherlink instance generation is modified by
replacing computation of “all cycles on G” with “all combinations of disjoint cycles on G”, which is
actually not difficult to be computed by using conditions on degree of the graph vertices. Figure 11 is
our message to readers.

Figure 11. An example of message puzzle instance.q qq qq qq qq qq q

3 3 2 0 2 1 0 0 1 0 3 1 1 3 0 2 1 2 2 1 2 2 0 2

1 0 1 1 1 3 2 1 1 0 2 2 0 3 1 2 1 0 1

1 1 0 3 1 3 3 3 2 2 1 0 0 0 1 1 0 1 1 1 1 1 1

0 0 1 1 1 1 2 1 1 2 1 0 0 2 1 1 1 0 3 0 0 1 2 2 1 2

2 1 0 2 1 1 2 2 2 1 2 2 2 0 2 2 1 1 2 1 2 1 2 1 0 2 2 2 0 2 2

Algorithms 2012, 5 199

9. Conclusions

This paper has proposed algorithms that enumerate solutions and instances for two link puzzles,
Numberlink and Slitherlink, based on Knuth’s path enumeration algorithm SIMPATH.

Our Numberlink solver (Algorithm 2) is faster than Sugar and CPLEX. In Slitherlink, our solution
enumeration algorithm (Algorithm 5) shows better performance than Sugar. CPLEX is sometimes
faster than our algorithm. Slink runs much faster than our algorithm and CPLEX to find a solution
for Slitherlink instances. The result looks rather reasonable, since Sugar and CPLEX are designed for
quite general purposes and find only one solution, while Slink is specially designed to solve Slitherlink
problems. Our algorithms are located in between. The core of our algorithms is specialized to enumerate
path matchings on a general graph, to which we have plugged mechanisms that decide whether the
currently obtained path matchings can be expanded to a solution. It is not difficult to accelerate our
algorithms by employing known local solution methods for the link puzzles on grid graphs. Yet we have
largely ignored such detailed improvements. Rather we emphasize the generality of our approach that
should be valid to design solution enumeration algorithms for various link puzzles including Masyu,
Yajirin and others. To build a ZDD representing solutions, what we need to do is to assign each node an
appropriate configuration like mate and count which can be locally updated and which tells whether the
currently obtained path matchings may be grown up to solutions.

Another point we would like to emphasize is that our algorithms give all the solutions at once as
a ZDD unlike existing solvers. Our instance enumeration algorithms rely much on this feature of our
approach. We benefit from the virtue of ZDDs as a set manipulation system. As we have demonstrated in
Section 8.3, we have flexible means on ZDDs to extract instances with several properties from the whole
set of good instances, like non-redundant ones, the hardest ones, ones that use specific cells, and so on.
The authors believe manipulating puzzle instances on a ZDD is quite beneficial to puzzle designers. It
is future work to develop an assistant tool for puzzle designers that equips several convenient functions
with a friendly interface.

Acknowledgements

The authors are very much grateful to the anonymous reviewers for their valuable comments and
suggestions that considerably improved the quality of our paper.

References

1. Nikoli: Web Nikoli. Available online: http://www.nikoli.co.jp/ (accessed on 21 March 2012)
2. Kotsuma, K.; Takenaga, Y. NP-Completeness and Enumeration of Number Link Puzzle [in

Japanese]; IEICE Technical Report, COMP2009-49; The Institute of Electronics, Information and
Communication Engineering: Tokyo, Japan, 2010; pp. 1–7.

3. Kramer, M.R.; van Leeuwen, J. Wire-Routing is NP-Complete; Report No. RUU-CS-82-4;
Department of Computer Science, University of Utrecht: Utrecht, The Netherlands, 1982.

4. Takahashi, J.; Suzuki, H.; Nishizeki, T. Shortest noncrossing paths in plane graphs. Algorithmica
1996, 16, 339–357.

5. Richards, D. Complexity of single-layer routing. IEEE Trans. Comput. 1984, 33, 286–288.

Algorithms 2012, 5 200

6. Yato, T. On the NP-Completeness of the Slither Link Puzzle [in Japanese]; IPSJ SIG Notes AL-74;
Information Processing Society of Japan: Tokyo, Japan, 2000; pp. 25–32.

7. Hearn, R.A.; Demaine, E.D. Games, Puzzles, and Computation; A K Peters, Ltd.: Boca Raton, FL,
USA, 2009.

8. Tamura, N. Sugar: A SAT-Based Constraint Solver. Available online: http://bach.istc.kobe-u.ac.jp/
sugar/ (accessed on 21 March 2012)

9. Itogawa, A. Slither Link Kaito Program (Solving Slither Link Program: In Japanese). Available
online: http://www2.ttcn.ne.jp/∼itogawa/product/slitherlink.html (accessed on 21 March 2012)

10. Shirai, H.; Igarashi, C.; Tajima, Y.; Kotani, Y. Solving and Making Problems of Slither Link [in
Japanese]. In Proceedings of the 11th Game Programming Workshop in Japan 2006, Kanagawa,
Japan, 10–12 November 2006; pp. 32–39.

11. Wan, J. Logical Slither Link; Bsc These, University of Manchester, Manchester, UK, 2009.
12. Minato, S. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In

Proceedings of the 30th International Design Automation Conference (DAC ’93), Dallas, TX, USA,
14-18 June 1993; pp. 272–277.

13. Knuth, D. The Art of Computer Programming, Volume 4, Fascicle 1; Addison-Wesley Professional:
Boston, MA, USA, 2009.

14. Yato, T.; Seta, T. Complexity and completeness of finding another solution and its application to
puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2003, E86-A, 1052–1060.

15. GLPK deno Pencil Puzzle Koryakuho (Solving Pencil Puzzle Using GLPK : In Japanese).
Available online: http://www21.tok2.com/home/kainaga11/glpk/glpk.htm (accessed on 21 March
2012)

16. Sugimura, Y. Seisu Keikakuho niyoru Slither Link no Kaiho (Slither Link Algorithm Using Integer
Programming: In Japanese). In Proceedings of the 1st Games and Puzzles Mini Workshop, Kyoto,
Japan, 12 September, 2005.

17. Tamura, N. Solving Number Link Puzzles with Sugar Constraint Solver [in Japanese]. Available
online: http://bach.istc.kobe-u.ac.jp/sugar/puzzles/numberlink.html (accessed on 21 March 2012)

18. Tamura, N. Solving Slither Link Puzzles with Sugar Constraint Solver [in Japanese]. Available
online: http://bach.istc.kobe-u.ac.jp/sugar/puzzles/slitherlink.html (accessed on 21 March 2012)

19. Nikoli. Numberlink 1; Nikoli: Tokyo, Japan, 1989.
20. Nikoli: Nikoli.com Puzzle Championship. Available online: http://www.nikoli.com/en/event/

puzzle hayatoki.html (accessed on 21 March 2012)
21. Nikoli. Slitherlink 1; Nikoli: Tokyo, Japan, 1992.
22. Nikoli: Sample Problems of Slitherlink Puzzle. Available online: http://www.nikoli.com/en/

puzzles/slitherlink/ (accessed on 21 March 2012)

Algorithms 2012, 5 201

A. Correctness of Algorithm 1 (Path Matching Enumeration)

This section proves that Algorithm 1 constructs a ZDD representing the family of path matchings
over G. Hereafter maten refers to the function assigned to the node n by Algorithm 1 rather than the one
given in Equation (2). Actually those two coincide as we will prove below.

For a 0, 1-sequence π of length i such that E(π) is a path matching, we define a mate function
mateπ : V ≥ei+1 → V ∪ {0} by

mateπ(v) =


v if v /∈

∪
E(π)

u if E(π) contains a u-v path

0 otherwise

In the sequel, we assume that mate1 represents the special mate function whose domain is empty.

Lemma 8. Let π be a 0, 1-sequence of length i ≤ |E|. If E(π) is a path matching, then π is a valid path
in ZG and maten(π) = mateπ.

Proof. We prove the lemma by induction on i. For i = 0, E(π) is the empty set, which is a special case
of a path matching, and mateπ is the identity function on V ≥e1 = V by definition. The empty path π

ends in the root node nroot where we have matenroot = mateπ.
Suppose that the lemma holds for π of length i− 1 where 0 < i ≤ |E|. If E(π · 0) is a path matching,

π ends in a node n /∈ {0,1} in ZG such that maten = mateπ. By the algorithm, π · 0 ends in a node
n′ ̸= 0 such that

maten′ = maten|V ≥ei+1 = mateπ|V ≥ei+1 = mateπ·0

Suppose that E(π · 1) is a path matching. Let E(π · 1) consist of pairwise disjoint simple paths
P1, . . . , Pk. Without loss of generality, we may assume that ei ∈ P1. We note that ei∩

∪
(P2∪· · ·∪Pk) =

∅. Suppose that there are m distinct vertices v1, . . . , vm ∈ V such that P1 = { {vj, vj+1} | 1 ≤ j < m }.
For each v ∈ V ≥ei+1 , we have

mateπ·1(v) =


vm if v = v1

v1 if v = vm

0 if v ∈ {v2, . . . , vm−1}

mateπ(v) otherwise

(Case 1) P1 = {ei} = {{v1, v2}}. Then E(π) consists of simple paths P2, . . . , Pk. By the assumption
we have

maten(v1) = mateπ(v1) = v1

maten(v2) = mateπ(v2) = v2

Hence maten does not reject ei. Let n′′ be the 1-child of n. We have maten′′ = MU(maten, ei)|V ≥ei+1 .
Recall the definition of MU:

MU(maten, ei)(u) =


0 if u ∈ ei and maten(u) ̸= u

maten(v) if ei = {v, maten(u)}

maten(u) otherwise

Algorithms 2012, 5 202

for all u in the domain of maten. Since maten(v1) = v1 and maten(v2) = v2, the first case of the
definition does not apply. The only vertices u such that maten(u) ̸= MU(maten, ei)(u) are v1 and v2.
By the second case of the definition, we have MU(maten, ei)(v1) = v2 and MU(maten, ei)(v2) = v1.
Hence we obtain mateπ·1 = maten′′ .

(Case 2) P1 \ {ei} is a simple path. That is, either ei = {v1, v2} or ei = {vm−1, vm}. Without loss of
generality, we assume ei = {v1, v2}. Since P1 \ {ei} is not empty, m > 2. Then E(π) consists of simple
paths P1 \ {ei}, P2, . . . , Pk. By the assumption we have

maten(v1) = mateπ(v1) = v1

maten(v2) = mateπ(v2) = vm

Hence maten does not reject ei. Also note that

maten(vm) = mateπ(vm) = v2

if vm ∈ V ≥ei . Let n′′ be the 1-child of n, for which we have maten′′ = MU(maten, ei)|V ≥ei+1 . By the
definition of MU, we have

MU(maten, ei)(v1) = maten(v2) = vm

MU(maten, ei)(v2) = 0

MU(maten, ei)(vm) = maten(v1) = v1 if vm ∈ V ≥ei

and for other vertices u ∈ V ≥ei+1 \ {v1, v2, vm} we have MU(maten, ei)(u) = maten(u). The induction
hypothesis maten = mateπ implies maten′′ = mateπ·1.

(Case 3) P1\{ei} is a path matching consisting of two simple paths P ′
1 and P ′′

1 . That is, ei = {vj, vj+1}
for some j ∈ {2, . . . , m−2}. Then E(π) consists of simple paths P ′

1, P
′′
1 , P2, . . . , Pk. By the assumption

we have

maten(vj) = mateπ(vj) = v1

maten(vj+1) = mateπ(vj+1) = vm

Hence maten does not reject ei. Let n′′ be the 1-child of n, for which we have maten′′ =

MU(maten, ei)|V ≥ei+1 . By the definition of MU, we have

MU(maten, ei)(v1) = maten(vj+1) = vm if v1 ∈ V ≥ei

MU(maten, ei)(vj) = 0 , where vj ∈ V ≥ei

MU(maten, ei)(vj+1) = 0 , where vj+1 ∈ V ≥ei

MU(maten, ei)(vm) = maten(vj) = v1 if vm ∈ V ≥ei

and for other vertices u ∈ V ≥ei+1 \ {v1, vj, vj+1, vm}, we have maten(u) = MU(maten, ei)(u). The
induction hypothesis maten = mateπ implies maten′′ = mateπ·1.

Lemma 9. Let π be a 0, 1-sequence of length i ≤ |E|. If π ends in a node n ̸= 0 in ZG, then E(π) is a
path matching and maten = mateπ.

Algorithms 2012, 5 203

Proof. We show that if E(π) is not a path matching for a 0, 1-sequence π of length |E|, then there is a
prefix π′ · 1 of π such that π′ · 1 ends in 0 in ZG.

Let π′ be the longest prefix of π such that E(π′) is a path matching. Indeed such π′ exists, since E(ϵ)

is a path matching for the empty sequence ϵ. Since E(π′) is a path matching and so is E(π′ · 0), hence
π′ · 1 is a prefix of π such that E(π′ · 1) is not a path matching. By Lemma 8, π′ is a valid path ending in
a node n with maten = mateπ′ . Let E(π′ · 1) = E(π′) ∪ {ei}.

(Case 1) There exists a vertex v of degree more than 2 in E(π′ · 1). Since E(π′) is a path matching, v

has degree 2 in E(π′) and v ∈ ei. By Lemma 8, we have maten(v) = 0. Then maten rejects ei and π′ · 1
ends in 0.

(Case 2) There exists no vertex of degree more than 2 in E(π′ · 1) and there exists a simple cycle
C ⊆ E(π′ · 1). Since E(π′) is a path matching, we have C * E(π′) and thus ei ∈ C. There are distinct
vertices v1, . . . , vm ∈ V for some m ≥ 3 such that ei = {v1, vm} and C \ {ei} = { {vj, vj+1} | 1 ≤ j <

m }. Let C ′ = C \ {ei}, which is a simple path. Since E(π′ · 1) has no vertex of degree more than 2,
the degrees of v1 and vm are 1 in C ′. By v1, vm ∈ V ≥ei and Lemma 8, we have maten(v1) = vm and
maten(vm) = v1. Thus maten rejects ei and π′ · 1 ends in 0.

Theorem 10. Algorithm 1 constructs a ZDD representing all the path matchings on G.

Proof. By Lemmas 8 and 9.

B. Correctness of Algorithm 2 (Numberlink Solver)

Let ZG,h denote the ZDD constructed by Algorithm 2 for input (G, h).

Lemma 11. If a 0, 1-sequence π ends in a node n /∈ {0,1} of ZG,h, then E(π) is a path matching and
maten = mateπ.

Proof. Obviously if π is a valid path in ZG,h, then it is also valid in ZG. Moreover, Algorithms 1 and 2
assign the same mate function to the nodes reached by the same valid path π. Thus the lemma follows
from Lemma 8.

Lemma 12. Let π be a 0, 1-sequence of length i− 1 such that E(π) is a path matching. If (mateπ, i, 0)

is incompatible with h, then there is no E ′ ⊆ E≥ei+1 such that E(π · 0) ∪ E ′ is a solution for (G, h).

Proof. Suppose that (mateπ, i, 0) is incompatible with h. Recall the definition that (m, i, 0) is
incompatible with h if for some v ∈ ei \ V ≥ei+1 , either

• v ∈
∪

h and m(v) = v, or
• v /∈

∪
h and m(v) /∈ {0, v}.

Accordingly we have two cases.
(Case 1) Suppose that there is u ∈ (ei \ V ≥ei+1) ∩

∪
h such that mateπ(u) = u. No edges incident

to u belong to E(π) since mateπ(u) = u. No edges incident to u belong to E≥ei+1 since u /∈ V ≥ei+1 .
The vertex u has degree 0 in E(π) ∪ E ′ for any E ′ ⊆ E≥ei+1 . Thus E(π) ∪ E ′ is not a solution, since
u ∈

∪
h.

Algorithms 2012, 5 204

(Case 2) Suppose that there is u ∈ (ei \ V ≥ei+1) \
∪

h such that mateπ(u) /∈ {0, u}. The vertex has
degree 1 in E(π). No edges incident to u belong to E≥ei+1 by u /∈ V ≥ei+1 . The vertex u /∈

∪
h has

degree 1 in E(π) ∪ E ′ for any E ′ ⊆ E≥ei+1 . Thus E(π) ∪ E ′ is not a solution, since u /∈
∪

h.

Lemma 13. Let π be a 0, 1-sequence of length i− 1 such that E(π) is a path matching. If (mateπ, i, 1)

is incompatible with h, then there is no E ′ ⊆ E≥ei+1 such that E(π · 1) ∪ E ′ is a solution for (G, h).

Proof. Suppose that (mateπ, i, 1) is incompatible with h. Recall the definition that for ei = {u, v},
(mateπ, i, 1) is incompatible with h if one of the following conditions holds.

• mateπ(v) ∈ {0, u},
• v ∈

∪
h and mateπ(v) ̸= v,

• mateπ(u), mateπ(v) ∈
∪

h ∪ (V \ V ≥ei+1) and {mateπ(u), mateπ(v)} /∈ h.

Let m = mateπ. Accordingly there are three cases.
(Case 1) Suppose that m(v) ∈ {0, u}. In this case, it is easy to see that E(π ·1) is not a path matching.

Thus E(π · 1) ∪ E ′ is not a solution for any E ′ ⊆ E≥ei+1 .
(Case 2) Suppose that v ∈

∪
h\{m(v)}. If m(v) = 0, then Case 1 applies. Otherwise, E(π) contains

a v-m(v) path. Then v has degree 2 in E(π · 1) = E(π)∪ {{u, v}}. Thus E(π · 1) ∪ E ′ is not a solution
for any E ′ ⊆ E≥ei+1 , since v ∈

∪
h.

(Case 3) Suppose that m(v) ∈
∪

h∪ (V \ V ≥ei+1), m(u) /∈ V ≥ei+1 and {m(u),m(v)} /∈ h. It is easy
to see that E(π ·1) has a m(u)-m(v) path. Let E ′ ⊆ E≥ei+1 be such that E(π ·1)∪E ′ is a path matching.

(Case 3.1) Suppose that m(v) ∈
∪

h. If m(v) ∈
∪

E ′, then m(v) has degree 2 in E(π·1)∪E ′, which is
not a solution. If m(v) /∈

∪
E ′, then E(π ·1)∪E ′ contains a m(u)-m(v) path. Since {m(u),m(v)} /∈ h,

E(π · 1) ∪ E ′ is not a solution.
(Case 3.2) Suppose that m(u),m(v) /∈ V ≥ei+1 . Then E(π · 1)∪E ′ contains a m(u)-m(v) path. Since

{m(u),m(v)} /∈ h, E(π · 1) ∪ E ′ is not a solution.

Corollary 14. If E(π) is a solution for (G, h) and |π| = |E|, then π ends in 1 in ZG,h.

Proof. For any prefix π′ · b of length i of π, (mateπ′ , i, b) is never incompatible with h by Lemmas 12
and 13. Together with Lemma 11, π′ · b is a valid path in ZG,h.

Lemma 15. Suppose that E(π) is not a solution for (G, h) for a 0, 1-sequence π of length |E|. Then
there are 0, 1-sequences π′ and π′′ such that π = π′ · b · π′′ for some b ∈ {0, 1} and (mateπ′ , |π′|+ 1, b)

is incompatible with h.

Proof. Suppose that E(π) is not a solution for (G, h). By the proofs of Lemmas 9 and 11, it is clear that
if E(π) is not a path matching, then the lemma holds. We assume that E(π) is a path matching. We have
the following cases.

1. E(π) contains a u-v path but {u, v} /∈ h, where

1.1. u, v ∈
∪

h,
1.2. u ∈

∪
h and v /∈

∪
h,

1.3. u, v /∈
∪

h.

Algorithms 2012, 5 205

2. E(π) does not contain a u-v path for some {u, v} ∈ h, where

2.1. u has degree 0,
2.2. u has degree 2,
2.3. u has degree 1.

Case 2.3 implies that E(π) contains a u-t path for some t ̸= v, which is covered by Cases 1.1 or 1.2. We
discuss Cases 1.1, 1.2, 1.3, 2.1 and 2.2.

(Case 1.1) u, v ∈
∪

h. Let P be the u-v path contained in E(π) and ei = max P . Let π′ be the
prefix of length i − 1 of π and m = mateπ′ . Clearly π′ · 1 is a prefix of π. Let u′, v′ ∈ ei be such that
m(u′) = u and m(v′) = v. We then have m(u′),m(v′) ∈

∪
h and {m(u′),m(v′)} /∈ h. Thus (m, i, 1) is

incompatible with h.
(Case 1.2) u ∈

∪
h and v /∈

∪
h. Let P be the u-v path contained in E(π) and ei = max(P ∪ Ev)

where Ev = { {v, v′} ∈ E | v′ ∈ V } is the set of edges incident to v. We have v /∈ V ≥ei+1 by the choice
of ei. Let π′ be the prefix of length i− 1 of π and m = mateπ′ .

Suppose that ei = max P . Then π′ · 1 is a prefix of π. Let u′, v′ ∈ ei be such that m(u′) = u and
m(v′) = v. Thus m(u′) ∈

∪
h, m(v′) /∈ V ≥ei+1 and {m(u′),m(v′)} /∈ h, which means that (m, i, 1) is

incompatible with h.
Suppose that ei ̸= max P . Then π′ · 0 is a prefix of π and E(π) contains the u-v path. We have

v /∈
∪

h and m(v) = u /∈ {0, v}. That is, (m, i, 0) is incompatible with h.
(Case 1.3) u, v /∈

∪
h. Let ei = min {max Eu, max Ev}. We assume without loss of generality that

ei = {u, u′} for some u′ ∈ V . We have u /∈ V ≥ei+1 by the choice of ei. Let π′ be the prefix of length
i− 1 of π and m = mateπ′ .

Suppose that ei /∈ E(π). For the edge ej in the u-v path incident to u, we have ej < ei. Thus we
have m(u) /∈ {0, u} and u /∈ V ≥ei+1 , which means that (m, i, 0) is incompatible with h, where π′ · 0 is a
prefix of π.

Suppose that ei ∈ E(π). Then m(u) = u and π′ · 1 is a prefix of π. We have u /∈ V ≥ei+1 and
{m(u),m(u′)} /∈

∪
h. Hence (m, i, 1) is incompatible with h.

(Case 2.1) Suppose that u ∈
∪

h has degree 0 in E(π). Let ei = max Eu and π′ be the prefix of
length i− 1 of π, where π′ · 0 is a prefix of π. Then u ∈

∪
h \ V ≥ei+1 and mateπ′(u) = u, which means

that (mateπ′ , i, 0) is incompatible with h,
(Case 2.2) Suppose that u ∈

∪
h has degree 2 in E(π). Let ei = max{ {u, u′} ∈ E(π) | u′ ∈ V }, π′

be the prefix of length i− 1 of π, where π′ · 1 is a prefix of π. Then u ∈
∪

h and mateπ′(u) ̸= u, which
means that (mateπ′ , i, 1) is incompatible with h.

Corollary 16. If E(π) is not a solution for (G, h) and |π| = |E|, then π has a prefix π′ which ends in 0

in ZG,h.

Proof. By Lemmas 11 and 15.

Algorithms 2012, 5 206

C. Correctness of Algorithm 3 (Numberlink Instance Enumeration)

In this section, for a node n of ZG, by Sn and Bn we denote the pair matching families assigned to n

by Algorithm 3. For each 0, 1-sequence π such that E(π) is a path matching, let us define

T (π) = { {u, v} ⊆ V | E(π) contains a u-v path with u, v /∈ V ≥e|π|+1 }

Lemma 17. Suppose that E(π) is a path matching and let i = |π|+ 1 and m = mateπ. We have

T (π · 0) = T (π) ∪ { {u,m(u)} ⊆ V | u ∈ ei, m(u) /∈ {u, 0} and u,m(u) /∈ V ≥ei+1 }

If E(π · 1) is a path matching, then

T (π · 1) = T (π) ∪ { {m(u),m(v)} ⊆ V | {u, v} = ei and m(u),m(v) /∈ V ≥ei+1 }

Proof. By definition,

T (π · 0) = { {u, v} ⊆ V | E(π · 0) contains a u-v path with u, v /∈ V ≥ei+1 }
= { {u, v} ⊆ V | E(π) contains a u-v path with u, v /∈ V ≥ei }
∪ { {u, v} ⊆ V | E(π) contains a u-v path with u ∈ ei \ V ≥ei+1 and v /∈ V ≥ei+1 }

= T (π) ∪ { {u,m(u)} ⊆ V | u ∈ ei \ V ≥ei+1 , m(u) /∈ V ≥ei+1 and m(u) /∈ {u, 0} }

and

T (π · 1) = { {u, v} ⊆ V | E(π · 1) contains a u-v path with u, v /∈ V ≥ei+1 }
= { {u, v} ⊆ V | E(π) contains a u-v path with u, v /∈ V ≥ei }
∪ { {u, v} ⊆ V | E(π · 1) contains a u-v path P with ei ∈ P and u, v /∈ V ≥ei+1 }

= T (π) ∪ { {u, v} ⊆ V | {u′, v′} = ei, u = m(u′) /∈ V ≥ei+1 and v = m(v′) /∈ V ≥ei+1 }

Lemma 18. For each node n of ZG, the algorithm assigns Sn = {T (π) | n(π) = n }. Moreover,
Sn,b = {T (π · b) | n(π) = n } for each b ∈ {0, 1}.

Proof. We show the lemma by induction on the length of π. If π is empty, then T (π) = ∅. Indeed
Algorithm 3 sets Snroot = {∅}.

Let π = π′ · b for some π′ and b ∈ {0, 1}. By the induction hypothesis, we have T (π′) ∈ Sn(π′). By
Lemma 17, we have

T (π′ · b) = T (π′) ∪ Fix(maten(π′), |π′|+ 1, b) ∈ Sn(π′),b ⊆ Sn(π′·b)

We have proven that {T (π · b) | n(π) = n } ⊆ Sn,b. and {T (π) | n(π) = n } ⊆ Sn.
Conversely, we show by induction on i that if T ∈ Sn for n ∈ Ni, then there is π such that n(π) = n

and T (π) = T . For i = 1, Sn = {∅} and the empty path ϵ satisfies the claim. Suppose that T ∈ Sn for
some n ∈ Ni+1 with i ≥ 1. Then by definition there is a b-parent n′ ∈ Ni of n for some b ∈ {0, 1} such
that T ∈ Sn′,b. By definition, there is T ′ ∈ Sn′ such that

T = T ′ ∪ Fix(maten′ , i, b)

By the induction hypothesis, there is π′ such that n(π′) = n′ and T ′ = T (π′). Lemma 17 ensures that
T (π′ · b) = T . This proves that Sn,b ⊆ {T (π · b) | n(π) = n } and Sn ⊆ {T (π) | n(π) = n }.

Algorithms 2012, 5 207

Corollary 19. (G, h) admits a solution if and only if h ∈ S1.

Proof. By Lemma 18.

Lemma 20. If T (π) ∈ Bn for a 0, 1-sequence π, then T (π · b) ∈ Bn,b for each b ∈ {0, 1}.

Proof. Similarly to the proof of Lemma 18.

Lemma 21. If there are distinct valid paths π0 and π1 such that n(π0) = n(π1) and T (π0) = T (π1),
then T (π0) ∈ Bn(π0).

Proof. We prove the lemma by induction on i = |π0| = |π1|. For i = 0, the claim holds since only the
empty path ends in the root node.

Let π0 = π′
0 · b0 and π1 = π′

1 · b1 for some b0, b1 ∈ {0, 1}.
(Case 1) n(π′

0) = n(π′
1). In this case, we have mateπ′

0
= mateπ′

1
and mateπ′

0·b0 = mateπ′
1·b1 . Let

m′ = mateπ′
0

and m = mateπ0 . Clearly each of u, v ∈ ei has the same degree in E(π′
0) and in E(π′

1),
since u and v are in the domain V ≥ei of mateπ′

0
= mateπ′

1
. To derive a contradiction, suppose that

b0 ̸= b1, where we assume without loss of generality that b0 = 0 and b1 = 1. Then u has different degrees
in E(π0) and in E(π1). In this case, the fact that mateπ′

0·b0 = mateπ′
1·b1 implies that u is not in the domain

V ≥ei+1 of those mate functions. The same argument applies to v. Hence, {m′(u),m′(v)} ∈ T (π1) by
definition. The fact that E(π1) is a path matching implies m′(u) ̸= v, which means that E(π′

0) does not
contain a u-v path. Hence E(π0) does not have a m′(u)-m′(v) path and {m′(u),m′(v)} /∈ T (π0). This
contradicts to the assumption that T (π0) = T (π1). Hence we conclude that b0 = b1. By Lemma 17,
we have

T (π0) \ T (π′
0) = T (π1) \ T (π′

1)

Together with T (π′
0) ⊆ T (π0), T (π′

1) ⊆ T (π1) and T (π0) = T (π1), we conclude that T (π′
0) = T (π′

1).
By π0 = π′

0 · b0 ̸= π′
1 · b0 = π1, we have π′

0 ̸= π′
1. By the induction hypothesis, T (π′

0) = T (π′
1) ∈ Bn′ .

Thus by Lemma 20, T (π0) = T (π′
0 · b0) ∈ Bn′,b0 ⊆ Bn.

(Case 2) n(π′
0) ̸= n(π′

1). By Lemma 18, we have T (π′
0 · b0) ∈ Sn(π′

0),b0 and T (π′
1 · b1) ∈ Sn(π′

1),b1 .
Hence T (π0) = T (π′

0 · b0) = T (π′
1 · b1) ∈ Bn.

Lemma 22. For any valid path π such that
∪

E(π) ∪ V ≥e|π|+1 (V , it holds that T (π) ∈ Bn(π).

Proof. We prove the lemma by induction on i = |π|. For i = 0, the claim holds trivially by V ≥e1 = V .
Let π = π′ · b for some b ∈ {0, 1}.

(Case 1) ei ⊆
∪

E(π) ∪ V ≥ei+1 . We have∪
E(π′) ∪ V ≥ei ⊆

∪
E(π) ∪ V ≥ei =

∪
E(π) ∪ V ≥ei+1 ∪ {ei} =

∪
E(π) ∪ V ≥ei+1 (V

By the induction hypothesis, we have T (π′) ∈ Bn(π′). Hence T (π) = T (π′ · b) ∈ Bn(π′),b ⊆ Bn(π).
(Case 2) ei *

∪
E(π) ∪ V ≥ei+1 . The fact ei /∈ E(π) implies that b = 0. Let u ∈ ei \ (

∪
E(π) ∪

V ≥e|π|+1). We have mateπ′(u) = u. By Lemma 18 and the fact u /∈ V ≥e|π|+1 , we have

T (π) = T (π′ · 0) ∈ Sn(π′),0 ⊆ Bn(π)

Lemma 23. If T ∈ Bn for some node in ZG, then one of the following holds:

Algorithms 2012, 5 208

• there are distinct π1 and π2 such that n = n(π1) = n(π2) and T = T (π1) = T (π2),
• there is π such that n = n(π), T = T (π) and

∪
E(π) ∪ V ≥e|π|+1 (V .

Proof. We prove the lemma by induction on i such that n ∈ Ni. For i = 0, the claim holds trivially by
Bnroot = ∅.

For i ≥ 1, there are three cases according to the definition of Bn in the algorithm.
(Case 1) T ∈ Sn1,b1∩Sn2,b2 for some bj-parents nj of n for j = 1, 2 such that n1 ̸= n2. By Lemma 18,

there are πj such that T = T (πj · bj) ∈ Snj ,bj
and T (πj) ∈ Snj

for j = 1, 2. The fact n1 ̸= n2 implies
that π1 · b1 ̸= π2 · b2. We have n = n(π1 · b1) = n(π2 · b2) and T = T (π1) = T (π2).

(Case 2) T ∈ Sn′,0 for some 0-parent n′ of n such that maten′(u) = u for some u ∈ ei \ V ≥ei+1 . By
Lemma 18, there is π′ such that T = T (π′ · 0) ∈ Sn′,0 and T (π′) ∈ Sn′ . The fact that maten′(u) = u

implies that the degree of u is 0 in E(π′) = E(π′ ·0). Let π = π′ ·0. Then, we have n = n(π), T = T (π)

and u /∈
∪

E(π) ∪ V ≥e|π|+1 .
(Case 3) T ∈ Bn′,b for some b-parent n′ of n. There is T ′ ∈ Bn′ such that T = T ′ ∪ Fix(maten′ , i, b).

By the induction hypothesis on the fact T ′ ∈ Bn′ , one of the following holds:

• there are distinct π′
1 and π′

2 such that n′ = n(π′
1) = n(π′

2) and T ′ = T (π′
1) = T (π′

2),
• there is π′ such that n′ = n(π′), T ′ = T (π′) and

∪
E(π′) ∪ V ≥e|π| (V .

In the former case, πj = π′
j · b for j = 1, 2 satisfies the lemma. In the latter case, let u ∈ V \ (

∪
E(π′)∪

V ≥e|π|). By ei ⊆ V ≥e|π| , we have u /∈ E(π′ · b). Thus we have u /∈ E(π) ∪ V ≥e|π|+1 for π = π′ · b.

D. Correctness of Algorithm 4 (Cycle Enumeration)

Let YG be the output by Algorithm 4 for G. The following lemma, which we will use without explicit
reference, is implied by the proof of Lemma 8.

Lemma 24. If π is a valid path in YG and n(π) ̸= 1, then E(π) is a path matching and
maten(π) = mateπ.

For YG, we have the following stronger lemma.

Lemma 25. Let π be a 0, 1-sequence of length at most |E|. If E(π) is a path matching such that every
vertex in V \ V ≥e|π|+1 has degree 0 or 2 in E(π), then π is a valid path ending in a node n ̸= 0,1 in the
constructed ZDD and we have maten = mateπ.

Proof. We prove the lemma by induction on the length of π. Clearly the lemma holds if π is the empty
sequence. Suppose that π of length i−1 satisfies the condition of the lemma. Let n = n(π). It is enough
to show the following by Lemma 24.

• If (maten, ei) has a fixed end, then there is a vertex in V \ V ≥ei+1 of degree 1 in E(π · 0).
• If E(π · 1) is a path matching and (MU(maten, ei), ei) has a fixed end, then there is a vertex in

V \ V ≥ei+1 of degree 1 in E(π · 1).

Suppose that (maten, ei) has a fixed end. By definition, there is v ∈ ei \V ≥ei+1 with maten(v) /∈ {0, v},
which means that v has degree 1 in E(π · 0).

Algorithms 2012, 5 209

Suppose that E(π ·1) is a path matching and (MU(maten, ei), ei) has a fixed end. By definition, there
is v ∈ ei \ V ≥ei+1 with MU(maten(v), ei)(v) /∈ {0, v}, which means that v has degree 1 in E(π · 1) by
the arguments on the function MU in the proof of Lemma 8.

Corollary 26. Let π be a 0, 1-sequence of length i ≤ |E|. If E(π · 1) is a simple cycle, then π · 1 ends
in 1.

Proof. Suppose that E(π · 1) is a cycle. Let i = |π| + 1 and ei = {u, v}. That is, E(π · 1) =

E(π) ∪ {{u, v}}. Since E(π) is a u-v simple path, the only vertices of degree 1 in E(π) are u and
v. Since u, v ∈ V ≥ei , Lemma 25 implies that π ends in a node n ̸= 0,1. We have maten(u) = v,
maten(v) = u and maten(w) ∈ {0, w} for other w ∈ V ≥ei . That is, maten and ei form a cycle. The
algorithm connects n and 1 by a 1-arc.

Lemma 27. Let π be a 0, 1-sequence of length i ≤ |E|. If π ends in a node n /∈ {0,1}, then E(π) is a
path matching such that mateπ = maten and every vertex in

∪
E(π)\V ≥ei+1 has degree 0 or 2 in E(π).

Proof. We show the lemma by induction on i. A proof almost identical to that for Lemma 9 applies to
the claim that if π ends in a node n /∈ {0,1}, then E(π) is a path matching such that mateπ = maten.
We here show that in that case every vertex in V \ V ≥ei+1 has degree 0 or 2 in E(π).

If π is empty, then V \ V ≥ei+1 is the empty set.
Suppose that π = π′ · 0 for some π′. We have E(π) = E(π′). By the induction hypothesis, every

vertex in V \ V ≥ei has degree 0 or 2 in E(π′) where i = |π|. If V ≥ei+1 = V ≥ei , there is nothing to
prove. If there is u ∈ V ≥ei \ V ≥ei+1 , then u ∈ ei. By definition, (maten(π′), i) does not have a fixed end,
i.e., mateπ′(u) = maten(π′)(u) ∈ {0, u}. That is, u has degree 0 or 2.

The case where π = π′ · 1 for some π′ can be proven by combining the discussions for the case
where π = π′ · 0 and the correctness of the mate updating function MU, established in the proof of
Lemma 8.

Corollary 28. If a 0, 1-sequence π ends in 1, then E(π) is a simple cycle.

Proof. By the algorithm, π must have the form π′ · 1 and maten(π′) and ei form a cycle for i = |π|. That
is, we have

maten(π′)(v) =

u if ei = {u, v}

v or 0 if v /∈ ei

Applying Lemma 27 to π′, we conclude that E(π′) is a path matching consisting solely of a u-v path for
ei = {u, v}. Clearly E(π) = E(π′) ∪ {ei} is a simple cycle.

Theorem 29. Algorithm 4 constructs a ZDD that represents all the simple cycles on G.

Proof. By Corollaries 26 and 28.

E. Correctness of Algorithm 5 (Slitherlink Solver)

Let YG,h be the output by Algorithm 5 for (G, h).

Lemma 30. If a 0, 1-sequence π ends in 1 in YG,h, then E(π) is a solution for (G, h).

Algorithms 2012, 5 210

Proof. By Lemma 27, If π ends in a node n /∈ {0,1}, then E(π) is a path matching such that every
vertex in V \ V ≥ei+1 has degree 0 or 2 in E(π) and mateπ = maten. Moreover, it is easy to show by
induction on i that |E(π) ∩D| = countn(D) for all D ∈ dom(h).

If π ends in 1, by definition of GN, E(π) is a cycle such that |E(π)∩D| = h(D) for all D ∈ dom(h).
That is, E(π) is a solution for (G, h).

Lemma 31. If a 0, 1-sequence π of length i ends in 0 in YG,h, then E(π)∪E ′ is not a solution for (G, h)

for any E ′ ⊆ E≥ei+1 .

Proof. Suppose that π = π′ · b ends in 0 where b ∈ {0, 1}. Let n = n(π′), i = |π| and

c(D) =

countn(D) if b = 0

CU(countn, ei)(D) if b = 1

for all D ∈ dom(h). The proof of Lemma 25 shows that if (maten, i) has a fixed end or maten declines
ei, then the lemma holds. It is enough to discuss the case where (c, i) is incompatible with h. In this
case, either c(D) > h(D) or c(D) + |D ∩ E≥ei+1 | < h(D) for some D ∈ dom(h). In the former case,
|E(π) ∩ D| = c(D) > h(D) implies that |(E(π) ∪ E ′) ∩ D| > h(D) for any E ′ ⊆ E≥ei+1 . That is,
E(π) ∪ E ′ cannot be a solution. In the latter case,

|E(π) ∩D|+ |D ∩ E≥ei+1 | = c(D) + |D ∩ E≥ei+1 | < h(D)

implies that |(E(π)∪E ′)∩D| < h(D) for any E ′ ⊆ E≥ei+1 . That is, E(π)∪E ′ cannot be a solution.

Corollary 32. YG,h represents the set of all solutions for (G, h).

Proof. By Lemmas 30 and 31.

F. Computation Example for Numberlink Instance Enumeration

We explain an example of T (π) and Sn for some valid path π and some node n defined in Section 5
(see Figure 12).

Figure 12. An example of computing T (π) and Sn.

e1

e7

e8

e6

p

G :

e10

e2

e3

e4

e5

e9

q

r

s

t

u

v

w x

n1 n2

Z :
G

n

... ...

nroot

1

2

p

q

r

s

t

u

v

w x

p

q

r

s

t

u

v

w x

e11

e12

V
e

10
V

e
10

p

q

r

s

t

u

v

w x

V
e

11

p

q

r

s

t

u

v

w x

V
e

11

1 2

1
. 1 2

. 0
fixed paths fixed path

fixed paths fixed paths

Algorithms 2012, 5 211

Figure 12. Cont.

e1

e7

e8

e6

p

G :

e10

e2

e3

e4

e5

e9

q

r

s

t

u

v

w x

n1 n2

Z :
G

n

... ...

nroot

1

2

p

q

r

s

t

u

v

w x

p

q

r

s

t

u

v

w x

e11

e12

V
e

10
V

e
10

p

q

r

s

t

u

v

w x

V
e

11

p

q

r

s

t

u

v

w x

V
e

11

1 2

1
. 1 2

. 0
fixed paths fixed path

fixed paths fixed paths

A given graph G = (V, E) and ZG are shown in the top half of the figure. The dashed lines represent
valid paths π1 = 100100001 and π2 = 100101010. The four graphs in the bottom half of the figure are
subgraphs whose vertex sets are V and whose edge sets are E(π1), E(π2), E(π1 ·1) and E(π2 ·0), which
are drawn as bold lines. Since maten(π1·1)(v) = maten(π2·0)(v) = v, maten(π1·1)(w) = maten(π2·0)(w) =

t and maten(π1·1)(x) = maten(π2·0)(x) = x and for any other vertices u, both maten(π1·1)(u) and
maten(π2·0)(u) are undefined, maten(π1·1) = maten(π2·0) holds. Therefore, n(π1 · 1) = n(π2 · 0). Let
n = n(π1 · 1) = n(π2 · 0). Let P1 = {{p, q}}, P2 = {{r, s}} and P3 = {{r, s}, {s, u}}. E(π1),
E(π2), E(π1 · 1) and E(π2 · 0) include two fixed paths P1 and P2, one fixed path P1, two fixed paths P1

and P2, and two fixed paths P1 and P3 respectively. It is easy to verify that T (π1) = {{p, q}, {r, s}},
T (π2) = {{p, q}}, and Sn = {T (π1 · 1), T (π2 · 0)} = {{{p, q}, {r, s}}, {{p, q}, {r, u}}} hold.

Algorithms 2012, 5 212

G. Minimum Good Numberlink Instances over G6,6

Figures 13 and 14 complete all of the 38 good instances of Numberlink (G6,6, h) with |h| = 3

modulo symmetry.

Figure 13. Good instances on G6,6 (1).

1

1

2

2 3 3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3 3

1

1

2

2

3

3

1

12

2

33

1

12

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

23

3

1

1

2

23

3

1

1

2

2

3 3

1

1

2

2

3

3

1

1

2

2

3

3

1

12

2

3

3

1

1

2 2

3 3

1

12

2

3

3

Algorithms 2012, 5 213

Figure 14. Good instances on G6,6 (2).

1

1

2

23

3

1

1

2

2 3 3

1

1

2 23

3

1

12

2

3

3

1

1

2

2

3

3

1

1

2

23

3

1

1

2 2

3

3

1

1

2

2 3

3

1

1

2

2 3

3

1

1

2

2 3

3

1

1

2

23

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3 3

1

1

2

2

3

3

1

12

2

3

3

1

1

2

2

3

3

1

1

2 2

3

3

c⃝ 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

