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Abstract: Two goodness-of-fit tests for copulas are being investigated. The first one deals
with the case of elliptical copulas and the second one deals with independent copulas. These
tests result from the expansion of the projection pursuit methodology that we will introduce
in the present article. This method enables us to determine on which axis system these
copulas lie as well as the exact value of these very copulas in the basis formed by the axes
previously determined irrespective of their value in their canonical basis. Simulations are
also presented as well as an application to real datasets.
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1. Introduction

The need to describe the dependency between two or more random variables triggered the concept
of copulas. We consider a joint cumulative distribution function (cdf) F on Rd and its cdf margins
F1, F2, ...,Fd. A copula C is a function such that F = C(F1, F2, ..., Fd). Sklar [1] is the first to lay
the foundations of this new theory. Several parametric families of copulas have been defined, namely
elliptical, archimedean, periodic copulas etc., see Joe [2] and Nelsen [3] as well as Appendix A for an
overview of these families. Finding criteria to determine the best copula for a given problem can only be
achieved through a goodness-of-fit (GOF) approach. So far several GOF copula approaches have been
proposed in the literature, e.g., Carriere [4], Genest and Rémillard [5], Fermanian [6], Genest Quessy and
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Rémillard [7], Michiels and De Schepper [8], Genest Favre Béliveau and Jacques [9], Mesfioui Quessy
and Toupin [10], Genest Rémillard and Beaudoin [11], Berg [12], Bücher and Dette [13], among others.
However, the field is still at an embryonic stage which explains the current shortage in recommendations.
In univariate distributions, the GOF assessment can be performed using for instance the well-known
Kolmogorov test. In the multivariate field, there are fewer alternatives. A simple way to build GOF
approaches for multivariate random variables is to consider multi-dimensional chi-square approaches,
as in for example Broniatowski [14]. However, these approaches present feasibility issues for high
dimensional problems due to the curse of dimensionality. In order to solve this, we recall some facts
from the theory of projection pursuit.

The objective of projection pursuit is to generate one or several projections providing as much
information as possible about the structure of the dataset regardless of its size. Once a structure has
been isolated, the corresponding data are transformed through a Gaussianization. Through a recursive
approach, this process is iterated to find another structure in the remaining data, until no further structure
can be evidenced in the data left at the end. Friedman [15] and Huber [16] count among the first
authors who introduced this type of approaches for evidencing structures. They each describe, with
many examples, how to evidence such a structure and consequently how to estimate the density of such
data through two different methodologies each. Their work is based on maximizing Kullback-Leibler
divergence. In the present article, we will introduce a new projection pursuit methodology based on the
minimisation of any ϕ-divergence greater than the L1-distance (ϕ-PP). We will show that this algorithm
presents the extra advantage of being robust and fast from a numerical standpoint. Its key rationale lies
in the fact that it allows not only to carry out GOF tests for elliptical and independent copulas but also
to determine the axis system upon which these very copulas are based. The exact expression of these
copulas in the basis constituted by these axes can therefore be derived.

This paper is organised as follows: Section 2 contains preliminary definitions and properties. In
Section 3, we present in details the ϕ-projection pursuit algorithm. In Section 4, we present our first
results. In Section 5, we introduce our tests. In Section 6, we provide three simulations pertaining to the
two major situations described herein and we will study a real case.

2. Basic theory

2.1. An Introduction to Copulas

In this section, we recall the concept of copula. We will also define the family of elliptical copulas
through a brief reminder of elliptical distributions—see Appendix A for an overview of other families.

Sklar’s Theorem

First, let us define a copula in Rd.

Definition 2.1. A d-dimensional copula is a joint cumulative distribution function C defined on [0, 1]d,
with uniform margins.

The following theorem explains in what extent a copula does describe the dependency between two
or more random variables.
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Theorem 2.1 (Sklar [1]). Let F be a joint multivariate distribution with margins F1, ..., Fd, then, there
exists a copula C such that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (2.1)

If marginal cumulative distributions are continuous, then the copula is unique. Otherwise, the copula
is unique on the range of values of the marginal cumulative distributions.

Remark 2.1. First, for any copula C and any ui in [0, 1], 1 ≤ i ≤ d, we have

W (u1, . . . , ud) = max

{
1 − d+

d∑
i=1

ui, 0

}
≤ C(u1, . . . , ud) ≤ min

j∈{1,...,d}
uj = M(u1, . . . , ud)

where W and M are called the Frechet-Hoeffding copula boundaries and are also copulas.
We set the independent copula Π as Π(u1, . . . , ud) = Πd

i=1ui, for any ui in [0, 1], 1 ≤ i ≤ d.

Moreover, we define the density of a copula as the density associated with the cdf C, which we will
name as c:

Definition 2.2. Whenever there exists, the density ofC is defined by c(u1, ..., ud) = ∂d

∂u1...∂ud
C(u1, ..., ud),

for any ui in [0, 1], 1 ≤ i ≤ d.

Finally, let us present several examples of copulas (see also Appendix A to find an overview).

Example 2.1.
The Gaussian copula Cρ (in R2):

Defining Ψ ρ as the standard bivariate normal cumulative distribution function with ρ correlation, the
Gaussian copula function is
Cρ(u, v) = Ψρ (Ψ−1(u),Ψ−1(v))

where u, v ∈ [0, 1] and where Ψ is the standard normal cumulative distribution function.
The Student copula Cρ (in R2):

Defining Tρ,k as the standard bivariate student cumulative distribution function with ρ as the
correlation coefficient and with k as the degree of freedom of the distribution, the Student copula
function is

Cρ(u, v) = Tρ,k

(
T−1

k (u), T−1
k (v)

)
where u, v ∈ [0, 1] and where Tk is the standard Student cumulative distribution function.
The Elliptical copula :

Similarly as above, elliptical copulas are the copulas of elliptical distributions (an overview is
provided in Appendix A).
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2.2. Brief Introduction to the ϕ-Projection Pursuit Methodology (ϕ-PP)

Let us first introduce the concept of ϕ-divergence.

The Concept of ϕ-Divergence

Let φ be a strictly convex function defined by φ : R+ → R+, and such that φ(1) = 0. We define a
ϕ-divergence of P from Q, where P and Q are two probability distributions over a space Ω such that Q
is absolutely continuous with respect to P -by

Dϕ(Q,P ) =

∫
φ

(
dQ

dP

)
dP

or Dϕ(q, p) =
∫
φ
(

q(x)
p(x)

)
p(x)dx, if P and Q present p and q as density respectively.

Throughout this article, we will also assume that φ(0) < ∞, that φ′ is continuous and that this
divergence is greater than the L1 distance—see also Appendix B page 109.

Functioning of the Algorithm

Let f be a density on Rd. We consider an instrumental density g with the same mean and variance as
f . We start with performing the Dϕ(g, f) = 0 test; should this test turn out to be positive, then f = g

and the algorithm stops, otherwise, the first step of our algorithm consists in defining a vector a1 and a
density g(1) by

a1 = arg inf
a∈Rd

∗

Dϕ

(
g
fa

ga

, f

)
and g(1) = g

fa1

ga1

(2.2)

where Rd
∗ is the set of non-null vectors of Rd and fa (resp. ga) stands for the density of a⊤X (resp. a⊤Y )

when f (resp. g) is the density of X (resp. Y ).
In our second step, we replace g with g(1) and we repeat the first step, and so on. By iterating this

process, we end up obtaining a sequence (a1, a2, ...) of vectors in Rd
∗ and a sequence of densities g(i).

Remark 2.2. First, to obtain an approximation of f , we stop our algorithm when the divergence equals
zero, i.e., we stop when Dϕ(g

(j), f) = 0 since it implies g(j) = f with j ≤ d, or when our algorithm
reaches the dth iteration, i.e., we approximate f with g(d).

Second, we get Dϕ(g
(0), f) ≥ Dϕ(g

(1), f) ≥ ..... ≥ 0 with g(0) = g.
Finally, the specific form of the relationship (2.2) implies that we deal with M-estimation. We can

therefore state that our method is robust—see Sections 6, Yohai [19], Toma [20] as well as Huber [21].

The main steps of the present algorithm have been summarized in Table 1.
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Table 1. Proposal.

0. We define g, a density with same mean and variance as f and we set g(0) = g.

i− 1. We perform the goodness-of-fit test Dϕ(g
(i−1), f) = 0:

• Should this test be passed, we derive f from

f = gΠj
i=1

fai

g
(i−1)
ai

And the algorithm stops.

• Should this test not be verified, and should we look to approximate f ,

when we get to the dth iteration of the algorithm, we derive f from

f = gΠd
i=1

fai

g
(i−1)
ai

Otherwise, let us define a vector ai and a density g(i) by

ai = arg infa∈Rd
∗
Dϕ

(
g(i−1) fa

g
(i−1)
a

, f
)
, and g(i) = g(i−1) fai

g
(i−1)
ai

i. Then we replace g(i−1) with g(i) and go back to i− 1.

At present, let us study the following example:

Example 2.2. Let f be a density defined on R3 by f(x1, x2, x3) = n(x1, x2)h(x3), with n being
a bi-dimensional Gaussian density, and h being a non-Gaussian density. Let us also consider g, a
Gaussian density with the same mean and variance as f .

Since g(x1, x2/x3) = n(x1, x2), we have Dϕ(g
f3

g3
, f) = Dϕ(n.f3, f) = Dϕ(f, f) = 0 as f3 = h, i.e.,

the function a 7→ Dϕ(g
fa

ga
, f) reaches zero for e3 = (0, 0, 1)′, where f3 and g3 are the third marginal

densities of f and g respectively. We therefore obtain g(x1, x2/x3) = f(x1, x2/x3).

To recapitulate our method, if Dϕ(g, f) = 0, we derive f from the relationship f = g; whenever
a sequence (ai)i=1,...j , j < d, of vectors in Rd

∗ defining g(j) and such that Dϕ(g
(j), f) = 0 exists, then

f(./a⊤i x, 1 ≤ i ≤ j) = g(./a⊤i x, 1 ≤ i ≤ j), i.e., f coincides with g on the complement of the vector
subspace generated by the family {ai}i=1,...,j—see also Section 3 for a more detailed explanation.

In the remaining of our study of the algorithm, after having clarified the choice of g, we will consider
the statistical solution to the representation problem, assuming that f is unknown and that X1, X2,...
Xm are i.i.d. with density f . We will provide asymptotic results pertaining to the family of optimizing
vectors ak,m—which we will define more precisely below—as m goes to infinity. Our results also prove
that the empirical representation scheme converges towards the theoretical one.

3. The Algorithm

3.1. The Model

Let f be a density on Rd. We assume there exists d non-null linearly independent vectors aj , with
1 ≤ j ≤ d, of Rd, such that

f(x) = n(a⊤j+1x, ..., a
⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x) (3.1)
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with j < d, n being an elliptical density on Rd−j and with h being a density on Rj , which does not
belong to the same family as n. Let X = (X1, ..., Xd) be a vector with f as density.

We define g as an elliptical distribution with the same mean and variance as f .
For simplicity, let us assume that the family {aj}1≤j≤d is the canonical basis of Rd:
The very definition of f implies that (Xj+1, ..., Xd) is independent from (X1, ..., Xj). Hence, the

density of (Xj+1, ..., Xd) given (X1, ..., Xj) is n.
Let us assume that Dϕ(g

(j), f) = 0, for some j ≤ d. We then get f(x)
fa1fa2 ...faj

= g(x)

g
(1−1)
a1

g
(2−1)
a2

...g
(j−1)
aj

,

since, by induction, we have g(j)(x) = g(x)
fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.

Consequently, lemma C.1 and the fact that the conditional densities with elliptical distributions are
also elliptical, as well as the above relationship, lead us to infer that n(a⊤j+1x, ., a

⊤
d x) = f(./a⊤i x, 1 ≤

i ≤ j) = g(./a⊤i x, 1 ≤ i ≤ j). In other words, f coincides with g on the complement of the vector
subspace generated by the family {ai}i=1,...,j .

Now, if the family {aj}1≤j≤d is no longer the canonical basis of Rd, then this family is again a basis
of Rd. Hence, lemma C.2 implies that

g(./a⊤1 x, ..., a
⊤
j x) = n(a⊤j+1x, ..., a

⊤
d x) = f(./a⊤1 x, ..., a

⊤
j x) (3.2)

which is equivalent to Dϕ(g
(j), f) = 0, since by induction g(j) = g

fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.

The end of our algorithm implies that f coincides with g on the complement of the vector subspace
generated by the family {ai}i=1,...,j . Therefore, the nullity of the ϕ-divergence provides us with
information on the density structure.

In summary, the following proposition clarifies our choice of g which depends on the family of
distribution one wants to find in f :

Proposition 3.1. With the above notations, Dϕ(g
(j), f) = 0 is equivalent to

g(./a⊤1 x, ..., a
⊤
j x) = f(./a⊤1 x, ..., a

⊤
j x)

More generally, the above proposition defines the co-support of f as the vector space generated by
the vectors a1, ..., aj .

Definition 3.1. Let f be a density on Rd. We define the co-vectors of f as the sequence of vectors
a1, ..., aj which solves the problem Dϕ(g

(j), f) = 0 where g is an elliptical distribution with the same
mean and variance as f . We define the co-support of f as the vector space generated by the vectors
a1, ..., aj .

Remark 3.1. Any (ai) family defining f as in (3.1) is an orthogonal basis of Rd—see lemma C.3

3.2. Stochastic Outline of Our Algorithm

Let X1, X2,..,Xm (resp. Y1, Y2,..,Ym) be a sequence of m independent random vectors with the same
density f (resp. g). As customary in nonparametric ϕ-divergence optimizations, all estimates of f and
fa, as well as all uses of Monte Carlo methods are being performed using subsamples X1, X2,..,Xn



Algorithms 2011, 4 93

and Y1, Y2,..,Yn—extracted respectively from X1, X2,..,Xm and Y1, Y2,..,Ym—since the estimates are
bounded below by some positive deterministic sequence θm—see Appendix D.

Let Pn be the empirical measure based on the subsample X1, X2,.,Xn. Let fn (resp. fa,n for any a in
Rd

∗) be the kernel estimate of f (resp. fa), which is built from X1, X2,..,Xn (resp. a⊤X1, a⊤X2,..,a⊤Xn).
As defined in Section 2.2, we consider the following sequences (ak)k≥1 and (g(k))k≥1 such that

ak is a non null vector of Rd defined by ak = argmin
a∈Rd

∗

Dϕ

(
g(k−1) fa

g
(k−1)
a

, f

)
g(k) is the density defined by g(k) = g(k−1) fak

g
(k−1)
ak

with g(0) = g (3.3)

The stochastic setting up of the algorithm uses fn and g(0)
n = g instead of f and g(0) = g—since g is

known. Thus, at the first step, we build the vector ǎ1 which minimizes the ϕ-divergence between fn and
g fa,n

ga
and which estimates a1. First, since proposition D.1 and lemma C.4 show how the infimum of the

criteria (or index)

Ďϕ

(
g
fa,n

ga

, fn

)
=

1

n
Σn

i=1φ

(
g(Xi)fa,n(a⊤Xi)

fn(Xi)ga(a⊤Xi)

)
is reached, we are then able to minimize the ϕ-divergence between fn and g fa,n

ga
. Second, defining ǎ1 as

the argument of this minimization, proposition 4.3 infers that this vector tends to a1. Finally, we define
the density ǧ(1)

n as ǧ(1)
n = g

fǎ1,n

gǎ1
which estimates g(1) through theorem 4.1.

Now, from the second step and as defined in Section 2.2, we derive the fact that the density g(2−1) is
unknown. Consequently, once again, the samples have to be truncated.

All estimates of f and fa (resp. g(1) and g(1)
a ) are being performed using a subsample X1, X2,. . . ,Xn

(resp. Y (1)
1 , Y (1)

2 ,. . . ,Y (1)
n ) extracted from X1, X2,. . . ,Xm (resp. Y (1)

1 , Y (1)
2 ,. . . ,Y (1)

m , which is a sequence
of m independent random vectors with same density g(1)) such that the estimates are bounded below by
some positive deterministic sequence θm—see Appendix D.

Let Pn be the empirical measure of the subsample X1, X2,. . . ,Xn. Let fn (resp. g(1)
n , fa,n, g(1)

a,n for any
a in Rd

∗) be the kernel estimate of f (resp. g(1) and fa as well as g(1)
a ) which is built from X1, X2,. . . ,Xn

(resp. Y (1)
1 , Y (1)

2 ,. . . ,Y (1)
n and a⊤X1, a⊤X2,. . . ,a⊤Xn as well as a⊤Y (1)

1 , a⊤Y (1)
2 ,. . . ,a⊤Y (1)

n ).
The stochastic setting up of the algorithm uses fn and g

(1)
n instead of f and g(1). Thus, we build

the vector ǎ2, which minimizes the ϕ-divergence between fn and g
(1)
n

fa,n

g
(1)
a,n

, since g(1) and g
(1)
a are

unknown—and which estimates a2. First, since proposition D.1 and lemma C.4 show how the infimum
of the criteria (or index)

Ďϕ

(
g(1)

n

fa,n

g
(1)
a,n

, fn

)
=

1

n
Σn

i=1φ

(
g

(1)
n (Xi)fa,n(a⊤Xi)

fn(Xi)g
(1)
a,n(a⊤Xi)

)
is reached, we are then able to minimize the ϕ-divergence between fn and g(1)

n
fa,n

g
(1)
a,n

. Second, defining
ǎ2 as the argument of this minimization, proposition 4.3 infers that this vector tends to a2. Finally, we
define the density ǧ(2)

n as ǧ(2)
n = g

(1)
n

fǎ2,n

g
(1)
ǎ2,n

which estimates g(2) through theorem 4.1.

And so on, we end up obtaining a sequence (ǎ1, ǎ2, . . .) of vectors in Rd
∗ estimating the co-vectors of

f and a sequence of densities (ǧ
(k)
n )k such that ǧ(k)

n estimates g(k) through theorem 4.1.
Let us now summarize the main steps of the stochastic implementation of our algorithm (the dual

representation of the estimators will be further detailed in Table 2 below).
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Table 2. Stochastic outline of the algorithm.

0. We define g, a density with same mean and variance as f and we set g(0) = g.

i− 1. Given ǧ(i−1)
n , find ǎi such that the index

Ďϕ

(
ǧ

(i−1)
n

fa,n

ǧ
(i−1)
a,n

, fn

)
= 1

n
Σn

i=1φ
(

ǧ
(i−1)
n (Xi)fa,n(a⊤Xi)

fn(Xi)ǧ
(i−1)
a,n (a⊤Xi)

)
is minimized, where fa,n is a marginal density estimate based on a⊤X1, a⊤X2,. . . ,a⊤Xn,

and where ǧ(i−1)
a,n is a density estimate based on the projection to a of a Monte Carlo random

sample from ǧ
(i)
n .

And we set

ǧ
(i)
n = ǧ

(i−1)
n

fǎ1,n

ǧ
(i−1)
ǎ1,n

i. Then we replace ǧ(i−1)
n with ǧ(i)

n and go back to i− 1 until the criteria reaches the stopping

rule of this procedure (see below).

4. Results

4.1. Hypotheses on f

In this paragraph, we define the set of hypotheses on f which could possibly be of use in our work.
Discussion on several of these hypotheses can be found in Appendix E.

In the remaining of this section, for legibility reasons, we replace g with g(k−1). Let

Θ = Rd, ΘDϕ =

{
b ∈ Θ |

∫
φ∗
(
φ′
(
g(x)

f(x)

fb(b
⊤x)

gb(b⊤x)

))
dP <∞

}
M(b, a, x) =

∫
φ′
(
g(x)

f(x)

fb(b
⊤x)

gb(b⊤x)

)
g(x)

fa(a
⊤x)

ga(a⊤x)
dx− φ∗

(
φ′
(
g(x)

f(x)

fb(b
⊤x)

gb(b⊤x)

))
PnM(b, a) =

∫
M(b, a, x)dPn, PM(b, a) =

∫
M(b, a, x)dP

where P is the probability measure presenting f as density.
Similarly as in chapter V of Van der Vaart [22], let us define :

(A1) : For all ε > 0, there is η > 0, such that for all c ∈ ΘDϕ verifying ∥c− ak∥ ≥ ε,

we have PM(c, a) − η > PM(ak, a), with a ∈ Θ.

(A2) : ∃ Z < 0, n0 > 0 such that (n ≥ n0 ⇒ supa∈Θ sup
c∈{ΘDϕ}c PnM(c, a) < Z)

(A3) : There exists V , a neighbourhood of ak, and H , a positive function, such that, for all c ∈ V ,
we have |M(c, ak, x)| ≤ H(x)(P − a.s.) with PH <∞,

(A4) : There exists V , a neighbourhood of ak, such that for all ε, there exists a η such that for all c ∈ V

and a ∈ Θ, verifying ∥a− ak∥ ≥ ε, we have PM(c, ak) < PM(c, a) − η.

Putting Iak
= ∂2

∂a2Dϕ(g
fak

gak
, f), let us consider now four new hypotheses:

(A5) : P∥ ∂
∂b
M(ak, ak)∥2 and P∥ ∂

∂a
M(ak, ak)∥2 are finite and the expressions P ∂2

∂bi∂bj
M(ak, ak) and Iak

exist and are invertible.
(A6) : There exists k such that PM(ak, ak) = 0.
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(A7) : (V arP(M(ak, ak)))
1/2 exists and is invertible.

(A0) : f and g are assumed to be positive and bounded and such that K(g, f) ≥
∫
|f(x) − g(x)|dx

where K is the Kullback-Leibler divergence.

Estimation of the First Co-Vector of f

Let R be the class of all positive functions r defined on R and such that g(x)r(a⊤x) is a density on
Rd for all a belonging to Rd

∗. The following proposition shows that there exists a vector a such that fa

ga

minimizes Dϕ(gr, f) in r:

Proposition 4.1. There exists a vector a belonging to Rd
∗ such that

argmin
r∈R

Dϕ(gr, f) =
fa

ga

and r(a⊤x) =
fa(a

⊤x)

ga(a⊤x)

Following Broniatowski [33], let us introduce the estimate of Dϕ(g fa,n

ga
, fn), through Ďϕ(g

fa,n

ga
, fn) =

supb∈Θ

∫
M(b, a, x)dPn(x).

Proposition 4.2. Let ǎ be such that ǎ := arg infa∈Rd
∗
Ďϕ(g

fa,n

ga
, fn).

Then, ǎ is a strongly convergent estimate of a, as defined in proposition 4.1.

Let us also introduce the following sequences (ǎk)k≥1 and (ǧ
(k)
n )k≥1, for any given n—see

Section 3.2—such that
ǎk is an estimate of ak as defined in proposition 4.2 with ǧ(k−1)

n instead of g,

ǧ
(k)
n is defined by ǧ(0)

n = g, ǧ(k)
n (x) = ǧ

(k−1)
n (x)

fǎk,n(ǎ⊤
k x)

[ǧ(k−1)]ǎk,n(ǎ⊤
k x)

, i.e., ǧ(k)
n (x) = g(x)Πk

j=1

fǎj ,n(ǎ⊤
j x)

[ǧ(j−1)]ǎj ,n(ǎ⊤
j x)

.

We also note that ǧ(k)
n is a density.

Convergence Study at the kth Step of the Algorithm:

In this paragraph, we show that the sequence (ǎk)n converges towards ak and that the sequence (ǧ
(k)
n )n

converges towards g(k).
Let čn(a) = arg supc∈Θ PnM(c, a), with a ∈ Θ, and γ̌n = arg infa∈Θ supc∈Θ PnM(c, a). We state

Proposition 4.3. Both supa∈Θ ∥čn(a) − ak∥ and γ̌n converge toward ak a.s.

Finally, the following theorem shows that ǧ(k)
n converges almost everywhere towards g(k):

Theorem 4.1. It holds ǧ(k)
n →n g

(k) a.s.

Testing of the Criteria

In this paragraph, through a test of our criteria, namely a 7→ Dϕ(ǧ
(k)
n

fa,n

[ǧ(k)]a,n
, fn), we build a stopping

rule for this procedure. First, the next theorem enables us to derive the law of our criteria:

Theorem 4.2. For a fixed k, we have
√
n(V arP(M(čn(γ̌n), γ̌n)))−1/2(PnM(čn(γ̌n), γ̌n) −

PnM(ak, ak))
Law→ N (0, I), where k represents the kth step of our algorithm and where I is the identity

matrix in Rd.
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Note that k is fixed in theorem 4.2 since γ̌n = arg infa∈Θ supc∈Θ PnM(c, a) where M is a known
function of k—see Section 4.1. Thus, in the case when Dϕ(g(k−1) fak

g
(k−1)
ak

, f) = 0, we obtain

Corollary 4.1. We have
√
n(V arP(M(čn(γ̌n), γ̌n)))−1/2PnM(čn(γ̌n), γ̌n)

Law→ N (0, I).

Hence, we propose the test of the null hypothesis
(H0) : Dϕ(g(k−1) fak

g
(k−1)
ak

, f) = 0 versus the alternative (H1) : Dϕ(g(k−1) fak

g
(k−1)
ak

, f) ̸= 0.

Based on this result, we stop the algorithm, then, defining ak as the last vector generated,
we derive from corollary 4.1 a α-level confidence ellipsoid around ak, namely Ek = {b ∈
Rd;

√
n(V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α }, where qN (0,1)

α is the quantile of a α-level reduced
centered normal distribution and where Pn is the empirical measure arising from a realization of the
sequences (X1, . . . , Xn) and (Y1, . . . , Yn).

Consequently, the following corollary provides us with a confidence region for the above test:

Corollary 4.2. Ek is a confidence region for the test of the null hypothesis (H0) versus (H1).

5. Goodness-of-Fit Tests

5.1. The Basic Idea

Let f be a density defined on R2. Let us also consider g, a known elliptical density with the same
mean and variance as f . Let us also assume that the family (ai) is the canonical basis of R2 and that
Dϕ(g

(2), f) = 0.
Hence, since lemma C.1 page 110 implies that g(j−1)

aj = gaj
if j ≤ d, we then have g(2)(x) =

g(x)f1

g1

f2

g
(1)
2

= g(x)f1

g1

f2

g2
. Moreover, we get f with g(2) = f , as derived from property B.1 page 109.

Consequently, f = g(x)f1

g1

f2

g2
, i.e., f

f1f2
= g

g1g2
, and then ∂2

∂x∂y
Cf = ∂2

∂x∂y
Cg where Cf (resp. Cg) is the

copula of f (resp. g).
More generally, if f is defined on Rd, then the family (ai) is once again free (see lemma C.5), i.e., the

family (ai) is once again a basis of Rd. The relationship Dϕ(g
(d), f) = 0 therefore implies that g(d) = f ,

i.e., for any x ∈ Rd, f(x) = g(d)(x) = g(x)Πd
k=1

fak
(a⊤

k x)

[g{k−1}]ak
(a⊤

k x)
= g(x)Πd

k=1
fak

(a⊤
k x)

gak
(a⊤

k x)
since lemma C.1

page 110 implies that g(k−1)
ak = gak

if k ≤ d. In other words, for any x ∈ Rd, it holds

g(x)

Πd
k=1gak

(a⊤k x)
=

f(x)

Πd
k=1fak

(a⊤k x)
(5.1)

Finally, putting A = (a1, ..., ad) and defining vector y (resp. density f̃ , copula C̃f of f̃ , density g̃,
copula C̃g of g̃) as the expression of vector x (resp. density f , copula Cf of f , density g, copula Cg of
g) in basis A, then, the following proposition provides us with the density associated with the copula of
f as being equal to the density associated with the copula of g in basis A :

Proposition 5.1. With the above notations, should a sequence (ai)i=1,...d of not null vectors in Rd
∗ defining

g(d) and such that Dϕ(g
(d), f) = 0 exist, then ∂d

∂y1...∂yd
C̃f = ∂d

∂y1...∂yd
C̃g.
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5.2. With the Elliptical Copula

Let f be an unknown density defined on Rd. The objective of the present section is to determine
whether the copula of f is elliptical. We thus define an instrumental elliptical density g with the same
mean and variance as f , and we follow the procedure of Section 3.2. As explained in Section 5.1, we
infer from proposition 5.1 that the copula of f equals the copula of g whenDϕ(g

(d), f) = 0, i.e., when ad

is the last vector generated from the algorithm and when (ai) is the canonical basis of Rd. Thus, in order
to verify this assertion, corollary 4.1 page 96 provides us with a α-level confidence ellipsoid around this
vector, namely

Ed = {b ∈ Rd;
√
n(V arP(M(b, b)))−1/2PnM(b, b) ≤ qN (0,1)

α }

where q
N (0,1)
α is the quantile of a α-level reduced centered normal distribution, where Pn is the

empirical measure arising from a realization of the sequences (X1, . . . , Xn) and (Y1, . . . , Yn)—see
Appendix D—and where M is a known function of d , fn and g(d−1)

n —see Section 4.1.
Consequently, keeping the notations introduced in Section 5.1, we perform a statistical test of the

null hypothesis

(H0) :
∂d

∂x1...∂xd

Cf =
∂d

∂x1...∂xd

Cg versus (H1) :
∂d

∂x1...∂xd

Cf ̸= ∂d

∂x1...∂xd

Cg

Since, under (H0), we haveDϕ(g(d), f) = 0, then the following theorem provides us with a confidence
region for this test.

Theorem 5.1. The set Ed is a confidence region for the test of the null hypothesis (H0) versus the
alternative (H1).

Remark 5.1. 1/ If Dϕ(g
(k), f) = 0, for k < d, then we reiterate the algorithm until g(d) is created in

order to obtain a relationship for the copula of f .
2/ If the ai do not constitute the canonical basis, then keeping the notations introduced in Section 5.1,

our algorithm meets the test:

(H0) :
∂d

∂y1...∂yd

C̃f =
∂d

∂y1...∂yd

C̃g versus (H1) :
∂d

∂y1...∂yd

C̃f ̸= ∂d

∂y1...∂yd

C̃g

Thus, our method permits to determine whether the copula of f equals the copula of g in the
(a1, . . . , ad) basis.

5.3. With the Independent Copulas

Let f be a density on Rd and let X be a random vector with f as density. The objective of
this section is to determine whether f is the product of its margins, i.e., whether the copula of f
is the independent copula. Let g be an instrumental product of univariate Gaussian density—with
diag(V ar(X1), ..., V ar(Xd)) as covariance matrix and with the same mean as f . As explained at Section
5.2, we follow the procedure described at Section 3.2, i.e., proposition 5.1 infers that the copula of f is
the independent copula when Dϕ(g(d), f) = 0, we then perform a statistical test of the null hypothesis:

(H0) : f = Πd
i=1fi versus the alternative (H1) : f ̸= Πd

i=1fi
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Since, under (H0), we have Dϕ(g(d), f) = 0, the following theorem provides us with a confidence
region for our test.

Theorem 5.2. Keeping the notations of Section 5.2, the set Ed is a confidence region for the test of the
null hypothesis (H0) versus the alternative (H1).

Remark 5.2. (1) As explained in Section 5.2, if Dϕ(g
(k), f) = 0, for k < d, we reiterate the algorithm

until g(d) is created in order to derive a relationship for the copula of f .
(2) If the ai do not constitute the canonical basis, then keeping the notations of Section 5.1, our

algorithm meets the test:

(H0) : f = Πd
i=1fai

versus the alternative (H1) : f ̸= Πd
i=1fai

Thus, our method enables us to determine if the copula of f is the independent copula in the
(a1, . . . , ad) basis.

5.4. Study of the Subsequence (g(k′)) Defined by Dϕ(g(k′), f) = 0 for Any k′

Let Q be the set of non-negative integers defined by Q = {k′i; k′1 = 1, k′q = d, k′i < k′i+1}, where
q—such that q ≤ d—is its cardinal. In the present section, our goal is to study the subsequence (g(k′))

of the sequence (g(k))k=1..d defined by Dϕ(g
(k′), f) = 0 for any k′ belonging to Q.

First, we have:

Dϕ(g
(d), f) = 0 ⇔ g(d) = f , through property B.1

⇔ g(x)

Πd
k=1gak

(a⊤
k x)

= f(x)

Πd
k=1fak

(a⊤
k x)

, as explained in Section 5.2

⇔ g̃(y)

Πd
k=1g̃k(yk)

= f̃(y)

Πd
k=1f̃k(yk)

, which amounts to the previous relationship written in the
A = (a1, . . . , ad) basis with the notations introduced in Section 5.2.

Moreover, defining k̃′i as the previous integer k′i, in the space {1, . . . , d}, with i > 1, and as explained
in Section 3.1, the relationship Dϕ(g

(k′), f) = 0 implies that
f̃(yi, . . . , yk̃′

i+1
/y1, . . . , yk̃′

i
, yk′

i+1
, . . . , yd) = f̃i,i+1(yi, . . . , yk̃′

i+1
)

where f̃i,i+1 is the density of vector (a⊤i X, . . . , a
⊤
k̃′

i+1

X) in the A = (a1, . . . , ad) basis. Consequently,

f̃(y) = f̃1,2(y1, . . . , yk̃′
2
).f̃2,3(yk′

2
, . . . , yk̃′

3
) . . . f̃q−1,d(yk′

q−1
, . . . , yk̃′

d
).

Hence, we can infer that

f̃(y)

Πd
k=1f̃k(yk)

=
f̃1,2(y1, . . . , yk̃′

2
)

Π
k̃′
2

k=1f̃k(yk)
.
f̃2,3(yk′

2
, . . . , yk̃′

3
)

Π
k̃′
3

k=k′
2
f̃k(yk)

. . .
f̃q−1,d(yk′

q−1
, . . . , yk̃′

d
)

Πd
k=k̃′

q−1

f̃k(yk)
(5.2)

The following theorem explicitly describes the form of the f copula in the A = (a1, . . . , ad) basis:

Theorem 5.3. Defining C̃fi,j
as the copula of f̃i,j and keeping the notations introduced in Sections 5.1

and 5.4, it holds

∂d

∂y1...∂yd

C̃f =
∂k̃′

2

∂y1 . . . ∂yk̃′
2

C̃f1,2 .
∂k̃′

3−k′
2+1

∂yk′
2
. . . ∂yk̃′

3

C̃f2,3 . . .
∂d−k′

q−1+1

∂yk′
q−1

. . . ∂yd

C̃fq−1,d
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Remark 5.3. If there exists i such that i < d and k′i = k̃′i+1, then the notation f̃i,i+1(yk′
i
, . . . , yk̃′

i+1
)

means f̃k′
i
(yk′

i
). Thus, if, for any k, we have Dϕ(g(k), f) = 0, then, for any i < d, we have k′i = k̃′i+1, i.e.,

we have f̃ = Πd
k=1f̃k(yk), where f̃k is the kth marginal density of f̃ .

At present, using relationship 5.2 and remark 5.3, the following corollary gives us the copula of f as
equals to 1 in the {a1, . . . , ad} basis when, for any k, Dϕ(g

(k′), f) = 0:

Corollary 5.1. In the case where, for any k, Dϕ(g
(k), f) = 0, it holds:

∂d

∂y1...∂yd

C̃f = 1

6. Simulations

Let us examine three simulations and an application to real datasets. The first simulation studies the
elliptical copula and the second studies the independent copula. In each simulation, our program will
aim at creating a sequence of densities (g(j)), j = 1, .., d such that g(0) = g, g(j) = g(j−1)faj

/[g(j−1)]aj

and Dϕ(g
(d), f) = 0, where Dϕ is a divergence—see Appendix B for its definition—and aj =

arg infbDϕ(g
(j−1)fb/g

(j−1)
b , f), for all j = 1, ..., d. We will therefore perform the tests introduced

at theorems 5.1 and 5.2. Finally, the third simulation compares the optimisations obtained, when we
execute the process with, each time, a new ϕ-divergence.

Simulation 6.1. We are in dimension 2(=d), and we use the χ2 divergence to perform our optimisations.
Let us consider a sample of 50(=n) values of a random variable X with a density law f defined by :

f(x) = cρ(FGumbel(x1), FExponential(x2)).Gumbel(x1).Exponential(x2)

where c is the Gaussian copula with correlation coefficient ρ = 0.5, and where the Gumbel distribution
parameters are −1 and 1 and the exponential density parameter is 2.

Let us generate then a Gaussian random variable Y with a density—that we will name as
g—presenting the same mean and variance as f .

We theoretically obtain k = 2 and (a1, a2) = ((1, 0), (0, 1)).
To get this result, we perform the following test:

(H0) : (a1, a2) = ((1, 0), (0, 1)) versus (H1) : (a1, a2) ̸= ((1, 0), (0, 1))

Then, theorem 5.1 enables us to verify (H0) by the following 0.9(=α) level confidence ellipsoid

E2 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ qN (0,1)
α /

√
n ≃ 0, 2533/7.0710 = 0.03582}

Results of this optimisation can be found in Table 3 and Figure 1.
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Table 3. Simulation 1: Numerical results of the optimisation.

Our Algorithm

Projection Study 0:
minimum : 0.445199
at point : (1.0171,0.0055)
P-Value : 0.94579

Test: H1 : a1 ̸∈ E1 : True

Projection Study 1:
minimum : 0.009628
at point : (0.0048,0.9197)
P-Value : 0.99801

Test: H0 : a2 ∈ E2 : True
χ2(Kernel Estimation of g(2), g(2)) 3.57809

Therefore, we can conclude that H0 is verified.

Figure 1. Graph of the estimate of (x1, x2) 7→ cρ(FGumbel(x1), FExponential(x2)).

Simulation 6.2. We are in dimension 2(=d), and we use the χ2 divergence to perform our optimisations.
Let us consider a sample of 50(=n) values of a random variable X with a density law f defined by
f(x) = Gumbel(x1).Exponential(x2)

where the Gumbel distribution parameters are −1 and 1 and the exponential density parameter is 2.
Let g be an instrumental product of univariate Gaussian densities with diag(V ar(X1), ..., V ar(Xd))

as covariance matrix and with the same mean as f .
We theoretically obtain k = 2 and (a1, a2) = ((1, 0), (0, 1)). To get this result, we perform the

following test:

(H0) : (a1, a2) = ((1, 0), (0, 1)) versus (H1) : (a1, a2) ̸= ((1, 0), (0, 1))
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Then, theorem 5.2 enables us to verify (H0) by the following 0.9(=α) level confidence ellipsoid

E2 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ qN (0,1)
α /

√
n ≃ 0.03582203}

Results of this optimisation can be found in Table 4 and Figure 2.

Table 4. Simulation 2: Numerical results of the optimisation.

Our Algorithm

Projection Study 0 :
minimum : 0.057833
at point : (0.9890,0.1009)
P-Value : 0.955651

Test : H1 : a1 ̸∈ E1 : True

Projection Study 1 :
minimum : 0.02611
at point : (−0.1105,0.9290)
P-Value : 0.921101

Test : H0 : a2 ∈ E2 : True
χ2(Kernel Estimation of g(2), g(2)) 1.25945

Therefore, we can conclude that f = Πd
i=1fi.

Figure 2. Graph of the independent copula estimate.
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Simulation 6.3 (On the choice of a ϕ-divergence). In this paragraph, we perform our algorithm several
times. We first use several ϕ-divergences (see Appendix B for their definitions and their notations).
We then perform a sensitivity analysis by varying the number n of simulated variables. Finally we
introduce outliers.

At present, we consider a sample of n values of a random variable X with a density f defined by
f(x) = Laplace(x1).Gumbel(x0),
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where the Gumbel distribution parameters are (1, 2) and where the Laplace distribution parameters are
4 and 3. In theory, we get a1 = (0, 1) and a2 = (1, 0). Then, following the procedure of the first
simulation, we get

n = 50 Outliers = 0 Time Outliers = 2 Time
Relative Entropy (0.10, 0.83) (1.13, 0.11) 30 mn (0.1, 0.8) (0.80, 0.024) 43 mn
χ2-divergence (0, 0.8) (1.021, 0.09) 22 mn (0.12, 0.79) (0.867,−0.104) 31 mn
Hellinger distance (0.1, 0.9) (0.91, 0.15) 35 mn (0.1, 0.85) (0.81, 0.14) 46 mn

n = 100 Outliers = 0 Time Outliers = 5 Time
Relative Entropy (0.09, 0.89) (1.102, 0.089) 50 mn (0.1, 0.88) (1.15, 0.144) 60 mn
χ2-divergence (0, 0.9) (0.97,−0.1) 43 mn (−0.1, 0.9) (0.87, 0.201) 52 mn
Hellinger distance (0.1, 0.91) (0.93,−0.11) 57 mn (−0.05, 1.1) (0.79, 0.122) 62 mn

n = 500 Outliers = 0 Time Outliers = 25 Time
Relative Entropy (0, 1.07) (1.1,−0.05) 107 mn (0.13, 0.75) (0.79, 0.122) 121 mn
χ2-divergence (0, 0.95) (1.12,−0.02) 91 mn (0.15, 0.814 (0.922, 0.147) 103 mn
Hellinger distance (−0.01, 0.95) (1.01,−0.073) 100 mn (−0.17, 1.3) (0.973, 0.206) 126 mn

Remark 6.1.
(1) We have worked with a calculator presenting the following characteristics :
- Processor : Mobile AMD 3000+,
- Memory RAM : 512 DDR,
- Windows XP.
(2) Our method, which uses the χ2 as ϕ-divergence, is faster and its performance is as good if not better
than any other divergence method.
This results from the fact that the projection index (or criteria) of χ2 is a second degree polynomial.
It is consequently easier and faster to assess. Moreover, these simulations illustrate the robustness of
our method.

6.1. Application to Real Datasets

Let us for instance study the moves in the stock prices of Renault and Peugeot from January 4, 2010
to July 25, 2010. We thus gather 140(=n) data from these stock prices, see Table 7 and Table 8 below.

Let us also consider X1 (resp. X2) the random variable defining the stock price of Renault (resp.
Peugeot). We will assume—as it is commonly done in mathematical finance—that the stock market
abides by the classical hypotheses of the Black-Scholes model—see Black and Scholes [34].

Consequently, X1 and X2 each present a log-normal distribution as probability distribution.
Let f be the density of vector (ln(X1), ln(X2)), let us now apply our algorithm to f with the

Kullback-Leibler divergence as ϕ-divergence. Let us generate then a Gaussian random variable Y with
a density—that we will name as g—presenting the same mean and variance as f .

We first assume that there exists a vector a such that Dϕ(g
fa

ga
, f) = 0.
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In order to verify this hypothesis, our reasoning will be the same as in Simulation 6.1. Indeed, we
assume that this vector is a co-factor of f . Consequently, corollary 4.2 enables us to estimate a by the
following 0.9(=α) level confidence ellipsoid

E1 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q
N (0,1)
α /

√
n ≃ 0, 2533/

√
140 = 0.02140776}.

Numerical results of the first projection are summarized in Table 5.

Table 5. Numerical results: First projection.

Our Algorithm

Projection Study 0:
minimum : 0.02087685
at point : a1=(19.1,-12.3)
P-Value : 0.748765

Test: H0 : a1 ∈ E1 : True
K(Kernel Estimation of g(1), g(1)) 4.3428735

Therefore, our first hypothesis is confirmed.
However, our goal is to study the copula of (ln(X1), ln(X2)). Then, as explained in Section 5.4, we

formulate another hypothesis assuming that there exists a vector a such that Dϕ(g
(1) fa

g
(1)
a

, f) = 0.
In order to verify this hypothesis, we use the same reasoning as above. Indeed, we assume that

this vector is a co-factor of f . Consequently, corollary 4.2 enables us to estimate a by the following
0.9(=α) level confidence ellipsoid E2 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q

N (0,1)
α /

√
n ≃

0, 2533/
√

140 = 0.02140776}. Numerical results of the second projection are summarized in Table 6.

Table 6. Numerical results: Second projection.

Our Algorithm

Projection Study 1:
minimum : 0.0198753
at point : a2=(8.1,3.9)
P-Value : 0.8743401

Test: H0 : a2 ∈ E2 : True
K(Kernel Estimation of g(2), g(2)) 4.38475324

Therefore, our second hypothesis is confirmed.
In conclusion, as explained in corollary 5.1, the copula of f is equal to 1 in the {a1, a2} basis.
This result has been illustrated at Figures 3,4 and 5.

6.2. Critics of the Simulations

In the case where f is unknown, we will never be sure to have reached the minimum of the
ϕ-divergence: the simulated annealing method has been used to solve our optimisation problem, and
therefore it is only when the number of random jumps tends in theory towards infinity that the probability
to get the minimum tends to 1. We also note that no theory on the optimal number of jumps to implement
does exist, as this number depends on the specificities of each particular problem.
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Figure 3. Graph of the copula of (ln(X1), ln(X2)) in the canonical basis.

Figure 4. Graph of the copula of (ln(X1), ln(X2)) in the {a1, a2} basis.

Moreover, we choose the 50−
4

4+d for the AMISE of the two simulations. This choice leads us to
simulate 50 random variables—see Scott [23] page 151, none of which have been discarded to obtain
the truncated sample.

This has also been the case in our application to real datasets.
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Figure 5. Graph of the copula of (ln(X1), ln(X2)) in the {a1, a2} basis—other view.

Table 7. Stock prices of Renault and Peugeot.

Date Renault Peugeot Date Renault Peugeot Date Renault Peugeot
23/07/10 34.9 24.2 22/07/10 34.26 24.01 21/07/10 33.15 23.3
20/07/10 32.69 22.78 19/07/10 33.24 23.36 16/07/10 33.92 23.77
15/07/10 34.44 23.71 14/07/10 35.08 24.36 13/07/10 35.28 24.37
12/07/10 33.84 23.16 09/07/10 33.46 23.13 08/07/10 33.08 22.65
07/07/10 32.15 22.19 06/07/10 31.12 21.56 05/07/10 30.02 20.81
02/07/10 30.17 20.85 01/07/10 29.56 20.05 30/06/10 30.78 21.07
29/06/10 30.55 20.97 28/06/10 32.34 22.3 25/06/10 31.35 21.68
24/06/10 32.29 22.25 23/06/10 33.58 22.47 22/06/10 33.84 22.77
21/06/10 34.06 23.25 18/06/10 32.89 22.7 17/06/10 32.08 22.31
16/06/10 31.87 21.92 15/06/10 32.03 22.12 14/06/10 31.45 22.2
11/06/10 30.62 21.42 10/06/10 30.42 20.93 09/06/10 29.27 20.34
08/06/10 28.48 19.73 07/06/10 28.92 20.15 04/06/10 29.19 20.27
03/06/10 30.35 20.46 02/06/10 29.33 19.53 01/06/10 28.87 19.45
31/05/10 29.39 19.54 28/05/10 29.16 19.55 27/05/10 29.18 19.81
26/05/10 27.5 18.5 25/05/10 26.76 18.08 24/05/10 28.75 18.81
21/05/10 28.78 18.82 20/05/10 28.53 18.84 19/05/10 29.49 19.25
18/05/10 30.95 19.76 17/05/10 30.92 19.35 14/05/10 31.35 19.34
13/05/10 33.65 20.76 12/05/10 33.63 20.52 11/05/10 33.38 20.34
10/05/10 33.28 20.3 07/05/10 31 19.24 06/05/10 32.4 20.22
05/05/10 32.95 20.45 04/05/10 33.3 21.03 03/05/10 35.58 22.63
30/04/10 35.41 22.45 29/04/10 35.53 22.36 28/04/10 34.75 22.33
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Table 8. Stock prices of Renault and Peugeot.

Date Renault Peugeot Date Renault Peugeot Date Renault Peugeot
27/04/10 36.2 22.9 26/04/10 37.65 23.73 23/04/10 36.72 23.5
22/04/10 34.36 22.72 21/04/10 35.01 22.86 20/04/10 35.62 22.88
19/04/10 34.08 21.77 16/04/10 34.46 21.71 15/04/10 35.16 22.22
14/04/10 35.1 22.22 13/04/10 35.28 22.45 12/04/10 35.17 21.85
09/04/10 35.76 21.9 08/04/10 35.67 21.67 07/04/10 36.5 21.89
06/04/10 36.87 22 01/04/10 35.5 21.97 31/03/10 34.7 21.8
30/03/10 34.8 22.24 29/03/10 35.7 22.73 26/03/10 35.54 22.58
25/03/10 35.53 22.73 24/03/10 33.8 21.82 23/03/10 34.1 21.58
22/03/10 33.73 21.64 19/03/10 34.12 21.68 18/03/10 34.44 21.75
17/03/10 34.68 21.98 16/03/10 34.33 21.88 15/03/10 33.57 21.53
12/03/10 33.9 21.86 11/03/10 33.27 21.58 10/03/10 33.12 21.47
09/03/10 32.69 21.54 08/03/10 32.99 21.66 05/03/10 32.89 21.85
04/03/10 31.64 21.26 03/03/10 31.65 20.7 02/03/10 31.05 20.2
01/03/10 30.26 19.54 26/02/10 30.2 19.39 25/02/10 29.42 18.98
24/02/10 30.9 19.49 23/02/10 30.54 19.74 22/02/10 31.89 20.06
19/02/10 32.29 20.67 18/02/10 32.26 20.41 17/02/10 31.69 20.31
16/02/10 31.08 19.8 15/02/10 30.25 19.66 12/02/10 29.56 19.57
11/02/10 31 20.4 10/02/10 32.78 21.21 09/02/10 33.31 22.31
08/02/10 32.63 21.95 05/02/10 32.15 22.33 04/02/10 33.72 22.86
03/02/10 35.32 23.93 02/02/10 35.29 23.8 01/02/10 35.31 24.05
29/01/10 34.26 23.64 28/01/10 33.94 23.31 27/01/10 33.85 23.88
26/01/10 34.97 24.86 25/01/10 35.06 24.35 22/01/10 35.7 24.95
21/01/10 36.1 25 20/01/10 36.92 25.35 19/01/10 38.4 25.81
18/01/10 39.28 25.95 15/01/10 38.6 25.7 14/01/10 39.56 26.67
13/01/10 39.49 26.13 12/01/10 38.36 25.98 11/01/10 39.21 26.65
08/01/10 39.38 26.5 07/01/10 39.69 26.7 06/01/10 39.25 26.32
05/01/10 38.31 24.74 04/01/10 38.2 24.52

Finally, the shape of the copula in the case of real datasets in the {a1, a2} basis is also noteworthy.
Figure 4 shows that the curve reaches a quite wide plateau around 1, whereas Figure 5 shows that this

plateau prevails on almost the entire [0, 1]2 set. We can therefore conclude that the theoretical analysis is
indeed confirmed by the above simulation.

6.3. Conclusions

Projection pursuit is useful in evidencing characteristic structures as well as one-dimensional
projections and their associated distribution in multivariate data. This article clearly demonstrates the
efficiency of the φ-projection pursuit methodology for goodness-of-fit tests for copulas. Indeed, the
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robustness as well as the convergence results that we achieved convincingly fulfilled our expectations
regarding the methodology used.

Appendix

All the demonstrations of this article have been gathered in the Technical Report [24].

A. On the Different Families of Copula

There exists many copula families. Let us here present the most important amongst them.

A.1. Elliptical Copulas

The Gaussian Copula

The Gaussian copula can be used in several fields. For example, many credit models are built
from this copula, which also presents the property to make extreme values (minimal or maximal)
independent in the limit; see Joe [2] for more details. For example, in R2, it is derived from
the bivariate normal distribution and from Sklar’s theorem. Defining Ψρ as the standard bivariate
normal cumulative distribution function with ρ correlation, the Gaussian copula function is Cρ(u, v) =

Ψρ (Ψ−1(u),Ψ−1(v)) where u, v ∈ [0, 1] and where Ψ is the standard normal cumulative distribution
function. Then, the copula density function is :

cρ(u, v) =
ψX,Y,ρ(Ψ

−1(u),Ψ−1(v))

ψ(Ψ−1(u))ψ(Ψ−1(v))

where ψX,Y,ρ(x, y) = 1

2π
√

1−ρ2
exp

(
− 1

2(1−ρ2)
[x2 + y2 − 2ρxy]

)
is the density function for the standard

bivariate Gaussian with Pearson product-moment correlation coefficient ρ and where ψ is the standard
normal density. This definition can obviously be extended to Rd.

The Elliptical Copula

Let us begin with defining the class of elliptical distributions and its properties—see also
Cambanis [17], Landsman [18] :

Definition A.1. X is said to abide by a multivariate elliptical distribution, denoted X ∼ Ed(µ,Σ, ξd),
if X has the following density, for any x in Rd:

fX(x) =
αd

|Σ|1/2
ξd

(1

2
(x− µ)′Σ−1(x− µ)

)
where Σ is a d× d positive-definite matrix and where µ is a d-column vector,
where ξd is referred as the “density generator”,

where αd is a normalisation constant, such that αd = Γ(d/2)

(2π)d/2

( ∫∞
0
xd/2−1ξd(x)dx

)−1

,

with
∫∞

0
xd/2−1ξd(x)dx <∞.
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Property A.1. (1) For any X ∼ Ed(µ,Σ, ξd), for any m × d matrix with rank m ≤ d, A, and for any
m-dimensional vector b, we have AX + b ∼ Em(Aµ+ b, AΣA′, ξm).

Therefore, any marginal density of multivariate elliptical distribution is elliptical, i.e.,
X = (X1, X2, ..., Xd) ∼ Ed(µ,Σ, ξd) ⇒ Xi ∼ E1(µi, σ

2
i , ξ1), 1 ≤ i ≤ d, with fXi

(x) =
α1

σi
ξ1

(
1
2
(x−µi

σ
)2
)

. (2) Corollary 5 of Cambanis [17] states that conditional densities with elliptical
distributions are also elliptical. Indeed, if X = (X1, X2)

′ ∼ Ed(µ,Σ, ξd), with X1 (resp. X2) of
size d1 < d (resp. d2 < d), then X1/(X2 = a) ∼ Ed1(µ

′,Σ′, ξd1) with µ′ = µ1 + Σ12Σ
−1
22 (a − µ2) and

Σ′ = Σ11 − Σ12Σ
−1
22 Σ21, with µ = (µ1, µ2) and Σ = (Σij)1≤i,j≤2.

Remark A.1. Landsman [18] shows that multivariate Gaussian distributions derive from ξd(x) = e−x

and that if X = (X1, ..., Xd) has an elliptical density such that its marginals verify E(Xi) < ∞ and
E(X2

i ) < ∞ for 1 ≤ i ≤ d, then µ is the mean of X and Σ is a multiple of the covariance matrix of X .
Consequently, from now on, we will assume this is indeed the case.

Definition A.2. Let t be an elliptical density on Rk and let q be an elliptical density on Rk′
. The elliptical

densities t and q are said to belong to the same family of elliptical densities, if their generating densities
are ξk and ξk′ respectively, which belong to a common given family of densities.

Example A.1. Consider two Gaussian densities N (0, 1) and N ((0, 0), Id2). They are said to belong to
the same elliptical family as they both present x 7→ e−x as generating density.

Finally, let us introduce the definition of an elliptical copula which generalizes the above overview of
the Gaussian copula:

Definition A.3. Elliptical copulas are the copulas of elliptical distributions.

A.2. Archimedean Copulas

These copulas exhibit a simple form as well as properties such as associativity. They also present a
variety of dependent structures. They can generally be defined under the following form

A(u1, u2, . . . , un) = ξ−1

(
n∑

i=1

ξ(Fi(ui))

)

where (u1, u2, . . . , un) ∈ [0, 1]n and where ξ is known as a “generator function”. This ξ function must
be at least d− 2 times continuously differentiable, must have a decreasing and convex d− 2 derivative,
and must be such that ξ(1) = 0.

Let us now present several examples :
(1) Clayton copula:

The Clayton copula is an asymmetric Archimedean copula, displaying greater dependency in the
negative tail than in the positive tail. Let us define X (resp. Y ) as the random vector having F (resp G)
as cumulative distribution function (CDF). Assuming that the vector (X,Y ) has a Clayton copula, then
this copula is given by:

A(x, y) = (F (x)θ +G(y)θ − 1)1/θ
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And its generator is:
ξ(x) = xθ − 1

For θ = 0, the random variables are independent.
(2) Gumbel copula:

The Gumbel copula (Gumbel-Hougard copula) is an asymmetric Archimedean copula, presenting
greater dependency in the positive tail than in the negative tail. This copula is given by:

ξ(x) = (− ln(x))α

(3) Frank copula:
The Frank copula is a symmetric Archimedean copula given by:

ξ(x) = ln

(
eαx − 1

eα − 1

)
A.3. Periodic Copula

In 2005, Alfonsi and Brigo [25] derived a new way of generating copulas based on periodic functions.
Defining h (resp. A) as a 1-periodic non-negative function that integrates to 1 over [ 0, 1] (resp. as a
double primitive of h), then both

A(u+ v) −A(u) −A(v) and −A(u− v) + A(u) + A(−v)

are copula functions, the second one not necessarily being exchangeable.

B. ϕ-Divergence

Let us call ha the density of a⊤Z if h is the density of Z. Let φ be a strictly convex function defined
by φ : R+ → R+, and such that φ(1) = 0.

Definition B.1. We define a ϕ-divergence of P from Q, where P and Q are two probability distributions
over a space Ω such that Q is absolutely continuous with respect to P , by

Dϕ(Q,P ) =

∫
φ

(
dQ

dP

)
dP (B.1)

The above expression (B.1) is also valid if P and Q are both dominated by the same probability.

The most used distances (Kullback, Hellinger or χ2) belong to the Cressie-Read family (see
Cressie-Read [26], Csiszár I. [27] and the books of Friedrich and Igor [28], Pardo Leandro [29] and
Zografos K. [30]). They are defined by a specific φ. Indeed,
- with the Kullback-Leibler divergence, we associate φ(x) = K(x) = xln(x) − x+ 1

- with the Hellinger distance, we associate φ(x) = H(x) = 2(
√
x− 1)2

- with the χ2 distance, we associate φ(x) = χ2(x) = 1
2
(x− 1)2

- more generally, with power divergences, we associate φ(x) = xγ−γx+γ−1
γ(γ−1)

, where γ ∈ R \ (0, 1)

- and, finally, with the L1 norm, which is also a divergence, we associate φ(x) = |x− 1|.
Let us now expose some well-known properties of divergences.
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Property B.1. We have Dϕ(P,Q) = 0 ⇔ P = Q.

Property B.2. The divergence function Q 7→ Dϕ(Q,P ) is convex and lower semi-continuous for the
topology that makes all the applications of the form Q 7→

∫
fdQ continuous (where f is bounded and

continuous), and lower semi-continuous for the topology of the uniform convergence.

Finally, we will also use the following property derived from the first part of corollary (1.29) page 19
of Friedrich and Igor [28],

Property B.3.
If T : (X,A) → (Y,B) is measurable and if Dϕ(P,Q) < ∞, then Dϕ(P,Q) ≥ Dϕ(PT

−1, QT−1) with
equality being reached when T is surjective for (P,Q).

C. Miscellaneous

Lemma C.1. For any p ≤ d, we have g(p−1)
ap = gap .

Lemma C.2. We have g(./a⊤1 x, ..., a
⊤
j x) = n(a⊤j+1x, ..., a

⊤
d x) = f(./a⊤1 x, ..., a

⊤
j x).

Lemma C.3. Should there exist a family (ai)i=1...d such that f(x) = n(a⊤j+1x, ..., a
⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x),

with j < d, with f , n and h being densities, then this family is an orthogonal basis of Rd.

Lemma C.4. infa∈Rd
∗
Dϕ(g

fa

ga
, f) is reached when the ϕ-divergence is greater than the L1 distance as

well as the L2 distance.

Lemma C.5. Whenever there exists p, p ≤ d, such that Dϕ(g(p), f) = 0, then the family of (ai)i=1,..,p is
free and is orthogonal.

Lemma C.6. For any continuous density f , we have ym = |fm(x) − f(x)| = OP(m− 2
4+d ).

D. Study of the Sample

Let X1, X2,..,Xm be a sequence of independent random vectors with the same density f . Let Y1,
Y2,..,Ym be a sequence of independent random vectors with the same density g. Then, the kernel
estimators fm, gm, fa,m and ga,m of f , g, fa and ga, for all a ∈ Rd

∗, almost surely and uniformly converge
since we assume that the bandwidth hm of these estimators meets the following conditions (see Bosq
[32]):

(Hyp): hm ↘m 0, mhm ↗m ∞, mhm/L(h−1
m ) →m ∞ and L(h−1

m )/LLm→m ∞,
with L(u) = ln(u ∨ e).

Let us consider
B1(n, a) = 1

n
Σn

i=1φ
′{fa,n(a⊤Yi)

ga,n(a⊤Yi)
gn(Yi)
fn(Yi)

}fa,n(a⊤Yi)

ga,n(a⊤Yi)
and B2(n, a) = 1

n
Σn

i=1φ
∗{φ′{fa,n(a⊤Xi)

ga,n(a⊤Xi)
gn(Xi)
fn(Xi

}}
Our objective is to estimate the minimum of Dϕ(g

fa

ga
, f). To achieve this, samples have to

be truncated:
Let us consider now a positive sequence θm such that θm → 0, ym/θ

2
n → 0, where ym is the almost

sure convergence rate of the kernel density estimator— ym = OP(m− 2
4+d ), see lemma C.6— y

(1)
m /θ2

m →
0, where y(1)

m is defined by

|φ
(
gm(x)

fm(x)

fb,m(b⊤x)

gb,m(b⊤x)

)
− φ

(
g(x)

f(x)

fb(b
⊤x)

gb(b⊤x)

)
| ≤ y(1)

m
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for all b in Rd
∗ and all x in Rd, and finally y

(2)
m

θ2
m

→ 0, where y(2)
n is defined by

|φ′
(
gm(x)

fm(x)

fb,m(b⊤x)

gb,m(b⊤x)

)
− φ′

(
g(x)

f(x)

fb(b
⊤x)

gb(b⊤x)

)
| ≤ y(2)

m

for all b in Rd
∗ and all x in Rd.

We then generate fm, gm and gb,m from the starting sample and we select the Xi and Yi vectors such
that fm(Xi) ≥ θm and gb,m(b⊤Yi) ≥ θm, for all i and for all b ∈ Rd

∗.
The vectors meeting these conditions will be called X1, X2, ..., Xn and Y1, Y2, ..., Yn.

Consequently, the next proposition provides us with the condition required to derive our estimates:

Proposition D.1. Using the notations introduced in Broniatowski [33] and in Section 4.1, it holds
limn→∞ supa∈Rd

∗
|(B1(n, a) −B2(n, a)) −Dϕ(g

fa

ga
, f)| = 0.

Remark D.1. With the Kullback-Leibler divergence, we can take for θm the expression m−ν , with
0 < ν < 1

4+d
.

E. Hypotheses’ Discussion

Not all hypotheses will be used simultaneously.
Hypotheses (A1) and (A4) lead us to assume we deal with a saddle point: being used to demonstrate

the convergence of čn(a) and γk towards ak, they make it easier to use the dual form of the divergence.
Moreover, since our criteria a 7→ Dϕ(g fa

ga
, f) is differentiable on Rd

∗ and continuously differentiable on
Rd, these hypotheses can be easily obtained. However, if other discontinuities, for which the criteria can
not be extended by continuity, do exist, then the above hypotheses would be very difficult to verify even
in very favorable cases.
As shown by the below subsection for relative entropy, hypothesis (A2) generally holds.

Hypotheses (A5) and (A7) are classical hypotheses from which a limit distribution for the criteria
can be derived. Yet these hypotheses are difficult to obtain when the criteria a 7→ Dϕ(g fa

ga
, f) admits

discontinuities—close to the co-vectors of f—for which it can not be continuously differentiable.
Hypothesis (A6) thus enables to create a stopping rule for the process since this hypothesis is

equivalent to the nullity of the application Dϕ(g
fa

ga
, f) in ak.

Hypothesis (A0) constitutes an alternative to the starting hypothesis according to which the
divergence should be greater than the L1 distance. Although weaker, this hypothesis also requires that
for all i, we have K(g(i), f) ≥

∫
|f(x) − g(i)(x)|dx at each iteration of the algorithm.

E.1. Discussion of (A2).

Let us work with the Kullback-Leibler divergence and with g and a1.
For all b ∈ Rd

∗, we have
∫
φ∗(φ′( g(x)fb(b

⊤x)
f(x)gb(b⊤x)

))f(x)dx =
∫

( g(x)fb(b
⊤x)

f(x)gb(b⊤x)
− 1)f(x)dx = 0, since, for any

b in Rd
∗, the function x 7→ g(x)fb(b

⊤x)
gb(b⊤x)

is a density. The complement of ΘDϕ in Rd
∗ is ∅ and then the

supremum looked for in R is −∞. We can therefore conclude. It is interesting to note that we obtain the
same verification with f , g(k−1) and ak.
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E.2. Discussion of (A3).

This hypothesis consists in the following assumptions:
(0) We work with the Kullback-Leibler divergence,
(1)We have f(./a⊤1 x) = g(./a⊤1 x), i.e., K(g f1

g1
, f) = 0—we could also derive the same proof with f ,

g(k−1) and ak

Preliminary (A): Shows thatA = {(c, x) ∈ Rd
∗\{a1}×Rd;

fa1 (a⊤
1 x)

ga1 (a⊤
1 x)

> fc(c⊤x)
gc(c⊤x)

, g(x)fc(c⊤x)
gc(c⊤x)

> f(x)} = ∅
through a reductio ad absurdum, i.e., if we assume A ̸= ∅.
Thus, our hypothesis enables us to derive
f(x) = f(./a⊤1 x)fa1(a

⊤
1 x) = g(./a⊤1 x)fa1(a

⊤
1 x) > g(./c⊤x)fc(c

⊤x) > f

since fa1 (a⊤
1 x)

ga1 (a⊤
1 x)

≥ fc(c⊤x)
gc(c⊤x)

implies g(./a⊤1 x)fa1(a
⊤
1 x) = g(x)

fa1 (a⊤
1 x)

ga1(a⊤
1 x)

≥ g(x)fc(c⊤x)
gc(c⊤x)

= g(./c⊤x)fc(c
⊤x),

i.e., f > f . We can thus conclude.
Preliminary (B): Shows thatB = {(c, x) ∈ Rd

∗\{a1}×Rd;
fa1 (a⊤

1 x)

ga1 (a⊤
1 x)

< fc(c⊤x)
gc(c⊤x)

, g(x)fc(c⊤x)
gc(c⊤x)

< f(x)} = ∅
through a reductio ad absurdum, i.e., if we assume B ̸= ∅.
Thus, our hypothesis enables us to derive
f(x) = f(./a⊤1 x)fa1(a

⊤
1 x) = g(./a⊤1 x)fa1(a

⊤
1 x) < g(./c⊤x)fc(c

⊤x) < f

We can consequently conclude as above.
Let us now verify (A3):
We have PM(c, a1)−PM(c, a) =

∫
ln( g(x)fc(c⊤x)

gc(c⊤x)f(x)
){fa1 (a⊤

1 x)

ga1 (a⊤
1 x)

− fc(c⊤x)
gc(c⊤x)

}g(x)dx.Moreover, the logarithm

ln is negative on {x ∈ Rd
∗;

g(x)fc(c⊤x)
gc(c⊤x)f(x)

< 1} and is positive on {x ∈ Rd
∗;

g(x)fc(c⊤x)
gc(c⊤x)f(x)

≥ 1}.

Thus, the preliminary studies (A) and (B) show that ln( g(x)fc(c⊤x)
gc(c⊤x)f(x)

) and {fa1 (a⊤
1 x)

ga1 (a⊤
1 x)

− fc(c⊤x)
gc(c⊤x)

} always
present a negative product. We can therefore conclude, since (c, a) 7→ PM(c, a1)−PM(c, a) is not null
for all c and for all a, with a ̸= a1.
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