
Algorithms 2011, 4, 40-60; doi:10.3390/a4010040

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Edit Distance with Block Deletions

Dana Shapira 1,* and James A. Storer 2

1 Ashkelon Academic College, 12 Ben-Tzvi Street, Ashkelon 78211, Israel
2 Brandeis University, 415 South Street, Waltham, MA 02453, USA; E-Mail: storer@cs.brandeis.edu

* Author to whom correspondence should be addressed. E-Mail: shapird@cs.brandeis.edu;

Tel.: +972-52-5245-410; Fax: +972-8-6789-169.

Received: 30 January 2011; in revised form: 23 February 2011 / Accepted: 25 February 2011 /

Published: 7 March 2011

Abstract: Several variants of the edit distance problem with block deletions are

considered. Polynomial time optimal algorithms are presented for the edit distance with

block deletions allowing character insertions and character moves, but without block

moves. We show that the edit distance with block moves and block deletions is

NP-complete (Nondeterministic Polynomial time problems in which any given solution to

such problem can be verified in polynomial time, and any NP problem can be converted

into it in polynomial time), and that it can be reduced to the problem of non-recursive block

moves and block deletions within a constant factor.

Keywords: approximation algorithms; text processing; NP-Complete; edit-distance;

dynamic programming; block operations

1. Introduction

The traditional edit distance problem considers character insertions, deletions and sometimes

exchanges, in order to find the minimum number of such operations required to convert a given string

to another. Although a simple quadratic time dynamic programming algorithm can be used for the edit

distance problem (see the book of Gusfield [1] for more information), when generalized to include the

operations block move, block delete, and block copy it is NP-complete. Here we consider block

deletions with or without character insertions, character moves and block moves. These variations are

shown to be solved optimally in polynomial time using dynamic programming, except when including

block moves, where the problem is then NP-hard, and we show how to reduce the problem within a

OPEN ACCESS

Algorithms 2011, 4

41

constant factor to non-recursive block moves. One way to model block moves is by viewing strings as

linked lists, and allowing operations to apply to pointers associated with characters as well as the

characters themselves; although in practice, it is unlikely that linked lists would be used for this

purpose, this model captures the fact that both moving and deleting substrings are done in O(1)

processing time with standard edit operations.

Given two strings, S of length n and T of length m, in this paper we study the edit distance problem

which is the minimum number of insertions, deletions, and moves used to convert S into T. The

sequence <i/d/m> is used to denote a variant of the edit distance problem, where i refers to insertions,

d refers to deletions and m refers to moves, and i, d and m are either character or block operations, or

no corresponding operation, denoted by “c”, “b” or “-”, respectively. As an example, <c/c/b> denotes

the edit distance variant with character insertions, character deletions, and block moves. Variants

including block insertions are not included, since it is not captured in the linked list model, and block

insertions are in fact repeatedly inserting individual characters. The known results and the ones

achieved in this paper are summarized in Table 1:

Table 1. Summary of Results.

Problem Complexity Remarks
<c/c/-> O(n2/log(n)) Masek and Paterson [2], Crochemore et al. [3], assuming m = n
<c/c/b> NPC Shapira and Storer [4]
<c/b/b> NPC Current paper (4.1)
<-/b/-> O(n2· m) Current paper (5.1)
<c/b/-> O(n2· m) Current paper (5.1)
<c/c/c> O(n2· m + |Σ|) Shapira and Storer [4]
<c/b/c> O(n2· m + |Σ|) Current paper (5.2)

Section 2 summarizes related research; Section 3 presents formal definitions of the generalized edit

distance operations. In Section 4 we prove that edit distance with block moves and block deletions is

NP-hard, and show that eliminating recursion can be done within a constant factor. In Section 5 we

present optimal algorithms for solving variations of edit distance with block deletions.

2. Related Work

Ukkonen [5] extends the set of allowed edit operations (character insertions, character deletions and

character exchanges) to include transpositions of adjacent characters, block insertions, block deletions

and block replacements. For the case of block operations he considers a restricted block edit problem

for which the edit operations must be in a restricted order, which illustrates the behaviors of non

recursive block operations, discussed in Section 4.2. Ukkonen presents polynomial dynamic

programming algorithms that compute the edit distance (extended and original) d of two strings of

length m and n in time and space O(d·min(n,m)), for uniform and non-uniform costs of the operations

involved. Since the edit distance is at most max(n,m), the algorithms proposed for character operations

are asymptotically at least as efficient as the traditional O(nm) algorithm(Gusfield [1]). Ann et al. [6]

noted that for the case of block operations the running time is in fact O(d2·min(n2,m2)). Our algorithms

improve this running time to O(n2·m + |Σ|).

Algorithms 2011, 4

42

Muthukrishnan and Sahinalp [7,8] consider the edit distance with block moves, deletes, copies and

reversals. They approximate this problem, called also the nearest neighbors problem, to a factor of

O(log(n)·(log*(n))2), using an embedding of strings into the vector space. Cormode and

Muthukrishnan [9] achieve a factor of O(log(n)·log*(n)) when considering the edit distance with

moves only. They embed the strings into the L1 vector space. Cormode, et al. [10] consider the

hamming and Levenshtein distances, and define the LZ distance, which employs block copies and

block deletions, together with the usual single character operations. Given two strings S and T, they

consider the problem of starting from an empty string and producing T using copies from S, in a

minimum number of operations. Here, copies are not allowed, and we consider the minimum number

of operations performed on S in order to produce T. Ergun et al. [11] consider the edit distance with

block moves, deletes and copies and present a polynomial time algorithm with a factor of 12

approximation to optimal.

Shapira and Storer [4] consider the standard edit distance problem augmented with block moves,

where a sequence of characters are moved from one location in the string to another with constant cost,

and present a log(n) factor approximation algorithm to optimal for a sub-family of strings (finding an

optimal solution is NP-hard [4]). The proposed greedy algorithm reduces the two given strings to

(possibly) shorter strings by replacing repeatedly a longest common substring by a new single

character. The traditional edit distance is then applied on the new strings. Chrobak et al. [12] consider

the Minimum Common String Partition (MCSP) problem, that receives two input strings and tries to

minimize the number of partitions of the strings into the same collection of substrings. They refer to

several versions of this problem by limiting the number of times each character can occur in both input

strings, and study the approximation of a greedy algorithm for MCSP that at each step extracts a

longest common substring from the given strings. In the case of 2-MCSP, where each character can

occur at most twice in each input string, the approximation of 3 is shown. For 4-MCSP the

approximation ratio of the greedy algorithm is at least Ω(log n), and for the general problem they

present an approximation ratio between Ω(n0.43) and O(n0.69). An implication of this bound is that the

log(n)-approximation greedy algorithm presented in Shapira and Storer [4] for a sub-family of strings

cannot be extended to provide a log(n)-approximation for all inputs. Shafrir and Kaplan [13] improve

the lower bound on the approximation guarantee of the greedy algorithm for MCSP to Ω(n0.46).

Ann et al. [6] present polynomial-time optimization algorithms for the edit distance problem which

involves character insertions, character deletions, block copies and block deletions, when some

restrictions are applied, such as allowing only left to right non recursive operations to be applied on the

source string in order to get the target string. They refer to different versions of edit problems where

internal copies (copy of a substring of the current string), external copies (copy of a substring of the

original string), and shifted copies (copy of a shifted substring) are allowed. They also consider various

costs of the operations such as constant, linear (the cost of a block operation is proportional to the

length of the block) and nested costs (in which they allow the copied substring to be further edited).

Bafna and Pevzner [14] consider the case that S is a permutation of the integers 1 through n, and

give a 1.5 approximation algorithm for minimizing the number of moves needed to transform S into

another permutation T. The restriction that all characters are distinct makes the problem easier.

Lopresti and Tompkins [15] compare two strings by extracting collections of substrings and placing

them into the corresponding order. Tichy [16] considers block copies and looks for the minimal

Algorithms 2011, 4

43

covering set of one string with respect to another. In Hannenhalli [17], one can only swap a prefix or

suffix of one chromosome with a prefix or suffix of another.

Durand et al. [18] consider the best alignment. There are several types of two-sequence alignments.

The global alignment is the traditional edit-distance, where the goal is to match the entire sequence.

The local alignment is to see whether a substring in one sequence aligns well with a substring in the

other, thus, deleting prefixes or suffixes is free. The semi-global alignment is when the input is

constructed from two sequences, one short and one long, and the goal is to find whether the short one

is a part of the long one. These variations are addressed by Smith and Waterman [19]. In the alignment

problem, the term gap is used instead of a block deletion in the edit distance problem. A gap is a

maximal consecutive run of spaces in a single string of a given alignment. The affine gap penalty is

when k consecutive deletions are not simply the cost of k individual single character deletions. The

penalty combines the cost of opening a gap and k times the cost of extending a gap. Introduction of

gaps into sequence alignments allows the alignment to be extended into regions where one sequence

may have lost or gained sequence characters not found in the other. The gap penalty is used to help

decide whether or not to accept a gap or insertion in an alignment when it is possible to achieve a good

alignment at some other point in the sequence. When aligning two sequences it is often required to

insert gaps in them in order to optimize the alignment.

The classical algorithm for computing the similarity between two sequences uses a dynamic

programming matrix, and compares two strings of size n in O(n2) time. Masek and Paterson [2], apply

the “Four-Russians technique” and reduce the running-time to O(n2/log n) by exploiting repetitions in

the strings. A drawback of the Masek and Paterson algorithm is that it can only be applied when the

given scoring function is rational. Crochemore et al. [3] also present a O(n2/log n) time algorithm by

dividing the dynamic programming matrix into variable sized blocks, as induced by

Lempel-Ziv-Welch parsing of both strings. For most texts, the time complexity is O(hn2/log n) where

h ≤ 1 is the entropy of the text. Hermelin et al. [20] generalize the idea of applying edit distance on the

compressed forms of the strings and present a generic platform for popular compression schemes such

as the LZ-family, Run-Length Encoding, Byte-Pair Encoding and dictionary methods. In this paper we

use basic dynamic programming which can be adapted to a O(n2/log n) processing time by applying

compression techniques to the underlying strings.

3. Definitions of the Generalized Operations

We now give a formal description of the operations involved: insert, delete and move, all of which

are with respect to strings of characters over a finite alphabet.
Let 1 nS S S :

Insert: For a string S and a position 1 p n , the operation ,insert p inserts the character σ to

the pth position of S. After performing this operation, S becomes 1 1p p nS S S S .

Delete: The operation ,delete p deletes , 1 1 n p , consecutive characters which

occur at positions ,..., 1p p of S, i.e., S becomes 1 1p p nS S S S .

Move: Given two distinct positions 1 21 p p n and a length , 1 2, ,move p p moves the string

at position 1p of length to position 2p . After performing the move operation, if 1 2p p and

Algorithms 2011, 4

44

2 1p p then S becomes
1 1 2 1 1 21 1 1 1p p p p p p nS S S S S S S S ; and if 2 1p p and

11 1n p , S becomes:
2 1 1 2 1 11 1 1 1p p p p p p nS S S S S S S S

.

When 1 we refer to the operations as delete-character, and move-character, and when 1 we

refer to the operations as block-deletion, and block-move Alternatively, we sometimes write

 1 2, / , ,delete str p move str p p , where str specifies the string which is deleted or moved, rather than

its length. We even use /delete move str when the indices are clear.

4. Edit Distance with Block Moves, Block Deletions, Character Insertions

In this section we first note that finding the minimum edit-distance to transform S to T using

character insertions, block deletions and block moves is NP-complete. Second, we introduce the

notation of recursive moves and recursive-moves-deletes, and simplify the problem of finding an

approximation algorithm by showing that eliminating recursive-moves-deletes cannot change the edit

distance by more than a constant factor.

4.1. NP-Completeness

We first prove the NP-completeness of edit distance with block moves, block deletions, and

character insertions.

Theorem 1. Given two strings S and T, and a positive integer l, performing only the three unit-cost

operations character insertions, block deletions, and block moves on S, it is NP-complete to determine

if S can be converted to T with cost ≤ l.

Proof: Since a non-deterministic algorithm need only guess the operations and check in polynomial

time that S is converted to T with cost ≤ l, the problem is in NP. Shapira and Storer [4] show that the

edit distance problem with only block moves is NP complete. In other words: suppose you are given a

string S', a permutation T' of S' and a positive integer k. Determining whether S' can be converted to T'

in a cost less than or equal to k, performing only move operations, is NP complete. We employ a

transformation from the edit distance problem with only moves. Given an instance S', T' (which is a

permutation of the characters in S'), and an integer k, of the edit distance problem with only moves,

let: S = S'; T = T'; l = k. As T' is a permutation of the characters of S', every delete character operation

will require an insert of the characters. This means that character insertions and deletions (especially

block deletions) are useless in the sense of minimizing the edit-distance. Therefore, S can be converted

to T with a cost ≤ l using character inserts, block moves and block deletes, if and only if S' can be

converted to T' with cost ≤ k using only moves.

Using the notation above, Theorem 1 uses a reduction from the edit distance problem with no

insertions, with no deletions, and with block moves, <-/-/b>, to show that <c/b/b> is also NP-hard. The

same proof can be applied to 7 more versions of the edit distance problem proving they are also NP

Complete: <-/c/b>, <-/b/b>, <c/-/b>, <c/c/b>, <b/-/b>, <b/c/b>, and <b/b/b> (the last three allow

block insertions).

Algorithms 2011, 4

45

4.2. Non Recursive Block Moves and Deletions

Recursive operations allow one to deal with substrings that have already been dealt with, and which

do not occur consecutively in the original string. In the following, we define when moves and deletes

are considered recursive. Ukkonen [5] gives a similar definition to non recursive block operations

called “restricted editing sequences”.

Definition: A sequence of operations applied to a string is recursive with respect to move operations if

it contains an operation which moves a substring whose characters do not occur consecutively in the

original string. For example, if S is the string abcde and the character b is moved to obtain the string

T = acdbe, then moving the substring dbe or ac are both considered as recursive moves.

Definition: A sequence of operations including character insertions, block moves, and block deletions

is recursive with respect to move and delete operations if it moves or deletes a substring whose

characters do not occur consecutively in the original string.

For example, if S is the string abcde and the character b is moved to obtain the string T = acdbe,

then deleting the substring dbe or ac are both recursive with respect to move and delete operations.

Theorem 2. If there is a sequence of k recursive move operations that convert S into T, then there is a

non-recursive sequence of no more than 3k moves that convert S to T.

Proof: By induction on k.

Base case: k = 1. One move operation converts S to T. Since this move is not recursive, S is

converted to T in less than three non-recursive operations.

Inductive hypothesis: Assume that for every recursive sequence of l < k moves that convert S to T,

there is a conversion of S to T of a non-recursive sequence of no more than 3l moves. We prove that

this holds for l = k.

Induction step: Consider any recursive sequence of k moves that convert S to T. Remove the last

move of this sequence. Denote the obtained string by T . There is a recursive sequence of k − 1 moves

that convert S to T . Using the inductive hypothesis, a non-recursive sequence converts S to T by not

more than 3(k − 1) operations. These 3(k − 1) operations introduce a parsing of S into r blocks

1 2{ , }rA A A , where each block Ai contains consecutive characters in S. A move operation of a block

b introduces at most two boundaries in the source location, where the substrings to the left of the left

boundary, and the substring to the right of the right boundary can be either blocks that were originally

there, or blocks that were transferred to that location by previous operations. A move operation of b
also introduces a boundary in its destination. Therefore not all substrings iA are necessarily substrings

that were moved. This way a move operation introduces 3 additional blocks, two in its source location
and one in its destination. More formally, b is of the form 2 1

1 1 1i i i j jA A A A A , where Ai1
2 is a suffix of

the block Ai1 and Aj1
1 is a prefix of Aj1 . The symbols Ai1

1 and Aj1
2 will denote the remaining

prefix and suffix of the corresponding blocks, respectively. Every block Ax , i x j , which was

already moved by non-recursive moves, could be moved straight to its final location. If blocks Ai1
and Aj1 were moved within the first 3(k − 1) operations, then when non-recursive operations are

considered, only the partial blocks Ai1
1 and Aj1

2 are moved. However, the blocks Ai1
2 and Aj1

1 must

move to their final location, which adds a cost of two to the number of operations by splitting the

Algorithms 2011, 4

46

original blocks Ai1 and Aj1 (if Ai1 and Aj1 were not moved in previous operation, this additional

cost is left for future cost). We show that the inner blocks { , }i jA A of b, which were not moved

within the first 3(k − 1) operations, are moved to their final location with no additional cost. Blocks

which were never moved, are located in different blocks since there was a block, which was moved in

between them or from between them, in one of the previous operations. In the case a block was moved

out from between two blocks, this operation was “charged” by three non recursive moves, instead of

one (since this is a non recursive move to start with), so these blocks are now moved for free. In case a

block was moved in between two blocks that were never moved, without loss of generality, the block

to the left of the border can be moved for free using the cost that was charged for this operation in its

destination. By assigning the charge for each border to the block to its left, we are left with at most a

single block for which the block to its right was moved out (otherwise it is a block to the left of a

border of a block which was moved in, and is moved for free) or this block is one of the ends of b. In

any of these cases the block can be moved for free using the charge that was applied to a block move

source. Using the induction hypothesis, we have “charged” this move by three non recursive moves

instead of one. Therefore, we can move the two adjacent blocks without charging it again. The worst

case uses three more operations in order to convert T to T. Adding it to the number of operations

executed in order to convert S into T we get 3 + 3(k − 1) = 3k operations.

Theorem 3: The bound of Theorem 2 is tight.

Proof: The following example builds two strings S and T of n substrings of the form Sn and nT

respectively, where Sn and nT are defined recursively, such that the non-recursive edit distance of S

and T is three times the recursive edit distance of these strings. For simplicity, because each character
will not occur more than once in both S and T , for this example we use the notation ()move s for

moving a substring s of S , without stating its source and destination locations.

First consider the alphabet ∑ = {L0, L1, M0, R0}. Let S1 = L1L0M0R0 and T1 = L1M0L0R0. Suppose S1

is a substring of S, not aligned with the substring T1 of T , and therefore must be moved. The recursive

edit distance is 2 (move(M0) and move(L1M0L0R0)) and the non-recursive edit distance is 4 (move(L1),

move(M0), move(L0) and move(R0)).

In general, we use the following definition:

W0 = L0M0R0 and Wi = LiMiRiWi−1

S0 = L0 and Si = LiWi−1

V0 = M0L0R0 and Vi = MiLiRiVi−1

T0 = L0 and Ti = LiVi−1

We get that

Sn = LnWn−1 = LnLn–1Mn−1Rn–1L0M0R0

Tn = LnVn−1 = LnMn−1Ln−1Rn−1M0L0R0

Using the above definition of Sn and Tn, we continue taking out a mid part of a block (thus, breaking

a continuous string into three parts), and putting it into another block, and again breaking a continuous

string. This way we add three blocks by each move operation. If Sn should be recursively moved (given

the assumption that Sn and Tn are not aligned in the entire strings S and T), these previous move

Algorithms 2011, 4

47

operations turn into recursive ones, and cannot be performed by the non-recursive sequence of moves.

A non-recursive sequence of moves must move each block separately to its final location. Since every

recursive operation adds three more blocks, the non-recursive edit distance increases by three.

The recursive edit distance of S and T (which include Sn and Tn as non aligned substrings) is n + 1

(including the move of the entire block). We have 3n blocks in addition to the one block we have

started with, which require 1 + 3n non-recursive moves. If n is unbounded,
1 3

lim 3
1n

n

n

.

We still have to define S and T so that Sn must be moved in S in order to be aligned with Tn

in T . As we would like the other parts of S not to be moved instead of the substring Sn , moving them

must cost more than moving Sn . In order to achieve this we construct 2n strings, {Sn
1Sn

2 Sn
n} and

{Tn
1Tn

n} , of the form of Sn and Tn , respectively. The strings Sn
i and Tn

i are constructed from the

same characters but their characters differ from any other pair Sn
j and Tn

j (i j) . Let 1 2 n
n n nS S S S

and 1 1n n
n n nT T T T . As the blocks in T occur in the reversed order of the blocks of S , at least n 1

blocks should be moved. The recursive edit distance of S and T is (n 1) (n 1) n , as we should

use n operations in each of the n – 1 blocks before or after they have moved, and n more operations in
the block which stands still. The non-recursive edit distance of S and T is (n 1) (1 3n) n , as it

should perform 1 3n operations for the n − 1 blocks which are moved, and exactly the same

operations of the recursive algorithm in the block that stays still. If n goes to infinity then we obtain the

factor of three by:

1 3 1
lim 3

1 1n

n n n

n n n

.

Theorem 4. A recursive sequence of k block moves and block deletes that converts S to T , can be

implemented by a non recursive sequence of no more than 3k non recursive operations.

Proof: Given a sequence of k recursive block moves and block deletes that converts S to T , we

construct a sequence of k recursive block moves that converts S to T in the following way: For

simplicity let $ be a character which does not occur in the alphabet of S and T . Define S S$ and

T to be the string starting with T$ as its prefix followed by the concatenation of all substrings that

were deleted in the original recursive sequence, in the exact order of block deletions. We use the same

sequence of recursive operations, but instead of performing a block deletion we move the block to the

end of the generated string. At the end of this process we will obtain T using only recursive moves.

We now use Theorem 3 that the recursive sequence of k moves that converts S to T can be

implemented by a non recursive sequence, A , of no more than 3k non recursive operations. We use

A to construct a non-recursive sequence of moves and deletes that convert S to T . We denote by T

the suffix of T that remains after eliminating its prefix $T , i.e., T T$ T . Note that T is obtained

by moving substrings that are deleted from S (and therefore from S), and all characters that moved to

T remain there until the end of the process. We use one block deletion for each of these special block

moves, thus the number of operations remains the same. Starting from a non-recursive sequence of

block moves implies a non-recursive sequence of block moves and block deletes with the exact

number of operations 3k.

Algorithms 2011, 4

48

5. Edit Distance with Block Deletions

In the previous section we have shown that the problem of finding the edit-distance with block

moves and block deletions is NP-complete. In this section we consider several variations of the edit

distance problem with block deletions without block moves and show that for the following set of

operations, the problem can be solved optimally, in polynomial time, using variations of the traditional

dynamic programming method:

Block deletions.

Block deletions and character insertions.

Block deletions, character insertions, and character moves.

In the last case we prove that we can apply the dynamic programming algorithm for block

deletions and character insertions and modify the way we calculate the cost.

5.1. Block Deletions with or without Character Insertions

Given two strings S and T, where T is a sub-sequence of S (i.e., it is possible to delete characters

from S to obtain T), we are interested in the smallest integer k such that T is partitioned into k blocks

(substrings), and the blocks of T are substrings of S, and occur in S in the same order as in T. If k = 1

this is the traditional pattern matching problem, which returns whether the pattern T occurs in S or not.

Consider for example S = bcxyabczfdlmefij and T = abcdef. In this case there are three blocks in S

occurring in the same order as in T. Define S' = S, where $ is a new character not occurring in S nor

T. Finding the minimum number of blocks of S so that the blocks of T occur in S in the same order as

in T is equivalent to finding the minimum number of block deletions minus 1, performed on S' so that

S' is identical to T. The difference of 1 in the cost is since every block deletion of S' can be matched

with the corresponding preceding block of S, except for the first block of S'.

The block deletion problem can be solved in polynomial time using dynamic programming.

Allowing character insertions in addition to block deletions requires small changes in the algorithm.
Let o be a block deletion which deletes a substring that ends with a character c, |co denotes the

substring o after truncating its last character. If o does not end with c, |co is equal to o. The following

lemma refers to the case of block deletions only, and implies a recurrence formula which is the basis of

the dynamic programming algorithm presented in Algorithm 2.

Lemma 1: Let S = s1sn and T = t1tm be two strings of lengths n and m, respectively, and let

 1, kO o o be an optimal sequence of block deletions which converts S into T. If ko ends with the

character sn, then 1, |
nk sO o o is an optimal sequence of block deletions which converts s1sn−1 into

T. Otherwise, O is an optimal sequence of block deletions which converts s1sn−1 into t1tm−1.

Proof:
(1) Assume that ko ends with the character sn:

 If ko deletes sn alone (being ko a character deletion) then 1, 1kO o o is an optimal

sequence of block deletions which converts S = s1sn−1 into T. Otherwise, if O is not
optimal, let 1,o o be an optimal sequence of block deletions converting s1sn−1 into T

Algorithms 2011, 4

49

with cost less than O . Define 1, , kO o o o
 . The sequence O of block deletions is a

sequence of block deletions which converts S into T with cost less than O, which

contradicts the optimality of O.
 If ko deletes sn, and sn is deleted within a block deletion of length greater than 1, the

block deletion charge is applied to some previous character, and sn is deleted for free.
Thus, shortening ko to not include sn is done within the same cost, and 1, |

nk sO o o

is an optimal sequence of block deletions which converts s1sn−1 into T. Otherwise, if
O is not optimal, let 1,o o be an optimal sequence of block deletions converting

s1sn−1 into T with cost less than O (meaning k). Let i be the minimum index
1 i so that the block deletion io deletes some character which is also deleted by ko .
Define ˆio to be a block deletion of the continues substring starting with characters

deleted by io concatenated to the characters deleted by ko , and let 1, 1 ˆ,i iO o o o
 . The

sequence O of block deletions includes i k block deletions, which converts S into

T, contradicting the optimality of O.
(2) Assume that ko does not end with the character sn:

 In this case sn is equal to tm, and O is also an optimal sequence of block deletions which
converts s1sn−1 into t1tm−1. Otherwise, if O is not optimal, let 1,O o o

 be an

optimal sequence of block deletions which converts s1sn−1 into t1tm−1 with cost less

than O. ThenO is a sequence of block deletions which converts S into T with cost less

than O, which contradicts the optimality of O.

The last lemma implies the following recurrence formula for the edit distance problem with block

deletions <-,b,->,

1 1 1 1
1 1

1 1 1

1 1 1

1 0

0

, , , ,, , , min
, , ,

, , ,

i j
i j

i j

i j

i j i j

if j

if i

ed b s s t ted b s s t t if s t
ed b s s t t BD

ed b s s t t BD if s t

where BD is a block deletion cost which is 1 for the character that opens the block and 0 otherwise.

The dynamic programming algorithm is given in Algorithm 2. It uses a table A[i,j], where rows

correspond to S and columns correspond to T. An assistant function, During_Deletion, is given in

Algorithm 1. It receives the current cell in the dynamic programming table, A, indexed by (i,j) and

returns whether the cheapest sequence of operations converting s1si into t1tj ends with a block

deletion, i.e., whether A[i,j] = A[i − 1,j] + 1 (si starts a block deletion) or A[i,j] = A[i − 1,j] (si is an

internal character of a block deletion). In the later case it should be verified that there exists an index
0 < i0 < i such that

0i
s starts a block deletion, i.e., such that A[i0,j] = A[i − 1,j] + 1. If si+1 follows a

block deletion, there is no need in recharging a cost of a block deletion if si+1 should be deleted too, it
could be deleted “for free” with the cost applied to the first character,

0i
s , of the block deletion. The

Algorithms 2011, 4

50

Delete function presented in Algorithm 2 is given two strings S and T of lengths n and m, respectively,

and returns the minimum number of block deletions applied to S in order to convert it into T. If both

strings are empty there is no cost to convert S into T. If only S is empty, the cost is infinity, since block

deletions are applied to S. If T is empty, the cost is 1 since a single block deletion of the entire string S

converts it into T.

Algorithm 1. During_Deletion function—returns whether cell (i,j) is involved in a block
deletion operation.

function During_Deletion(i,j) {

while (i > 1) and (A[i,j] == A[i − 1,j])

 i--;

return ((i ≠ 0) and (A[i,j] == A[i − 1,j] + 1))
 }

After the dynamic programming table is initialized, the cost of converting s1si into t1tj is

calculated and stored in cell A[i,j] of the dynamic programming table. If the characters si and tj are

identical, the cost of converting s1si into t1tj is equal to converting s1si−1 into t1tj−1, unless it is

cheaper to apply a block deletion to the character si. The character si can be deleted among other

characters, and the cost of a block deletion is constant, no matter how many characters are deleted.

Algorithm 2. Edit distance with block deletion.

function Delete(S,T) {

A[0,0] 0

for 1 ≤ i ≤ n do A[i,0] 1

for 1 ≤ j ≤ m do A[0,j]

for i = 1 to n do

for j = 1 to m do

if si = tj then {

if during_deletion(i − 1,j)

 then A[i,j] min(A[i − 1,j − 1], A[i − 1,j])

else A[i,j] min(A[i − 1,j − 1], A[i − 1,j] + 1)

}

else {

if (during_deletion(i − 1,j))

 then A[i,j] A[i − 1,j]

else A[i,j] A[i − 1,j] + 1

}

return A[n,m]
}

Two cases are distinguished, the case for which its previous character was deleted, and the case its

previous character was not deleted. In the former case there is no new charge for deleting si since the

Algorithms 2011, 4

51

block deletion is charged by the first character of the block. In this case A[i,j] has the same cost as

A[i − 1,j]. Otherwise, it is worthwhile starting a block deletion with si, charging the first character of

the block. In this case A[i,j] is equal to A[i − 1,j] + 1 (we assume that ∞ + 1 = ∞). If the characters si

and tj are not identical, si should be deleted. In order to determine the cost, it has to be checked if si

shall be the first character of a block deletion or not, as done previously. Since the during_deletion

function runs in linear time in the size of S, the total running time of the edit distance with block

deletion algorithm is O(n2 m).

Running Algorithm 2 on the above example, S = bcxyabczfdlmefij and T = abcdef, produces

Figure 1a. The optimal path from the bottom right cell (corresponding to S and T) to the upper left cell

(corresponding to S and T) is illustrated by gray colored cells. The number of block deletions

is 4, and the deleted blocks are {bcxy,zf,lm,ij}.

Figure 1. Edit distance Example: (a) with block deletion for S = bcxyabczfdlmefij and

T = abcdef; (b) with character insertions and block deletion for S = bcxyabczfdlmefij and

T = abcdefg.

(a) (b)

The block deletion problem is now extended to include character insertions, and requires small

modifications to the algorithm presented in Algorithm 2. An optimal solution to the edit distance

problem of character insertions and block deletions will not insert a character c into S followed by a

block deletion that includes c, since the insertion of c is unnecessary. Thus, block deletions and

character insertions can be ordered so that all insertions follow block deletions. The following lemma

refers to the case of character insertions and block deletions, but does not separate them, and considers

both operations in every step, so that the two dimension table is traversed only once. The lemma is

followed by a recurrence formula which is the basis of the polynomial time dynamic programming

algorithm presented in Algorithm 3.

Algorithms 2011, 4

52

Lemma 2:
Let S = s1sn and T = t1tm be two strings of lengths n and m, respectively, and let 1, kO o o be

an optimal sequence of block deletions and character insertions which converts S into T.
 If ko is a character insertion: then if it is an insert of the character tm then 1, 1kO o o is an

optimal sequence of character insertions and block deletions which converts S into t1 tm−1.
Otherwise, if ko is a character insertion of a character different than tm, then O is an optimal

sequence of block deletions and character insertions which converts s1sn−1 into t1tm−1.
 If ko is a block deletion that ends with the character sn, then 1, |

nk sO o o is an optimal

sequence of character insertions and block deletions which converts s1sn−1 into T. Otherwise,

O is an optimal sequence of character insertions and block deletions which converts s1sn−1

into t1tm−1.

Proof:
(1) If ko is a block deletion, the proof is constructed the same as the proof of Lemma 1, only that

the set of operations 1, 1ko o is an optimal sequence of block deletions and

character insertions.
(2) If ko is a character insertion:

 If ko is a character insertion of tm then 1, 1kO o o is an optimal sequence of character

insertions and block deletions which converts S into t1tm−1. Otherwise, if O is not
optimal, let 1,o o be an optimal sequence of block deletions and character insertions

converting s1sn−1 into T with cost less thanO .= Define 1, , kO o o o
 . The sequence

O of block deletions and character insertions is a sequence which converts S into T with

cost less than O, which contradicts the optimality of O.
 If ko is a character insertion of a character different than tm, and using the fact that there

is no block deletion that involves sn (otherwise it was treated in case 1), then sn is equal

to tm and O is an optimal sequence of block deletions and character insertions which
converts s1sn−1 into t1tm−1. Otherwise, if O is not optimal, let 1,O o o

 be an

optimal sequence of block deletions which converts s1sn−1 into t1tm−1 with cost less

than O. ThenO is a sequence of block deletions which converts S into T with cost less

than O, which contradicts the optimality of O.

The last lemma implies the following recurrence formula for the edit distance problem with block

deletions and character insertions, <c,b,->,

Algorithms 2011, 4

53

1 1 1 1

1 1 1
1 1

1 1 1

1 1 1

1 1 1

1 0

0

, , , ,

min , , , ,, , ,

, , , 1

, , , ,
min

, , , 1

i j

i j i j
i j

i j

i j

i j

i j

if j

j if i

ed c b s s t t

ed c b s s t t BD if s ted c b s s t t

ed c b s s t t

ed c b s s t t BD
if s t

ed c b s s t t

where BD is a block deletion cost and is applied only for the character that opens the block.

Algorithm 3. Edit Distance with Block Deletions and Character Insertion.

function Delete_Insert(S,T) {

A[0,0] 0

for 1 ≤ i ≤ n do A[i,0] 1

for 1 ≤ j ≤ m do A[0,j] j

for i = 1 to n do

for j = 1 to m do

if si = tj then {

if during_deletion(i − 1,j)

then A[i,j] min(A[i − 1,j − 1], A[i − 1,j],

A[i,j − 1] + 1)

else A[i,j] min(A[i − 1,j–1], A[i − 1,j] + 1,

A[i,j − 1] + 1)

}

else {

if (during_deletion(i − 1,j))

then A[i,j] min(A[i − 1,j], A[i,j − 1] + 1)

else A[i,j] min(A[i − 1,j] + 1, A[i, j − 1] + 1)

}

return A[n,m]
}

While the algorithm of Algorithm 2 deals only with block deletions, the one in Algorithm 3 also

permits character insertions to be applied to S. The algorithm is similar to the previous one, but with

the following difference. In each stage it also allows inserting tj right after s1si, if it makes the cost

cheaper than deleting si within a block deletion, or having the same cost of converting s1si−1 to t1tj−1

in case the characters are equal. The running time of the algorithm is O(n2 m) since during_deletion

is linear.

Running Algorithm 3 on the example, S = bcxyabczfdlmefij and T = abcdefg, produces the table

presented in Figure 1b. The number of character insertions and block deletions is 5, and corresponds to

deleting the blocks {bcxy,zf,lm,ij}and inserting character “g”.

Algorithms 2011, 4

54

5.2. Block Deletions with Character Moves

We now consider the minimum number of block deletions, character insertions and character moves

applied to S in order to attain T. We use the dynamic programming algorithm introduced in the

previous section taking into account character moves. A character move is an insert and a delete of the

same character. Therefore, when performing dynamic programming, we try to reduce the cost by

exchanging insertions and deletions with moves. We first consider the case of character deletions,

character insertions, and character moves for general costs. Replacing the character deletion with block

deletions is considered for uniform costs and is solved using dynamic programming.

Shapira and Storer [4] showed that in the case of uniform costs of character insertions, character

deletions and character moves, the minimal edit distance occurs in any optimal path transforming S to

T of the traditional edit distance. We now generalize this to all cases. We use the following notations:

P and P denote paths in a constructed dynamic table, starting at the left most upper cell and ending

at the right lower cell (the final cell). I
P / D

P

 denote the number of character insertions and character

deletions of , when converting S into T in path P , and c(x) denotes the cost of operation x ,

where x is either an insert character or a delete character or a move character. The traditional edit

distance, including only character insertions and character deletions, is denoted by ed, and the edit

distance of S and T , including character moves is denoted by edm. Thus, ed P and edm P refer to

paths in the traditional and move edit distance, respectively, i.e., if path P in the model of edit

distance with moves includes both an insertion and a deletion of some character , the cost is

calculated as the cost of a move, subtracting the cost of a delete and an insert.

Fact: For any two paths P and P and every ,

 I
P D

P I
P D

P (1)

The proof appears in Shapira and Storer [4], and is included here for completeness.

Proof: Denote by Sn and Tn the number of appearances of a character σ in the strings S and T

respectively. For any path P which converts S into T, | |P P S TI D n n .

The following lemma only considers the edit distance problem with character insertions, character

deletions and character moves. Character moves are irrelevant unless the cost of a move is cheaper

than the cost of a character insert and the cost of a character delete. Then block deletion is added to the

set of operations, and a dynamic programming algorithm is presented, which is optimal under the

assumption of unit costs.

Lemma 3. For any positive costs of character insertion, character deletion, and character move,

denoted c(insert), c(delete) and c(move) respectively, such that c(move) < c(insert) + c(delete), the

minimal edit distance including character moves can be reconstructed from every optimal path of the

traditional edit-distance.

Proof: A character move is deleting the character from its source location and inserting it again at its

destination. By splitting characters according to the number of operations performed on them in path

P, we have:

Algorithms 2011, 4

55

() ()

min() (() ()) ()

min() (() ()) ()

min() (() (

P P

P P

P PP

P P P P

I D

P P P P

I D

P P

I c insert D c deleteed

I D c insert c delete I D c insert

I D c insert c delete I D c delete

I D c insert c de

))

() ()
P P P P

P P P P

I D I D

lete

I D c insert I D c delete

 (2)

min() () ()

min() () ()

min() ()

() ()

P P

P P

P P P P

P P P P P

I D

P P P P

I D

P P

P P P P

I D I D

I D c move I D c insertedm

I D c move I D c delete

I D c move

I D c insert I D c delete

Let P and P be two paths converting S into T, such that Ped Ped . By using Equations 1 and 2

we find that:

 min(I

P D
P) (c(insert) c(delete))

 min(I

P D
P) (c(insert) c(delete))

which implies that:

 min(I

P D
P) c(move)

 min(I

P D
P) c(move)

By using Equations 1 and 3 we conclude that Pedm Pedm .

Lemma 4.

For unit costs of character insertion, block deletion, and character move, the minimal edit distance

including character moves can be reconstructed from every optimal path of the edit-distance table

constructed using the algorithm presented in Algorithm 3 of character insertions and block deletions.

Proof:
Let a . Since a cost of an insert is the same cost as a move operation, replacing an insert of a

and a deletion of a within a block deletion, by a move operation of a, has the same cost, unless a is

deleted by a character deletion. In the case of a character deletion, Lemma 3 proves that the minimal

edit distance including character moves can be reconstructed from every optimal path of the traditional

edit-distance, which is a special case of the algorithm of character insertions and block deletions.

Otherwise, since there are no changes in the costs, the minimal edit distance including character moves

Algorithms 2011, 4

56

can be reconstructed from every optimal path of the edit-distance table constructed using the algorithm

of character insertions and block deletions.

Lemma 4 can also be applied when the cost of a character move is less than the cost of a character

insert and a delete operation, and the cost of a character insertion is equal to the cost of a character

move. If there is an optimal path that leads to a cell and consists of an insert and a delete of the same

character, and none of these operations were converted into a move operation yet in the current path,

we reduce the cost of the cell (assuming that a move operation is cheaper than the cost of insertion and

deletion). To determine the final cost of the cell, we refer to the (two) characters associated with it. We

distinguish between two different cases. Consider first the case where the character is deleted among

other characters, and the same character is inserted within the same path. In this case it is not worth

replacing this character by a character move, since the cost of an insert character is less than the cost of

a move character together with the cost of a block deletion (assuming the cost of a block deletion is

positive). The reason is that when a character is deleted among other characters within a block

deletion, it is not charged an additional cost for this deletion, since all characters are deleted in a single

operation. However, when converting the deletion of this character into a move operation, we must

partition the deleted block into two sub-blocks while adding another block deletion, unless it occurs at

one of the block ends. In case the character is not at one of the block ends, this additional charge

makes this case more expensive than the one without moves in the case where a character insertion

operation is cheaper than a character move and a block deletion. In case the character is deleted at one

of the block ends, shortening the block deletion to not include that character does not change the cost

using the assumption that the cost of a character insert is equal to the cost of a character move. The

situation is different when converting a character deletion and character insertion (of the same

character), both performed in the same path, to a move operation, when this character was deleted

alone. The former case of a character deletion we should subtract the cost of an insert and a delete, and

add the cost of a move to the cost of the current cell, since we have charged it while deleting it and

while inserting it, but need to charge it for the move. This is true when a cost of a move is less than a

cost of an insert and a delete. For simplicity, the algorithm presented in Algorithm 4 is given for the

case of uniform costs, but can be easily adapted to the case the above assumptions on the costs

are valid.

Using the reasoning above regarding the conversion of insert and delete character into a move

character, only in the case that the character was not deleted within a block deletion, the optimal

algorithm for the edit distance problem with block deletions, character insertions, and character moves

first computes the edit distance with character insertions and block deletions presented in Algorithm 3,

and then chooses any optimal path in the constructed table, and reduces its final cost by exchanging the

cost of an insert and a delete of the same character by the cost of a move. The following algorithm

shows the way to traverse the dynamic programming table constructed by the Delete-Insert algorithm,

based on Lemma 4. It uses two associative arrays Insert and Delete, for storing the information

gathered during traversal. For simplicity the algorithm only outputs the operations for converting S into

T. By storing the indices of the characters, more precise information can be output, such as the source

and destination locations for a move operation. After applying the Delete-Insert algorithm of

Algorithm 3 and constructing a dynamic programming table, A, the algorithm traverses A starting with

cell A[n,m], and ending at cell A[0,0]. At each cell the algorithm reconstructs the optimal operation that

Algorithms 2011, 4

57

led to that cell. In case the cell was determined from the cell to its left, it indicates a character insertion

of tj, and this information is saved in the Insert table in the location for tj. In case the cell was

determined from the cell above, it indicates a block deletion of si. The table is checked to see whether

this character is deleted alone. If so, this information is saved in the Delete table in the location for si.

Otherwise, a block deletion (of at least two characters) is identified and output. Once cell A[0,0] is

reached, the information stored in the Delete and Insert tables is retrieved, and the number of character

insertions, character deletions and character moves is computed and output. The Delete-Insert function

runs in time O(n2·m), Traversing the dynamic programming table takes O(n·m), therefore, the total

running time is O(n2·m + |Σ|), where Σ is the alphabet.

Algorithm 4. Edit Distance with Block Deletions, Character Insertion and Character Moves.

function Delete_Insert_Move(S, T) {
ADelete_Insert(S, T)

for 1 ≤ i ≤ |Σ| do

Insert[si] 0

Delete[si] 0

i n, j m

while (i > 0) or (j > 0){

if si = tj and A[i,j] A[i − 1,j − 1]

 i--, j--

// character insertion of tj

if A[i,j] == A[i,j − 1] + 1

 Insert[tj]++

j--

// character deletion of si

else if A[i,j] = A[i − 1,j] + 1 and (i = n or A[i + 1,j]≠A[i,j])

 Delete [si]++

 i--

 else // block deletion

 output si is deleted within a block deletion

}

for 1 ≤ i ≤ |Σ| do {

 m Insert[si] − Delete[si]

output si is moved |m| times

if(m > 0)

output si is inserted Insert[si] − m times

 else

output si is deleted Delete[si] + m times

 }

}
}

Algorithms 2011, 4

58

Lemma 5:

The algorithm presented in Algorithm 4 produces an optimal solution for the edit distance problem

with character insertions, block deletions and character moves.

Proof:

Assume, by contradiction that the algorithm presented in Algorithm 4 is not optimal, and let

 1, kO o o be an optimal sequence of block deletions, character insertions and character moves

(<c,b,c>), which converts S into T. We define 1,O o o as follows: if io is a character insertion or a

block deletion then i io o . Otherwise, io , which is a move of a character a, is replaced by two

operations 1
io for inserting the character a, and 2

io for deleting the character a. Obviously, the

operations of O convert S into T. From the fact above, any sequence of operations which convert S

into T, has the same difference between the number of its insertions and the number of its deletions for

every character . Formally, , , , ,O O b c b cI D I D
 , where OI

 and OD
 stand for the

number of insertions and deletions of in O , and , ,b cI
 and , ,b cD

 denote the number of insertions

and deletions of an optimal conversion of S into T using only character insertions and block deletions

(e.g., an output of Algorithm 3).

If for all ,
, ,O b cI I

 then it applies that , ,O b cD D
 for all . Thus, the algorithm

presented in Algorithm 4 gives the same cost of the optimal sequence of operations (converting 1
io and

2
io back into a move character io) and it is optimal, which contradicts our assumption. Therefore, there

exist a character in Σ such that,
, ,O b cI I

 . We show that there exists a character for which
, ,O b cI I

 . Otherwise, if for all ,
, ,O b cI I

 , then it applies that , ,O b cD D
 which

contradicts the optimality of <b,c,-> (Lemma 2).

Let be such character in for which , ,O b cI I
 , thus , ,O b cD D

 . We divide the deletion

operations in O into two groups 1OD
 and 2OD

 as follows. If io O is a block deletion, and is

deleted alone, io belongs to 1OD
 , otherwise, if occurs within io , io belongs to 2OD

 . Obviously,
1 2O O OD D D
 . We now construct a third sequence of operationsO for converting S into T, which

uses character insertions, block deletions and character moves. O includes the same operations as O

except those operations where is involved. Instead, the operations applied to are replaced by

 , , , ,min ,b c b cI D
 character moves of from the location where it is deleted to the location where

it is inserted. Thus min ,O OI D
 move operations are replaced by , , , ,min ,b c b cI D

 operations.

Since , ,O b cI I
 and , ,O b cD D

 , , , , ,min , min ,b c b c O OI D I D
 and O contradicts the

optimality of O and the algorithm presented in Algorithm 4 is optimal.

Figure 2 presents the dynamic table constructed, after applying the algorithm of Algorithm 4 of edit

distance with unit cost operations (insert, delete, and move) on the strings S = abcbcbcabcabcaa and

T = bcabcabcyabca. The light and dark gray cells represent an optimal path. The light gray cells

represent an insert (vertical) and a delete (horizontal) of a character a, so the final cost for the edit

distance including character moves is 4, which is block deletion of abc, character insertion of a,

character insertion of y and a character deletion of a, reducing the cost to 3. The character insert and

character delete can be replaced by a character move of a. Notice that another more expensive option is

Algorithms 2011, 4

59

replacing the insert character of a and shortening the block deletion to only delete bc by a move

operation of a, but it is not optimal.

Figure 2. Dynamic Table for the Edit Distance of Block Deletions and Character Moves

for the strings S = abcbcbcabcabcaa and T = bcabcabcyabca.

6. Conclusions

We have shown that the problem of finding the edit-distance considering only block deletion is

solved in polynomial time using dynamic programming, and the addition of insert character requires

small changes in the algorithm. Adding character moves is solved using dynamic programming, and

traversing any optimal path in order to reduce the cost. However, adding block moves to the set of

operations, changes the problem to be NP-complete, and can be reduced to the problem of

non-recursive block moves and block deletions within a constant factor. An interesting open question

is whether the problem remains NP-complete when block sizes are restricted in some fashion.

References

1. Gusfield. D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology; Press Syndicate of the University of Cambridge: New York, NY, USA, 2007.

2. Masek, W.J.; Paterson, M.S. A Faster Algorithm for Computing String Edit Distances. J. Comput.

Syst. Sci. Int. 1980, 20, 18–31.

3. Crochemore, M.; Landau, G.M.; Ziv-ukelson, M. A sub-quadratic sequence alignment algorithm

for unrestricted cost matrices. SIAM J.Comput. 2003, 32, 1654–1673.

4. Shapira, D.; Storer, J.A. Edit Distance with Move Operations. J. Discrete Algorithms 2007, 5,

380–392.

5. Ukkonen, E. Algorithms for approximate string matching. Inf. Control 1985, 64, 100–118.

6. Ann, Y.; Peng, L. Efficient algorithms for the block-edit problems. Inf. Comput. 2010, 208,

221–229.

Algorithms 2011, 4

60

7. Muthukrishnan, S.; Sahinalp, S.C. Approximate Nearest Neighbors and Sequence Comparison

with Block Operations. In Proceeding of the Thirty-Second Annual ACM Symposium on Theory of

Computing; ACM Press: New York, NY, USA, 2000; pp. 416–424.

8. Muthukrishnan, S.; Sahinalp, S.C. Simple and Practical Sequence Nearest Neighbors with Block

Operations. Springer Lect. Notes Comput. Sci. 2002, 2373, 262–278.

9. Cormode, G.; Muthukrishnan S. The String Edit Distance Matching Problem with Moves. ACM

Trans. Algorithms 2007, 3, doi:10.1145/1186810.1186812.

10. Cormode, G.; Paterson, M.; Sahinalp S.C.; Vishkin U. Communication Complexity of Document

Exchange. Symp. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete

Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2000;

pp. 197–206.

11. Ergun, F.; Muthukrishnan, S.; Sahinalp, S.C. Comparing Sequences with Segment Rearrangements.

Lect. Notes in Comput. Sci. 2003, 2914, 183–194.

12. Chrobak, M.; Kolman, P.; Sgall, J. The Greedy Algorithm for the Minimum Common String

Partition Problem. ACM Trans. Algorithms 2004, 1, 84–95.

13. Shafrir, N.; Kaplan, H. The Greedy Algorithm for Edit Distance with Moves. Inf. Process. Lett.

2006, 1, 23–27.

14. Bafna, V.; Pevzner, P.A. Sorting by Transpositions. SIAM J. Discrete Math. 199, 11, 124–240.

15. Lopresti, D.; Tomkins, A. Block Edit Models for Approximate String Matching. Theor. Comput.

Sci. 1997, 181, 159–179.

16. Tichy, W.F. The String to String Correction Problem with Block Moves. ACM Trans. Comput.

Syst. 1984, 2, 309–321.

17. Hannenhalli, S. Polynomial-Time Algorithm for Computing Translocation Distance between

Genomes. Discrete Appl. Math. 1996, 71, 137–151.

18. Durand, D.; Farach, M.; Ravi, R.; Singh, M. A Short Course in Computational Molecular

Biology; DIMACS Technical Report 97-63; Center for Discrete Mathematics & Theoretical

Computer Science: Piscataway, NJ, USA, 1997.

19. Smith, T.F.; Waterman, M.S. Identification of Common Molecular Sequences. J. Mol. Biol. 1981,

147, 195–197.

20. Hermelin, D.; Landau, G.M.; Landau, S.; Weimann, O. A Unified Algorithm for Accelerating

Edit-Distance Computation via Text-Compression. Symp. Theor. Aspects Comput. Sci. 2009 2009,

529–540.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

