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Abstract: We analytically investigate univariate C1 continuous cubic L1 interpolating
splines calculated by minimizing an L1 spline functional based on the second derivative
on 5-point windows. Specifically, we link geometric properties of the data points in the
windows with linearity, convexity and oscillation properties of the resulting L1 spline. These
analytical results provide the basis for a computationally efficient algorithm for calculation
of L1 splines on 5-point windows.
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1. Introduction

Shape-preserving techniques for interpolating and approximating multiscale data, that is, data with
sudden large changes in magnitude and/or spacing, are important for modeling of natural and urban
terrain, geophysical features, biological objects, robotic paths and many other irregular surfaces,



Algorithms 2010, 3 277

processes and functions. Over the past decade, a new class of univariate and bivariate splines,
namely, L1 splines, that have superior shape-preserving properties for interpolating and approximating
multiscale data has arisen ([1–21]). The L1-norm minimization principles on which L1 splines are
based result in non-differentiable convex generalized geometric programs that, so far, have been
more complex and more computationally expensive to solve than the programs by which other
variants of splines, e.g., conventional and tension splines, T-splines, etc., are solved, but the shape
preservation provided by L1 splines is significantly better than the shape preservation provided by these
alternative approaches.

L1 splines have typically been calculated by minimization of global spline functionals, that is, spline
functionals that extend over the whole range of the data to be interpolated. However, there have
been three reports in the literature of L1 splines on local windows. The first such report is in [17],
where bivariate L1 splines were calculated by a non-iterative “domain decomposition” procedure on
overlapping 80×80 windows and 40×40 subsets of these windows were pieced together to create global
surfaces. With parallel computation, the domain-decomposition procedure results in sharply reduced
computing time.

In 2007, a result for univariate L1 splines on much smaller windows arose. In [2], Auquiert, Gibaru
and Nyiri showed that, given five points on a Heaviside function with two to the left of the discontinuity
and three to the right, the L1 spline for these five points is linear over the set of three points ([2],
Proposition 9). Even though preservation of linearity is not all of what we desire in shape preservation,
it is a large part thereof. This linearity-preservation result suggests that calculation of L1 splines on
small, 5-point windows, is geometrically meaningful. An immediate generalization of Proposition 9 of
[2] is that, if, in a set of five points, three consecutive points on one end are collinear, then the L1 spline
through those three points is, except in the case of a V-shaped corner, linear. Such a result does not hold
when the five points are embedded in a larger data set and a global L1 spline functional is minimized.
The best result that can be achieved in the case of a global L1 spline functional is the following.

Theorem 1. (Theorem 2 of [7]) If four consecutive data points (xi, zi), (xi+1, zi+1), (xi+2, zi+2) and
(xi+3, zi+3) lie on a straight line, then a cubic L1 spline z(x) preserves linearity over the middle interval
[xi+1, xi+2]. If β∗

i−1 ̸= ±5
3
, then z(x) preserves linearity over the first interval [xi, xi+1]. If β∗

i+2 ̸= ±5
3
,

then z(x) preserves linearity over the last interval [xi+2, xi+3]. (Here β∗
i−1 and β∗

i+2 are components of
the optimal dual solution in [7].)

In this case, one needs four (rather than just three) consecutive collinear points and the L1 spline is
guaranteed to be linear only in the second interval (the interval between the second and the third of the
four points). The L1 spline is linear in the first and third of the three cells only if additional conditions,
ones that do not have clear geometric meaning, are fulfilled. Proposition 9 of [2] is thus a significant
improvement over Theorem 2 of [7].

Proposition 9 of [2] shows that one can preserve linearity over a larger set of points by calculating
the L1 spline using local 5-point windows rather than globally. This has a potential strategic implication,
namely, that one may be able, by replacing a global minimization problem by a set of local minimization
problems, to both further improve the shape preservation capabilities of L1 splines and at the same
time reduce the computing time because the local problems are independent of each other and can be
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solved in parallel. This is the opportunity that this paper wishes to investigate. The authors Auquiert,
Gibaru and Nyiri of [2] have followed up on their results of 2007 with an article [22] containing new
analytical results about preservation of linearity by windowed, rotation-invariant parametric L1 splines
of degrees 3 and higher. In contrast, this present paper considers linearity, convexity and oscillation for
5-point-window, rotation-dependent nonparametric cubic L1 splines.

The precise purpose of this present paper is to provide analytical results that link linearity, convexity
and oscillatory properties of the data on 5-point windows with linearity, convexity, oscillatory and
uniqueness properties of the resulting L1 spline. In each 5-point window, a local L1 spline functional
is used to determine the first derivative at the middle (or, near boundaries, other) point in this window.
After the first derivatives at all of the data points have been determined, a C1 piecewise cubic interpolant,
called the L1 spline (or “locally calculated cubic L1 spline”), is set up by Hermite interpolation in
each interval. In Section 2, we investigate analytical properties of the spline functional that link local
geometric properties of 5-point windows of the data with geometric properties of the local L1 splines
on these windows. Based on the analytical results for 5-point windows, we investigate in Section 3 the
properties of the C1 piecewise cubic interpolant that has derivatives determined by these 5-point-window
L1 splines. In Section 4, we summarize the results presented in the previous sections and describe
potential computational implications of these results.

All of the quantities in this paper are real quantities. The nodes xi, i = 0, 1, . . . , I , are a strictly
monotonic but otherwise arbitrary partition of the finite interval [x0, xI ]. Let hi = xi+1 − xi, i =

0, 1, . . . , I − 1. At each node xi, the function value zi is given, i = 0, 1, . . . , I . The slope of the line

segment connecting (xi, zi) and (xi+1, zi+1) is △zi :=
zi+1 − zi

hi

, i = 0, 1, . . . , I − 1. The L1 splines

discussed in this paper are cubic polynomials in each interval (xi, xi+1), i = 0, 1, . . . , I − 1, and are C1

continuous at the nodes. The first derivative of the spline at node xi, i = 0, 1, . . . , I , is denoted by bi (to
be determined by minimization of the L1 spline functional). We use δi to denote the slope of the chord
between neighboring points:

δi =
zi+1 − zi−1

xi+1 − xi−1

, i = 2, . . . , I − 2 (1)

We use ζ to denote the linear spline:

ζ(x) =
(xi+1 − x)zi + (x− xi)zi+1

hi

, x ∈ [xi, xi+1], i = 0, 1, . . . , I − 1 (2)

2. Analytical Properties of 5-Point-Window L1 Splines

The splines that we will consider in this paper are calculated locally as described in this paragraph.
For the interpolation problem under consideration in the present paper, the function values are given. In
the 5-point window with middle point xi, 2 ≤ i ≤ I − 2, the derivative at xi is calculated by minimizing∫ xi+2

xi−2

∣∣∣∣d2z

dx2

∣∣∣∣ dx (3)

over the finite-dimensional spline space of C1 piecewise cubic polynomials z that interpolate the data.
The free parameters in the minimization of functional (3) are the derivatives bi of the spline at the five
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nodes. The derivative at node xi that occurs at the minimum of functional (3) is denoted by b∗i . Whenever
the minimum of functional (3) is nonunique, we choose b∗i to be the scalar in the optimal set (the interval
[b li , b

u
i ]) closest to the slope δi of the chord between the neighboring points, that is, median{bui , b li , δi}.

Previously, nonuniqueness was resolved by “regularization” of the spline functional, specifically, by
adding to the spline functional (3) a sum consisting of the absolute values of various expressions
involving the derivatives at the nodes times a sufficiently small number ε (cf. [5,9,16]). The method for
resolving nonuniqueness that we use in the present paper differs from the regularization approach used
in previous L1 spline work but leads to both simpler analysis and simpler computational procedures. The
derivatives at the points x0 and x1 are determined by b∗2 which is calculated by minimizing (3) for i = 2.
Analogously, the derivatives at the points xI−1 and xI are determined by b∗I−2 which is calculated by
minimizing (3) for i = I − 2. After obtaining all of the b∗i , a C1 piecewise cubic interpolant z is set up
by Hermite interpolation

z(x) = zi + b∗i (x− xi)−
1

hi

(2b∗i + b∗i+1 − 3△zi)(x− xi)
2 +

1

h2
i

(b∗i + b∗i+1 − 2△zi)(x− xi)
3 (4)

for x ∈ (xi, xi+1), i = 0, . . . , I−1 (cf. [9]). The C1 piecewise cubic interpolant calculated in this manner
is the L1 spline (locally calculated cubic L1 spline).

In the remainder of this section, we investigate the relation between the geometry of the 5 points
in each window and the derivative at the middle point of the window. For the five points under
consideration, we use the notation (x0, z0), (x1, z1), (x2, z2), (x3, z3) and (x4, z4). For the window
with these 5 points, the objective function (3) is

E(b) =
3∑

i=0

∫ xi+1

xi

∣∣∣∣d2z

dx2

∣∣∣∣ dx =
3∑

i=0

∫ 1
2

− 1
2

|(bi+1 − bi) + 6t(bi + bi+1 − 2△zi)| dt (5)

where b denotes (b0, b1, b2, b3, b4). Each term in the summation is a function

θ(p, q) =

∫ 1
2

− 1
2

|(q − p) + 6t(p+ q)| dt (6)

that is continuously differentiable and has the properties stated in the following lemma.

Lemma 2. ([2]) θ(p, q) is convex,

θ(p, q) =

{
|q − p| if |q − p| ≥ 3|p+ q|,
3
2
|p+ q|+ (q−p)2

6|p+q| otherwise
(7)

and

(1) min
p∈R

θ(p, q) =
2(
√
10− 1)

3
|q| with p =

2−
√
10√

10
q,

(2) min
q∈R

θ(p, q) =
2(
√
10− 1)

3
|p| with q =

2−
√
10√

10
p,

(3) min
(p,q)∈R2

θ(p, q) = 0 with p = q = 0.
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On the basis of Lemma 2, we have

min
b∈R5

E(b) = min
b1,b2,b3

{
2(
√
10− 1)

3
|b1 −△z0|+

∫ 1
2

− 1
2

|(b2 − b1) + 6t(b1 + b2 − 2△z1)| dt

+

∫ 1
2

− 1
2

|(b3 − b2) + 6t(b2 + b3 − 2△z2)| dt+
2(
√
10− 1)

3
|b3 −△z3|

}

= min
b2

{
min
b1

{
2(
√
10− 1)

3
|b1 −△z0|+

∫ 1
2

− 1
2

|(b2 − b1) + 6t(b1 + b2 − 2△z1)| dt
}

+min
b3

{∫ 1
2

− 1
2

|(b3 − b2) + 6t(b2 + b3 − 2△z2)| dt+
2(
√
10− 1)

3
|b3 −△z3|

}}
Minimization of E(b) is a two-level minimization problem that can be written in the form

min
b

E(b) = min
b2

{G1(b2) +G2(b2)} (8)

where

G1(b2) =
2(
√
10− 1)

3
|b1(b2)−△z0|+

∫ 1
2

− 1
2

|(b2 − b1(b2)) + 6t(b1(b2) + b2 − 2△z1)| dt (9)

and

G2(b2) =
2(
√
10− 1)

3
|b3(b2)−△z3|+

∫ 1
2

− 1
2

|(b3(b2)− b2) + 6t(b2 + b3(b2)− 2△z2)| dt (10)

For later use, we introduce the notation

ϕ(p, q; c) =
2(
√
10− 1)

3
|p− c|+

∫ 1
2

− 1
2

|(q − p) + 6t(p+ q)| dt (11)

and
G(q; c) = min

p
{ϕ(p, q; c)} = ϕ(p(q), q; c) , (12)

where c is a parameter.

Lemma 3. The functions ϕ(p, q; c) and G(q; c) are both convex. G(q; c) is continuous on q ∈ R and
differentiable except at q = 0. When c = 0, we have p(q) = 0 and

dG(q; 0)

dq
=


5

3
if q > 0 ,

−5

3
if q < 0 .

When c > 0,

(i) If q >
√
10+1
3

c, then p(q) = c and

4
√
10− 8

3
<

dG(q; c)

dq
=

10q2 + 20cq + 6c2

6(c+ q)2
<

5

3
.
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(ii) If 0 < q ≤
√
10+1
3

c, then p(q) =
√
10−1
3

q and

dG(q; c)

dq
=

4
√
10− 8

3
.

(iii) If 2−
√
10√

10
c ≤ q < 0, then p(q) =

√
10

2−
√
10
q and

dG(q; c)

dq
= 0 .

(iv) If − 1
2
c < q < 2−

√
10√

10
c, then p(q) = c and

−1 <
dG(q; c)

dq
=

10q2 + 20cq + 6c2

6(c+ q)2
< 0 .

(v) If − 2c ≤ q ≤ −1
2
c, then p(q) = c and

dG(q; c)

dq
= −1 .

(vi) If q < −2c, then p(q) = c and

−5

3
<

dG(q; c)

dq
= −10q2 + 20cq + 6c2

6(c+ q)2
< −1 .

When c < 0,

(i) If q > −2c, then p(q) = c and

1 <
dG(q; c)

dq
=

10q2 + 20cq + 6c2

6(c+ q)2
<

5

3
.

(ii) If − 1
2
c ≤ q ≤ −2c, then p(q) = c and

dG(q; c)

dq
= 1 .

(iii) If 2−
√
10√

10
c < q < −1

2
c, then p(q) = c and

0 <
dG(q; c)

dq
= −10q2 + 20cq + 6c2

6(c+ q)2
< 1 .

(iv) If 0 < q ≤ 2−
√
10√

10
c, then p(q) =

√
10

2−
√
10
q and

dG(q; c)

dq
= 0 .

(v) If
√
10+1
3

c ≤ q < 0, then p(q) =
√
10−1
3

q and

dG(q; c)

dq
= −4

√
10− 8

3
.
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(vi) If q <
√
10+1
3

c, then p(q) = c and

−5

3
<

dG(q; c)

dq
= −10q2 + 20cq + 6c2

6(c+ q)2
< −4

√
10− 8

3
.

Proof. The function ϕ(p, q; c) is the sum of two convex functions, so it is also convex. The convexity of
G(q; c) comes from the fact that it is the partial minimization of ϕ(p, q; c) (see [23]).

If q > 0, we calculate using Lemma 2

∂θ(p, q)

∂p
=


−10p2 + 20pq + 6q2

6(p+ q)2
, if p < −2q,

−1, if − 2q ≤ p ≤ −1
2
q,

10p2 + 20pq + 6q2

6(p+ q)2
, if p > −1

2
q,

which is a nondecreasing function of p for any fixed q. Moreover, when p <
√
10

2−
√
10
q,

∂θ(p, q)

∂p
= −10p2 + 20pq + 6q2

6(p+ q)2
< −2(

√
10− 1)

3
.

When p >
√
10−1
3

q,
∂θ(p, q)

∂p
=

10p2 + 20pq + 6q2

6(p+ q)2
>

2(
√
10− 1)

3
.

Analogously, if q < 0, we calculate from Lemma 2

∂θ(p, q)

∂p
=


−10p2 + 20pq + 6q2

6(p+ q)2
, if p < −1

2
q,

1, if − 1
2
q ≤ p ≤ −2q,

10p2 + 20pq + 6q2

6(p+ q)2
, if p > −2q,

which is a nondecreasing function of p for any fixed q. When p <
√
10−1
3

q,

∂θ(p, q)

∂p
= −10p2 + 20pq + 6q2

6(p+ q)2
< −2(

√
10− 1)

3
.

When p >
√
10

2−
√
10
q,

∂θ(p, q)

∂p
=

10p2 + 20pq + 6q2

6(p+ q)2
>

2(
√
10− 1)

3
.

Note that

ϕ(p, q; c) =
2(
√
10− 1)

3
|p− c|+ θ(p, q).

When c = 0 and q > 0,

∂ϕ(p, q; c)

∂p
=



2(
√
10− 1)

3
+

10p2 + 20pq + 6q2

6(p+ q)2
> 0, if p > 0,

−2(
√
10− 1)

3
+

10p2 + 20pq + 6q2

6(p+ q)2
< 0, if − 1

2
q < p < 0,

−2(
√
10− 1)

3
− 1 < 0, if − 2q ≤ p ≤ −1

2
q,

−2(
√
10− 1)

3
− 10p2 + 20pq + 6q2

6(p+ q)2
< 0, if p < −2q.
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Therefore, p(q) = 0 and

G(q; 0) =
5

3
q ,

which implies that
dG(q; 0)

dq
=

5

3
.

When c = 0 and q < 0,

∂ϕ(p, q; c)

∂p
=



2(
√
10− 1)

3
+

10p2 + 20pq + 6q2

6(p+ q)2
> 0, if p > −2q,

2(
√
10− 1)

3
+ 1 > 0, if − 1

2
q ≤ p ≤ −2q,

2(
√
10− 1)

3
− 10p2 + 20pq + 6q2

6(p+ q)2
> 0, if 0 < p < −1

2
q,

−2(
√
10− 1)

3
− 10p2 + 20pq + 6q2

6(p+ q)2
< 0, if p < 0.

Therefore, p(q) = 0 and

G(q; 0) = −5

3
q ,

which implies that
dG(q; 0)

dq
= −5

3
.

The proofs for c > 0 and c < 0 are similar to the proof for c = 0 and are omitted.

Now, we let
p1 = b1 −△z1 , p2 = b3 −△z2 ,

q1 = b2 −△z1 , q2 = b2 −△z2 ,

c1 = △z0 −△z1 , c2 = △z3 −△z2

(13)

With this notation, we have

G1(b2) +G2(b2) = G(q1; c1) +G(q2; c2) = G(b2 −△z1; c1) +G(b2 −△z2; c2) (14)

Remark. Later in this paper, we will use △z1 − △z0, △z2 − △z1 and △z3 − △z2 to classify cases
of linearity, convexity and oscillation. However, for clarity of the analysis in much of the remainder of
this section, we use c1 to denote △z0 −△z1 instead of △z1 −△z0 because G1 and G2 are defined in a
symmetric manner in (9) and (10) and b0 and b4 are determined by b1 and b3, which are in turn determined
by b2 (progression outward from the middle point).

From Lemma 3, G1(b2) +G2(b2) is convex and continuous for b2 ∈ R and is differentiable except at
b2 = △z1 and b2 = △z2. If b2 < min{△z1 +

2−
√
10√

10
|c1|,△z2 +

2−
√
10√

10
|c2|}, then

dG1(b2)

db2
+

dG2(b2)

db2
< 0 .

If b2 > max{△z1 − 2−
√
10√

10
|c1|,△z2 − 2−

√
10√

10
|c2|}, then

dG1(b2)

db2
+

dG2(b2)

db2
> 0 .
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Therefore, the scalars

min{△z1 +
2−

√
10√

10
|c1|,△z2 +

2−
√
10√

10
|c2|}

= min{△z1 +
2−

√
10√

10
|△z0 −△z1|,△z2 +

2−
√
10√

10
|△z3 −△z2|} (15)

and

max{△z1 −
2−

√
10√

10
|c1|,△z2 −

2−
√
10√

10
|c2|}

= max{△z1 −
2−

√
10√

10
|△z0 −△z1|,△z2 −

2−
√
10√

10
|△z3 −△z2|} (16)

form a lower and upper bound, respectively, for b∗2, the optimal b2. Since G1(b2) +G2(b2) is convex, we
could (if the lower bound is less than the upper bound) use any line search method to find b∗2. However,
simply using line search methods at this point does not reveal geometric properties of the spline and does
not lead to efficient calculation of b∗2.

The geometric properties of the set of 5 data points can be classified by looking at △z1 − △z0,
△z2 −△z1 and △z3 −△z2. For example, △z1 −△z0 = 0 means that the the first three points lie on
a straight line; △z1 − △z0 > 0 means that the first three points are convex. When △z1 − △z0 > 0,
△z2−△z1 > 0 and △z3−△z2 > 0, all five points are convex. When △z1−△z0 > 0, △z2−△z1 < 0

and △z3 − △z2 > 0, the five points “oscillate.” As shown in Table 1, there are 27 cases to consider,
of which, due to symmetry, only 10 cases need be analyzed. We will analyze the location of b∗2 in these
10 cases. Recall that b∗2 is the unique optimal solution after applying the choice procedure to resolve
nonuniqueness, if it occurs.

Remark. The portions of the following results related to linearity (Cases 1, 2, 4, 5, 6, 11 and 12 and
cases that are equivalent to these cases) overlap with analogous linearity results in [22]. In the present
paper, however, these linearity results are presented in a wider context where not only linearity but also
convexity and oscillation, measured by increases and decreases in the ∆zi, are considered.

Recall that from equation (1), we have

δ2 =
z3 − z1
x3 − x1

.

Case 1. In this case, △z0 = △z1 = △z2 = △z3 and c1 = c2 = 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
=


10

3
if b2 −△z1 > 0,

−10

3
if b2 −△z1 < 0.

The unique optimal solution is therefore b∗2 = △z1.
Case 2. In this case, △z0 = △z1 = △z2 < △z3, c1 = 0 and c2 > 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
>

5

3
> 0 if b2 −△z1 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
≤ −5

3
< 0 if b2 −△z1 < 0.
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Table 1. 27 cases in the 5-point window method.

Case
Sign of Same as

Linearity
Convexity

Oscillation
△z1 −△z0 △z2 −△z1 △z3 −△z2 Case / Concavity

1 0 0 0 Yes Yes No
2 0 0 + Yes Yes No
3 0 0 − 2 Yes Yes No
4 0 + 0 Yes Yes No
5 0 + + Yes Yes No
6 0 + − Yes No No
7 0 − 0 4 Yes Yes No
8 0 − + 6 Yes No No
9 0 − − 5 Yes Yes No

10 + 0 0 2 Yes Yes No
11 + 0 + Yes Yes No
12 + 0 − Yes No No
13 + + 0 5 Yes Yes No
14 + + + No Yes No
15 + + − No No No
16 + − 0 6 Yes No No
17 + − + No No Yes
18 + − − 15 No No No
19 − 0 0 2 Yes Yes No
20 − 0 + 12 Yes No No
21 − 0 − 11 Yes Yes No
22 − + 0 6 Yes No No
23 − + + 15 No No No
24 − + − 17 No No Yes
25 − − 0 5 Yes Yes No
26 − − + 15 No No No
27 − − − 14 No Yes No

The unique optimal solution is b∗2 = △z1.
Case 4. In this case, △z0 = △z1 < △z2 = △z3, c1 = 0 and c2 = 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
=



10

3
if b2 −△z2 > 0,

0 if △z1 ≤ b2 ≤ △z2,

−10

3
if b2 −△z1 < 0.

Any solution in [△z1,△z2] is optimal. Since △z1 < δ2 < △z2, the unique solution (the b2 in the optimal
interval closest to δ2) is b∗2 = δ2.
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Case 5 and 6. In Case 5, △z0 = △z1 < △z2 < △z3, c1 = 0 and c2 > 0. In Case 6, △z0 = △z1 < △z2,
△z2 > △z3, c1 = 0 and c2 < 0. In both cases, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
>

5

3
− 5

3
= 0 if b2 −△z1 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
≤ −5

3
< 0 if b2 −△z1 < 0.

The unique optimal solution in both cases is b∗2 = △z1.
Case 11. In this case, △z0 < △z1 = △z2 < △z3, c1 < 0 and c2 > 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 −△z1 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 −△z1 < 0.

The unique optimal solution is b∗2 = △z1.
Case 12. In this case, △z0 < △z1 = △z2, △z2 > △z3, c1 < 0 and c2 < 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 −△z1 > min{2−

√
10√

10
c1,

2−
√
10√

10
c2},

dG1(b2)

db2
+

dG2(b2)

db2
= 0 if 0 < b2 −△z1 ≤ min{2−

√
10√

10
c1,

2−
√
10√

10
c2},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 −△z1 < 0.

Any solution that lies in [△z1,△z1 + min{2−
√
10√

10
c1,

2−
√
10√

10
c2}] is optimal. Since △z1 = δ2 = △z2, the

unique solution is b∗2 = δ2 = △z1.
Case 14. In this case, △z0 < △z1 < △z2 < △z3, c1 < 0 and c2 > 0. From Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 −△z2 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 −△z1 < 0.

Therefore, the optimal b2 lies in [△z1,△z2]. This case is divided into 4 subcases as follows.
Subcase 14-1. If △z2 −△z1 ≤

√
10−2√
10

(|c1|+ |c2|), then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > min{△z1 +

2−
√
10√

10
c1,△z2},

dG1(b2)

db2
+

dG2(b2)

db2
= 0 if min{△z1 +

2−
√
10√

10
c1,△z2} ≤ b2 ≤ max{△z1,△z2 +

2−
√
10√

10
c2},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < max{△z1,△z2 +

2−
√
10√

10
c2}.

From the condition
√
10−2√
10

(|c1|+|c2|) ≥ △z2−△z1, the interval
[
max{△z1,△z2+

2−
√
10√

10
c2},min{△z1+

2−
√
10√

10
c1,△z2}

]
is not empty, and any b2 in this interval is optimal. The unique solution is

b∗2 = median{max{△z1,△z2 +
2−

√
10√

10
c2},min{△z1 +

2−
√
10√

10
c1,△z2}, δ2} .
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Subcase 14-2. If
√
10−2√
10

(|c1|+ |c2|) < △z2 −△z1 <
1
2
(|c1|+ |c2|), then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > min{△z1 − 1

2
c1,△z2 +

2−
√
10√

10
c2},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < max{△z1 +

2−
√
10√

10
c1,△z2 − 1

2
c2}.

From the condition
√
10−2√
10

(|c1|+ |c2|) < △z2 −△z1 ≤ 1
2
(|c1|+ |c2|), the interval

[
max{△z1 +

2−
√
10√

10
c1,△z2 −

1

2
c2},min{△z1 −

1

2
c1,△z2 +

2−
√
10√

10
c2}

]
is not empty. Since

dG1(b2)

db2
+

dG2(b2)

db2
is strictly increasing on this interval, there exists exactly one b∗2

in this interval such that
dG1(b

∗
2)

db2
+

dG2(b
∗
2)

db2
= 0.

Subcase 14-3. If 1
2
(|c1|+ |c2|) ≤ △z2 −△z1 ≤ 2(|c1|+ |c2|), then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > min{△z1 − 2c1,△z2 − 1

2
c2},

dG1(b2)

db2
+

dG2(b2)

db2
= 0 if max{△z1 − 1

2
c1,△z2 − 2c2} ≤ b2 ≤ min{△z1 − 2c1,△z2 − 1

2
c2},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < max{△z1 − 1

2
c1,△z2 − 2c2}.

From the condition 1
2
(|c1|+ |c2|) ≤ △z2 −△z1 ≤ 2(|c1|+ |c2|), the interval[
max{△z1 −

1

2
c1,△z2 − 2c2},min{△z1 − 2c1,△z2 −

1

2
c2}

]
is not empty and any b2 in this interval is optimal. The unique solution is

b∗2 = median{max{△z1 −
1

2
c1,△z2 − 2c2},min{△z1 − 2c1,△z2 −

1

2
c2}, δ2} .

Subcase 14-4. If 2(|c1|+ |c2|) < △z2 −△z1, then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > △z2 − 2c2,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < △z1 − 2c1.

From the condition △z2 −△z1 > 2(|c1|+ |c2|), the interval

[△z1 − 2c1,△z2 − 2c2]

is not empty. Since
dG1(b2)

db2
+

dG2(b2)

db2
is strictly increasing on this interval, there exists exactly one b∗2

in this interval such that
dG1(b

∗
2)

db2
+

dG2(b
∗
2)

db2
= 0.

Case 15. In this case, △z0 < △z1 < △z2, △z2 > △z3, c1 < 0 and c2 < 0. Then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > max{△z2,min{△z1 +

2−
√
10√

10
c1,△z2 +

2−
√
10√

10
c2}},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < min{△z1 − 7+

√
10

3
c1,△z2}.
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Therefore, b∗2 lies in[
min{△z1 −

7 +
√
10

3
c1,△z2},max{△z2,min{△z1 +

2−
√
10√

10
c1,△z2 +

2−
√
10√

10
c2}}

]
.

This case is divided into 3 subcases as follows.
Subcase 15-1. If △z2 −△z1 <

2−
√
10√

10
c1, then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
= 0,

when b2 lies in the interval[
min{△z1 − 7+

√
10

3
c1,△z2},max{△z2,min{△z1 +

2−
√
10√

10
c1,△z2 +

2−
√
10√

10
c2}}

]
=

[
△z2,min{△z1 +

2−
√
10√

10
c1,△z2 +

2−
√
10√

10
c2}

]
.

Therefore, any b2 in this interval is optimal. The unique solution is b∗2 = △z2.
Subcase 15-2. If 2−

√
10√

10
c1 < △z2 −△z1 < −7+

√
10

3
c1, then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 −△z2 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 −△z2 < 0.

The unique optimal solution is b∗2 = △z2.
Subcase 15-3. If −7+

√
10

3
c1 < △z2 −△z1, then b∗2 is in the interval[

min{△z1 − 7+
√
10

3
c1,△z2},max{△z2,min{△z1 +

2−
√
10√

10
c1,△z2 +

2−
√
10√

10
c2}}

]
=

[
△z1 − 7+

√
10

3
c1,△z2

]
.

Since
dG1(b2)

db2
+
dG2(b2)

db2
is strictly increasing on this interval, there exists exactly one b∗2 in this interval

such that
dG1(b

∗
2)

db2
+

dG2(b
∗
2)

db2
= 0.

Case 17. In this case, △z0 < △z1, △z1 > △z2, △z2 < △z3, c1 < 0 and c2 > 0. Then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 −△z1 > 0,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 −△z2 < 0.

Therefore, b∗2 lies in [△z2,△z1]. This case is divided into 2 subcases as follows.
Subcase 17-1. If △z1 −△z2 >

√
10+1
3

(|c1|+ |c2|), then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > △z1 +

√
10+1
3

c1,

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < △z2 +

√
10+1
3

c2.

From the condition △z1 −△z2 >
√
10+1
3

(|c1|+ |c2|), the interval

[
△z2 +

√
10 + 1

3
c2,△z1 +

√
10 + 1

3
c1
]
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is not empty. Since
dG1(b2)

db2
+

dG2(b2)

db2
is strictly increasing on this interval, there exists exactly one b∗2

in this interval such that
dG1(b

∗
2)

db2
+

dG2(b
∗
2)

db2
= 0.

Subcase 17-2. If △z1 −△z2 ≤
√
10+1
3

(|c1|+ |c2|), then, from Lemma 3,

dG1(b2)

db2
+

dG2(b2)

db2
> 0 if b2 > min{△z1,△z2 +

√
10+1
3

c2},

dG1(b2)

db2
+

dG2(b2)

db2
< 0 if b2 < max{△z2,△z1 +

√
10+1
3

c1}.

From the condition △z1 −△z2 ≤
√
10+1
3

(|c1|+ |c2|), the interval

[
max{△z2,△z1 +

√
10 + 1

3
c1},min{△z1,△z2 +

√
10 + 1

3
c2}

]
is not empty and any b2 in this interval is optimal. The unique solution is

b∗2 = median{max{△z2,△z1 +

√
10 + 1

3
c1},min{△z1,△z2 +

√
10 + 1

3
c2}, δ2} .

3. Linkage of Geometric Properties of Data Points and L1 Spline

In this section, based on the analytic results for the solution at the middle point in each 5-point
window, we present two theorems that link the local linearity, convexity and oscillatory properties of the
original data set with the local linearity, convexity and oscillatory properties of the locally calculated L1

spline. In particular, we show that the locally calculated L1 spline does not “over-oscillate”.
The capability of the 5-point local window method to preserve linearity is described in the

following theorem.

Theorem 4. (Proposition 3 of [22]) If any three consecutive points in a five-point window are collinear
with slope △z, then b∗i = △z except in Cases 4 and 7.

Proof. See Cases 1, 2, 4, 5, 6, 11 and 12 in Section 2.

Theorem 4 indicates that local linearity of the data is preserved in the 5-point-window L1 spline with
the “reasonable” exception of when two lines intersect at the point (xi, zi). C1 continuity of the spline
prevents linearity from being preserved in both intervals bordering on a corner (xi, zi).

Convexity is not as simple as linearity. To study the convexity of the L1 spline, we need to consider
not just a node xi but the whole interval [xi, xi+1]. In this interval, the L1 spline is determined by b∗i and
b∗i+1, which are calculated using the six data points (xk, zk), k = i − 2, i − 1, i, i + 1, i + 2, i + 3 in
the two overlapping 5-point windows for b∗i and b∗i+1. In the remainder of this section, we focus on the
L1 spline in the interval [xi, xi+1] and assume that these six data points (and, therefore, also their linear
spline interpolant) are convex on [xi−2, xi+3]. The analysis in the rest of this section will reveal that the
spline in [xi, xi+1] is not always convex, but, when not, the oscillation is not large.
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Lemma 5. The following statements are equivalent:

( i ) The cubic spline function is convex on the interval [xi, xi+1];

( ii) (b∗i+1 − b∗i ) ≥ 3|(b∗i+1 −△zi) + (b∗i −△zi)|;

(iii) 0 ≤ −1
2
(b∗i −△zi) ≤ (b∗i+1 −△zi) ≤ −2(b∗i −△zi).

Remark. Condition (iii) in Lemma 5 is equivalent to Proposition 3.1 in [24].

Proof. Recall from the definition in Section 1 that hi = xi+1 − xi, i = 0, 1, . . . , I − 1.
The second derivative of the cubic spline function on [xi, xi+1] is

− 2

hi

(2b∗i + b∗i+1 − 3△zi) +
6

h2
i

(b∗i + b∗i+1 − 2△zi)(x− xi)

=
1

hi

(b∗i+1 − b∗i ) +
6

h2
i

(b∗i + b∗i+1 − 2△zi)(x− xi −
hi

2
) .

Let x− xi = λhi, 0 ≤ λ ≤ 1, then

1

hi

(b∗i+1 − b∗i ) +
6

h2
i

(b∗i + b∗i+1 − 2△zi)(x− xi −
hi

2
)

=
1

hi

(b∗i+1 − b∗i ) +
6

hi

(b∗i + b∗i+1 − 2△zi)(λ− 1

2
) .

Hence the cubic spline function is convex on the interval [xi, xi+1] if and only if

1

hi

(b∗i+1 − b∗i ) +
6

hi

(b∗i + b∗i+1 − 2△zi)(λ− 1

2
) ≥ 0, ∀λ ∈ [0, 1],

⇔ (b∗i+1 − b∗i ) ≥ 3|b∗i + b∗i+1 − 2△zi|

⇔ 0 ≤ −1
2
(b∗i −△zi) ≤ (b∗i+1 −△zi) ≤ −2(b∗i −△zi) .

Every contiguous set of six points comes from two 5-point windows. Let Case α ↔ β denote
Case/Subcase α for the left window (27 cases and 9 subcases) and Case/Subcase β for the right window
(also 27 cases and 9 subcases). After applying Lemma 5 to all convex situations and eliminating
equivalent cases, we can identify that the L1 spline is convex on [xi, xi+1] in Cases 1↔1, 1↔2, 2↔5,
10↔2, 11↔5, 5↔14-3, is not convex in Cases 2↔4, 4↔11, 5↔14-1, 5↔14-2, 5↔14-4, 14-1↔14-4,
14-2↔14-4, and is not determined in Cases 5↔13, 14-1↔14-1, 14-1↔14-2, 14-1↔14-3, 14-2↔14-3.
However, the L1 spline does not have extraneous oscillation on [xi, xi+1] as is shown in the remainder of
this section.

Lemma 6. b∗i ∈ [b li , b
u
i ], where b li = min{△zi−1,△zi} and bui = max{△zi−1,△zi}.

Proof. The proof comes directly from the analysis of the 27 cases.

Remark. Lemma 6 does not hold for global L1 splines. Consider, for example, the 11 data points
(−5, 4), (−4, 3), (−3, 2), (−2, 1), (−1, 0), (0, 0), (1, 0), (2,−1), (3,−2), (4,−3) and (5,−4). By
the 5-point-window method, b∗5 (the derivative at x = 0) is 0. In contrast, the b∗5 of the global L1

spline is 0.37304.
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Lemma 7. If b∗i ≤ △zi ≤ b∗i+1, then the cubic L1 spline is bounded above by the linear spline ζ(x) on
the interval [xi, xi+1].

Proof. Given b∗i ≤ △zi ≤ b∗i+1, the cubic L1 spline on [xi, xi+1] can be written as

z(x) = zi + b∗i (x− xi)−
1

hi

(2b∗i + b∗i+1 − 3△zi)(x− xi)
2 +

1

h2
i

(b∗i + b∗i+1 − 2△zi)(x− xi)
3 .

Let x− xi = λhi, 0 ≤ λ ≤ 1, then

ζ(x)− z(x) = (△zi − b∗i )(x− xi) +
1
hi
(2b∗i + b∗i+1 − 3△zi)(x− xi)

2

− 1
h2
i
(b∗i + b∗i+1 − 2△zi)(x− xi)

3

= λhi(△zi − b∗i ) + λ2hi(2b
∗
i + b∗i+1 − 3△zi)− λ3hi(b

∗
i + b∗i+1 − 2△zi)

= λhi

[
(1− 2λ+ λ2)(△zi − b∗i ) + (λ− λ2)(b∗i+1 −△zi)

]
≥ 0, ∀ 0 ≤ λ ≤ 1 .

Theorem 8. If the linear spline is convex on the interval [xi−1, xi+2], that is, △zi−1 ≤ △zi ≤ △zi+1,
then the cubic L1 spline is bounded above by the linear spline on the interval [xi, xi+1].

Proof. The proof comes from Lemmas 6 and 7.

The results in this section indicate that the L1 splines produced by the 5-point-window method with
the proposed choice procedure for resolving nonuniqueness preserve linearity and convexity in many
cases and do not oscillate excessively. From Lemma 6, we see that the b∗i calculated by this method
is always bounded by △zi−1 and △zi. This property is a prime factor in restricting oscillation of L1

splines and may in the future lead to additional theoretic results about the properties of L1 splines for
non-over-oscillating interpolation of oscillatory data.

4. Conclusions

In summary, the results presented in this paper indicate that a new class of univariate L1 interpolating
splines calculated using 5-point windows as suggested by [2] has superior geometric shape preservation
properties—better than those of L1 splines calculated using global functionals. Lemma 6 ensures that
the optimal solution b∗i (the first derivative at node xi) of 5-point-window L1 splines is bounded by △zi−1

and △zi. This property does not hold for globally calculated L1 splines and is not known to hold for
locally calculated L1 splines with uniqueness being enforced by adding a regularization term to the spline
functional as was done in [7,9]. Theorems analogous to Theorem 8 that will assist in understanding how
local convexity and oscillation in the data set translate into local convexity and oscillation of the L1 spline
are an excellent topic for future research. The results presented here for univariate interpolation are a
basis for development of locally calculated univariate L1 approximating splines and locally calculated
bivariate L1 interpolating and approximating splines.

The algorithmic implications of the analytical results of the present paper are large. In the past, there
have been a few published reports and more unpublished reports about deficiencies of the primal affine,
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primal-dual and active-set algorithms that have been used to minimize L1 splines. The convergence
of these algorithms for medium to large data sets is often unsatisfactory. In addition, the discretization
required by the primal affine and primal-dual algorithms is not desirable. The results of the present paper
are a basis on which an efficient algorithm that minimizes the original continuum spline functional (not
a discretization thereof) can be constructed. In a companion [25] article, we present such an algorithm
and provide computational results for it.
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