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Abstract: The metric average is a binary operation between sets in Rn which is used in
the approximation of set-valued functions. We introduce an algorithm that applies tools of
computational geometry to the computation of the metric average of 2D sets with piecewise
linear boundaries.
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1. Introduction

Approximation of set-valued functions has various potential applications in optimization,
mathematical economics, control, robotics and more. While approximation of set-valued functions with
convex sets as images can be achieved with methods based on Minkowski averages c.f. [1], it is shown
in [2] that Minkowski averages are not suitable for approximation of set-valued functions with general
(not necessarily convex) images. In order to develop approximation methods for set-valued functions
with general images, other averaging operations on compact sets are required. Along with theoretical
construction of such averaging operations, efficient algorithms for their computation are needed.

First introduced by Z. Artstein in [3], the metric average of two compact sets in Rn is a union of
weighted averages between any point from any of the two sets and the subset of all its closest points
from the other set. The interest in the metric average is due to its metric property in relation to the
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Hausdorff distance [3]. The metric property of the metric average is that its Hausdorff distance from any
of the averaged sets changes linearly with the weight parameter of the average.

In [3], the metric average is used for piecewise linear approximation of set-valued functions.
Extending these results, Dyn et al. applied the metric average to the approximation of set-valued
functions from a finite number of their samples, using spline subdivision schemes and more generally
positive approximation operators [4,5]. These methods are based on repeated computations of the metric
average.

The applicability of metric average based approximation methods requires efficient algorithms for
the computation of the metric average of compact sets. An algorithm for the computation of the metric
average of two 1D compact sets with computation time, which is linear in the number of connected
subsets in the two sets, is introduced in [6]. A first step in the development of algorithms for the
computation of the metric average of 2D sets is done in [7], where an algorithm for the computation
of the metric average of two intersecting convex polygons is introduced and analyzed. The algorithm of
[7] has linear time complexity in the number of vertices of the input polygons.

In this work we introduce an algorithm that applies tools of computation geometry, segment Voronoi
diagrams (c.f. [8]) and planar arrangements (c.f. [9]) to the computation of the metric average of 2D
sets with piecewise linear boundaries. Such sets are collections of simple polygons and of simple
polygons with holes. Since a compact 2D set with boundary consisting of closed curves can be linearly
approximated by a 2D set with piecewise linear boundaries, our algorithm provides a computational
method for approximation of set-valued functions with 2D images from a finite number of samples.

Although the definition of the metric average of two sets with piecewise linear boundaries requires at
least one operation for each point in the two sets, our algorithm reduces the computation to boundaries
of cells of the partition of the two sets, obtained by the segment Voronoi diagram. The complexity of the
algorithm is O (n2 log n), where n is the total number of vertices on the boundaries of the two sets.

Our algorithm is based on geometric objects such as segment Voronoi diagrams, arrangements of
conic arcs and conic polygons with holes. We implemented the algorithm in C++, using the CGAL
library [10], for handling the various geometric objects.

The outline of this paper is as follows. Section 2 contains definitions and notation. In particular we
review the main geometric concepts relevant to our work such as the metric average, segment Voronoi
diagrams, planar arrangements and conic polygons with holes. In Section 3 we present the algorithm
for the computation of the metric average of two simple polygons. The algorithm is extended to general
2D sets with piecewise linear boundaries in Section 4. Examples of the metric average computed by
our algorithm, are presented in Section 5. In Section 6 we derive the run-time complexity bounds
for our algorithm and obtain bounds on the combinatorial complexity of the computed metric average.
Conclusions and directions for possible extensions are given in Section 7.

2. Preliminaries

To define the metric average of two sets, we first introduce some notation. The Euclidean distance
from a point p to a set A ⊂ Rn is

dist (p,A) = inf {|p− q| : q ∈ A} ,
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with | · | the Euclidean norm. A point q is called a projection point of a point p on a set A, if q belongs
to the closure of A and |p− q| = dist (p,A). Generally the projection point is not unique, and the set of
all projection points of p on A is denoted by ΠA (p). For two sets A,B and t ∈ [0, 1], we introduce the
asymmetric operation Mt(A,B), which is the set of all t-weighted averages between any point in A and
all its projection points on B, namely

Mt(A,B) = {tp+ (1− t) q : p ∈ A, q ∈ ΠB (p)} . (2.1)

Finally the t-weighted metric average of two compact sets A,B is defined as,

A⊕t B = Mt (A,B)
⋃

M1−t (B,A) . (2.2)

It is easy to verify that A⊕t A = A, A⊕1 B = A, and A⊕0 B = B. An example of the metric average
of two sets in 1D is given in Figure 1.

Since for p ∈ A
⋂
B, the projection point of p on A, and also the projection point of p on B is the

point p itself, we have

A⊕t B =
(
A
⋂

B
)⋃

Mt(A \B,B)
⋃

M1−t(B \ A,A), (2.3)

where \ denotes the usual set difference.
Now since for points outside a set, the projection on the set is equivalent to the projection on the

boundary of the set, relation (2.3) can be further rewritten as,

A⊕t B =
(
A
⋂

B
)⋃

Mt (A\B, ∂B)
⋃

M1−t (B\A, ∂A) , (2.4)

where ∂ denotes the boundary of a set.
Next we briefly recall the definitions of the geometric objects used in this work. A collection of points

p = (x, y) ∈ R2 satisfying
ax2 + by2 + cxy + dx+ ey + f = 0,

with a, b, c, d, e, f ∈ R, is called a planar conic curve. We refer to segments of conic curves as
conic segments.

A simple polygon is a region of the plane bounded by a single closed and not self-intersecting chain
of linear segments, termed edges. A simple polygon with holes is a simple polygon that contains holes,

Figure 1. The metric average of two non-convex sets in 1D, where A = [0, 1]
⋃

[2, 3] ,
B = [0.5, 1.3]

⋃
[1.7, 2.5], A⊕1/2 B = [0.25, 1.15]

⋃
[1.85, 2.75].
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which are simple polygons. If we allow the edges to be conic segments, we get a simple conic polygon
with holes. A set with piecewise linear boundaries is a collection of pairwise disjoint simple polygons
with holes.

A collection of simple conic polygons with holes can be treated as a planar arrangement (c.f. [9]).
Given a set C of bounded planar curves, the arrangementA(C) is the subdivision of the plane induced by
the curves inC into zero-dimensional, one-dimensional and two-dimensional cells, called vertices, edges
and faces respectively. The overlay of two arrangements A(C1), A(C2) is the arrangement A(C1

⋃
C2)

produced by the edges from C1 and C2.
Given a collection Σ of geometric objects in R2, called Voronoi sites, the Voronoi diagram (see e.g.

[8,11]) of Σ is the subdivision of the plane into regions (called Voronoi faces), each region being
associated with a site si ∈ Σ , and containing all points of the plane for which si is closest (with
respect to the Euclidean distance) among all the sites in Σ. A Voronoi bisector is a set of points that are
equidistant from two Voronoi sites. The Voronoi diagram induced by a collection of linear segments in
R2 is termed segment Voronoi diagram. The standard technique is to treat a segment as three disjoint
geometric objects: two endpoints and an open segment [8]. The bisector between an open segment
(pi, pi+1) and a point pi is defined by the line through pi that is perpendicular to (pi, pi+1). We also
assume that the diagram is bounded by a rectangular frame, which is large enough not to influence the
computation of the metric average.

3. The Algorithm for Simple Polygons

Here we assume that A,B are simple polygons. We begin with the representation (2.4) of the
metric average. The main part of the computation of the metric average is the computation of the sets
Mt (A \B, ∂B) and M1−t (B \ A, ∂B) with 0 < t < 1. We describe in details the computation of
Mt (A \B, ∂B). First we apply a sequence of reductions, which simplify the computations. The main
idea is to partition A \ B by the segment Voronoi diagram induced by ∂B. We show that it is sufficient
to perform the computations only on the boundary curves of the cells of this partition.

Denote by V D∂B the collection of faces of the segment Voronoi diagram induced by the ∂B. The
Voronoi faces in V D∂B constitute a partition of the plane. Therefore the set A \B can be represented as,

A \B =
⋃

F∈V D∂B

((A \B)
⋂

F ), (3.1)

and thus, by the definition of Mt in (2.1),

Mt (A \B, ∂B) =
⋃

F∈V D∂B

Mt

(
(A \B)

⋂
F, ∂B

)
. (3.2)

Denoting by S (F ) the Voronoi site associated with a Voronoi face F , we observe that by the definition
of V D∂B, the closest point on ∂B to p ∈ F ∈ V D∂B is on S (F ), and obtain

Mt (A \B, ∂B) =
⋃

F∈V D∂B

Mt

(
(A \B)

⋂
F, S(F )

)
. (3.3)
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We call a connected component of F
⋂

(A \ B) with non-empty interior a metric face of F . For F̃ a
metric face of F , we define S(F̃ ) = S(F ). We denote by MF∂B(A \ B) the collection of all the metric
faces induced by the Voronoi faces in V D∂B and by A \B. With this notation (3.3) can be rewritten as,

Mt (A \B, ∂B) =
⋃

F∈MF∂B(A\B)

Mt (F, S(F )) . (3.4)

In order to compute Mt (A\B, ∂B) using the reduction (3.4), it is required first to find the metric
faces and then for each metric face F to compute Mt (F, S (F )),

The computation of the metric faces are based on planar arrangements. The bisectors of the segment
Voronoi diagram are conic curves [8], hence V D∂B constitutes an arrangement of conic segments.
Obviously A\B can be represented by an arrangement of linear segments. Thus the metric faces are
the intersections of the bounded faces of the two arrangements and can be computed by the overlay of
these two arrangements.

Next we show that the computation of Mt (F, S (F )) for a metric face F can be further reduced to the
computation of Mt (∂F, S (F )). The Voronoi site S(F ) is either an open linear segment or a point, thus
the set ΠS(F )(p) of all projection points of a point p ∈ R2 on S(F ) is a singleton. It is easy to see, that
the operation p → Mt (p, S (F )) , can be regarded as a continuous one-to-one function from the metric
face F to R2. Consequently, Mt (∂F, S (F )) is a simple closed curve, since the boundary of a metric
face is so. Thus the region bounded by Mt (∂F, S (F )) is Mt (F, S (F )), and it is sufficient to compute
Mt (∂F, S (F )). Denoting by Ω (Mt (∂F, S (F ))) the region bounded by Mt (∂F, S (F )), we have

Mt (F, S (F )) = Ω (Mt (∂F, S (F ))) . (3.5)

Finally the computation is reduced to that of Mt (τ, S (F )) for a conic segment τ on the boundary of
a metric face F . This straightforward task is completed by a fixed number of operations. The obtained
set Mt (τ, S (F )) is also a conic segment, and therefore Mt (F, S (F )) is a conic polygon.

To conclude, our algorithm computes the metric average of two simple polygons using (2.4), (3.4)
and (3.5), and

Mt (∂F, S (F )) =
⋃

τ∈C(∂F )

Mt (τ, S (F )), (3.6)

where C (∂F ) is the collection of conic segments comprising ∂F .

4. Extension to 2D Sets with Piecewise Linear Boundaries

The algorithm for the computation of the metric average of two simple polygons introduced in the
previous section can be straightforwardly extended to 2D sets with piecewise linear boundaries, namely
each set is a collection of simple polygons with holes. We discuss the computation of Mt (A\B, ∂B)

with such sets A,B.
The boundary of B consists of linear segments and therefore the segment Voronoi diagram V D∂B is

well defined. The metric faces are defined as in the previous section, and Relations (3.1)-(3.4) stay valid.
However a metric face F is now a connected component of the intersection of a Voronoi face with a
collection of simple polygons with holes, so it is a simple conic polygon with holes. Let a metric face F
be a simple conic polygon P with holes {H1, ..., Hn}. The arguments of the previous section imply that
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Mt (F, S (F )) is a simple conic polygon Mt (P, S (F )) with holes Mt (H1, S (F )) , ...,Mt (Hn, S (F )).
Consequently, the computation of Mt (F, S (F )) is reduced to the computation of Mt (∂P, S (F )) and
Mt (∂H1, S (F )) , ...,Mt (∂Hn, S (F )).

5. Examples

We implemented the algorithm in C++, using the CGAL library [10] for computational geometry
algorithms. In particular we used [12] for 2D arrangements, [13] for segment Voronoi diagrams and
[14] for Boolean set operations. The input to the algorithm is two collections of polygons with holes
comprising the input sets, and the output is a collection of conic polygons with holes comprising the
computed metric average.

We present a collection of examples of the metric average of two sets with piecewise linear
boundaries. In the following examples the boundaries of the input sets A,B are depicted in dotted
green and blue respectively, and the boundary of their metric average is depicted in bold red.

Figure 2. A⊕1/2 B where A,B are simple convex polygons.

Figure 3. A ⊕1/2 B, where A is a simple polygon and B consists of two simple polygons
included in A.
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Figure 4. A⊕1/2 B, where A,B are sets with piecewise linear boundaries.

The examples indicate that the metric average is more suitable for applications of set-valued
approximation, where the Hausdorff distance between the sampled function and the approximant is of
interest, but it is less suitable for geometry oriented applications. The geometric “artifacts” produced by
the metric average are explained by the fact that the projection point on a set may move discontinuously
for points near the boundaries between faces of the Voronoi diagram induced by the boundary of the set.

6. Complexity Bounds

In this section we discuss the run-time complexity bounds for our algorithm and the combinatorial
complexity of the obtained set. We assume here that A,B are simple polygons, and the extension of the
results of this section to 2D sets with piecewise linear boundaries is straightforward. The complexity
bounds depend on the well known complexity of the underlying algorithms for the computation of
segment Voronoi diagrams and planar arrangements.

Recall that by (2.4) and (3.4),

A⊕t B = A
⋂

B
⋃

F∈MF∂B(A\B)

Mt (F, S (F ))
⋃

F∈MF∂A(B\A)

M1−t (F, S (F )). (6.1)

Our main task in this complexity analysis is to show that (6.1) is a union of simple conic polygons with
pairwise disjoint interiors. For this goal, we first prove several results about the metric average that will
be later used in the complexity analysis.

Lemma 6.1 Let p1, p2 ∈ R2 \B such that p1 6= p2, then for t ∈ (0, 1)

Mt (p1, ∂B)
⋂

Mt (p2, ∂B) = φ.

Proof. Assume to the contrary that there exists a point p in Mt (p1, ∂B)
⋂
Mt (p2, ∂B), then there exist

si ∈ Π∂B (pi) , i = 1, 2 such that

p = tp1 + (1− t) s1 = tp2 + (1− t) s2. (6.2)
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From above equality we conclude that s1 6= s2. Without loss of generality assume, that

|p− s2| ≤ |p− s1| . (6.3)

Recall, by definition, that
|p1 − s2| ≥ |p1 − s1| . (6.4)

Since p1 6= p2 and s1 6= s2, (6.2) implies [p1, s1]
⋂

[p2, s2] = p . Thus by (6.3), |p1 − s2| < |p1 − s1| in
contradiction to (6.4).

�
An immediate consequence of Lemma 6.1 is

Corollary 6.2 Let p ∈ Mt (A\B, ∂B), then there is a unique point q ∈ A \ B, denoted by q = G(p),
such that p ∈Mt (q, ∂B). Moreover simple geometric arguments imply that for p1, p2 ∈Mt (A\B, ∂B),
|G (p1)−G (p2)| ≤ 1

t
|p1 − p2| .

Since any two metric faces contained in the same polygon have disjoint interiors, we conclude from
the above lemma,

Corollary 6.3 Let F1, F2 be metric faces such that F1, F2 ⊂ A, thenMt (F1, S (F1)) andMt (F2, S (F2))

have disjoint interiors.

Next we prove a result complementing Lemma 6.1.

Lemma 6.4 Let p1 ∈ A \B, p2 ∈ B \ A. If

Mt (p1, ∂B)
⋂

M1−t (p2, ∂A) 6= φ,

then
p1 ∈ Π∂A (p2) and p2 ∈ Π∂B (p1) .

Proof. Let p ∈ Mt (p1, ∂B)
⋂
Mt (p2, ∂A) , then there exist points s1 ∈ Π∂B (p1) and s2 ∈ Π∂A (p2)

such that
p = tp1 + (1− t) s1 = (1− t)p2 + ts2. (6.5)

Without loss of generality assume that

|p2 − s2| ≤ |p1 − s1| . (6.6)

By definition,
|p1 − s1| ≤ |p1 − p2| . (6.7)

By (6.5) and (6.6),
|p− p2| ≤ |p− s1| . (6.8)

We prove the lemma by contradiction. Suppose p1 6= s2, then by (6.5) p2 6= s1. Thus [p1, s1]
⋂

[p2, s2] =

p, and therefore by (6.8) |p1 − p2| < |p1 − s1|, which is a contradiction to (6.7).
�
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Note that under the conditions of Lemma 6.4, p1 ∈ ∂A and p2 ∈ ∂B, and therefore we get, in view of
Corollary 6.2, that

Corollary 6.5 The sets A
⋂
B,Mt (A\B, ∂B) ,M1−t (B\A, ∂A) have pairwise disjoint interiors.

Next we discuss the combinatorial complexity of the metric average of two simple polygons. The
discussion is based on the notion of the combinatorial complexity of a planar arrangement, which is
the sum of the number of vertices, the number of edges, and the number of faces in the arrangement.

Proposition 6.6 Let n be the sum of the numbers of vertices in A and in B. The combinatorial
complexity of A⊕t B with t ∈ [0, 1] is O (n2).

Proof. The combinatorial complexity of A
⋂
B is O (n2) and the combinatorial complexity of V D∂B

is O (n) [8]. Since the metric faces in MF∂B (A\B) are partial to the overlay of the arrangements
representing V D∂B, ∂A and ∂B their total combinatorial complexity is O (n2) and the same bound
holds for the metric faces in MF∂A (B\A). By Corollaries 6.3 and 6.5, (6.1) is a union of sets with
pairwise disjoint interiors. So the combinatorial complexity of A⊕t B is bounded by the combinatorial
complexity of A

⋂
B and the combinatorial complexity of the metric faces, namely it is O (n2).

�
Finally we derive the run-time complexity of our algorithm.

Proposition 6.7 Let n be the sum of the numbers of vertices in A and in B. Let k be the combinatorial
complexity of the overlay of the arrangements representing ∂A, ∂B, V D∂A and V D∂B. Then the
run-time complexity of the computation of the metric average A⊕t B is O ((n+ k) log n).

Proof. It follows from the proof of Proposition 6.6 that k is O (n2). Computation of the sets A
⋂
B,

A \ B, B \ A can be done in O (n+ k) log n and the combinatorial complexity of each of these sets is
bounded by k [15]. The segment Voronoi diagrams V D∂A and V D∂B can be computed inO (n log n) [8].
Since the metric faces in MF∂B (A\B) are computed by the overlay of the arrangements representing
A\B and V D∂B, with the combinatorial complexity of the result bounded by k, they can be found in
O (n+ k) log n. Computation of Mt (∂F, S (F )) for all metric faces in MF∂B (A\B) is performed in
O (k). The same bounds hold for metric faces in MF∂A (B\A). Finally we compute A⊕t B as in (6.1).
By the proof of Proposition 6.6 the combinatorial complexity of A ⊕t B is O (k), so the corresponding
arrangement can be computed in O (n+ k) log n [9,15].

�

7. Conclusions

In this work we present an algorithm for the computation of the metric average of 2D sets with
piecewise linear boundaries. Our algorithm provides a computational method for the approximation of
set valued functions with images in R2 from a finite number of samples, by techniques based on the
metric average [3–5].

Although the metric average of 2D sets is defined by operations on each point in the two operand sets,
our algorithm reduces the computation to manipulation of 1D objects. This is achieved using segment
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Voronoi diagrams and planar arrangements. The implementation of the algorithm uses the relevant
geometric algorithms in the CGAL [10] library.

The main idea of our algorithm, namely the simplification of the computation of the metric average
with Voronoi diagrams has straightforward extension to any two objects in any finite dimension, such
that the Voronoi diagrams of the boundaries of the two objects are well defined. A natural extension
of this work is to develop and implement an algorithm for the computation of the metric average of
two polyhedra.

Whereas the metric average is of interest in applications where the Hausdorff distance is important, it
does not possess good geometric properties, as is indicated by the examples in Section 5. For geometric
applications, it is of interest to develop set averaging operations that possess good geometric properties,
i.e. comprise a gradual transformation of the geometric shape between the two sets, and also have the
“metric property” relative to some metric. The first two authors have recently developed a new set
averaging operation with good geometric features, having the “metric property” relative to the measure
of the symmetric difference of two sets [16].
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