

 An O(n)-Round Strategy for the Magnus-Derek Game

An O(n)-Round Strategy for the Magnus-Derek Game

Algorithms 2010, 3(3), 244-254; doi:10.3390/a3030244

Article

An O(n)-Round Strategy for the Magnus-Derek Game

Zhivko Nedev

International University VNU-HCM, Block 6, Linh Trung Ward, Thu Duc District, HCM City, Vietnam

Received: 8 June 2010; in revised form: 6 July 2010 / Accepted: 8 July 2010 / Published: 15 July 2010

Abstract:

We analyze further the Magnus-Derek game, a two-player game played on a round table with n positions. The players jointly control the movement of a token. One player, Magnus, aims to maximize the number of positions visited while minimizing the number of rounds. The other player, Derek, attempts to minimize the number of visited positions. We present a new strategy for Magnus that succeeds in visiting the maximal number of positions in [image: there is no content] rounds, which is the optimal number of rounds up to a constant factor.

Keywords:

algorithmic game theory; additive combinatorics; combinatorial games

1. Introduction

In this paper we analyze further the Magnus-Derek game, a two-player game introduced in [1]. The game is played on a circular table with n positions labeled consecutively from 0 to [image: there is no content] in a clockwise direction. A single token is initially placed at position 0. A round consists of the first player, Magnus (from magnitude) choosing an integer magnitude [image: there is no content], followed by the second player, Derek (from direction) choosing whether the token will move clockwise or counter-clockwise. The token is then moved ℓ positions in the chosen direction. Magnus’s primary goal is to maximize the total number of distinct positions visited by the token over the course of the game (and secondarily, to minimize the number of rounds), while Derek main aim is to minimize the number of positions visited. These goals are natural since for all n not exact power of 2, Derek has a strategy to prevent the token from visiting some of the positions [1]. For brevity, we will skip from now the word distinct in all expressions of type “maximize the total number of distinct positions visited.”

In our analysis we will use [image: there is no content] to represent the table of size n. Let [image: there is no content] denote the position of the token at the beginning of a round. The round then consists of Magnus choosing a magnitude [image: there is no content], Derek choosing a direction + or − (where the positive direction corresponds to “clockwise”), and the token moving to (K±ℓ)modn.

In [1,2], the following function on the set of positive integers was used. Let [image: there is no content] be an integer. Then

f*(n)=nif[image: there is no content]forsome[image: there is no content],[image: there is no content]p·notherwise,wherepisthesmallestoddprimefactorofn.

In [1] (and subsequently with a shorter proof in [2]), the following theorem was obtained.

Theorem 1.

	
Derek has a strategy to prevent the token from visiting more than [image: there is no content] positions no matter how long the game is played.

	
Magnus has a strategy to ensure the token visits at least [image: there is no content] positions.

One of the strategies previously given for Magnus by Nedev and Muthukrishnan requires [image: there is no content] rounds [1]. A recent paper by Hurkens, Pendavingh, and Woeginger gives an [image: there is no content]-round strategy [3]. In this paper, we will show that Magnus can visit [image: there is no content] positions in [image: there is no content] rounds, the optimal number of rounds up to a constant factor. Although some of the basic ideas in the two papers are the same, we wrote our paper well before the paper of Hurkens, Pendavingh, and Woeginger was published [4], and our results were found independently from theirs .

Our strategy for Magnus requires that he know the factorization of n. To our knowledge, this is the first game in which the ability to factor conveys an advantage to a player. In another variant of the game called the Vector game [5], the players’ goals are reversed: Magnus wants to minimize the set of occupied positions, while Derek aims to maximize the number of positions visited. The ability to factor can also give a crucial advantage to a player here. Moreover the analysis of this second variant of the game is also not completely done yet; it created several new open problems (see [5,6]).

As mentioned in [1], the sequence [image: there is no content] diverges non-monotonically and non-linearly to ∞. This sequence has not previously appeared in the Encyclopedia of Integer Sequences [7].

2. An [image: there is no content]-Round Strategy for Magnus

We will give an algorithmic strategy, recursive on the factorization of the table size n, for Magnus to visit [image: there is no content] positions in [image: there is no content] rounds. We begin with the cases where n is a power of two or is prime.

2.1. When n is a power of two

An optimal strategy was given in [1] for when the table size is a power of two. We quote only the result here:

Theorem 2.

(from [1]) If [image: there is no content] for some integer k, then [image: there is no content], and Magnus can visit all positions in [image: there is no content] rounds, regardless of Derek’s strategy.

2.2. When n is prime

Let [image: there is no content] be prime. Since n is prime, by Theorem 1 we have that f*(n)=[image: there is no content]nn=n−1. We will prove that there is a strategy for Magnus to visit at least [image: there is no content] positions in at most [image: there is no content] rounds.

Our key idea (which coincides with the idea in [3]) behind Magnus’ strategy is as follows. Let K denote the current position of the token, and let [image: there is no content] denote the set of unvisited positions. Notice that if K is equidistant (with distance d) from two different positions in [image: there is no content], then Magnus can choose magnitude d and, regardless of Derek’s choice, the token will move to one of those positions. We will use this fact by constructing a nested sequence of sets [image: there is no content]⊆M([image: there is no content])⊆M(2)([image: there is no content])⊆⋯⊆M([image: there is no content])([image: there is no content])=[image: there is no content] with the property that for [image: there is no content], each position in M(i)([image: there is no content])∖M(i−1)([image: there is no content]) is equidistant from a pair of positions in M(i−1)([image: there is no content]). Then, if K∈M(i)([image: there is no content])∖M(i−1)([image: there is no content]) for some i, Magnus can move the token to a position in M(i−1)([image: there is no content]) in one round. Since K∈[image: there is no content]=M([image: there is no content])([image: there is no content]), Magnus can always move the token to an unvisited position in at most [image: there is no content] rounds. This idea may be applied repeatedly, with the set of unvisited positions [image: there is no content] decreasing in size by one each time. We will show that in this manner [image: there is no content] positions can be visited.

We begin with some necessary standard notations and background from additive number theory. Let A and B be two subsets of [image: there is no content]. Then the sumset of A and B is

A+B:={e∈[image: there is no content]:thereexista∈A,b∈Bsuchthate≡a+b(modn)}

and a q-dilate of A is

q*A:={e∈[image: there is no content]:thereexistsa∈Asuchthate≡qa(modn)}.

We now define a map on the family of subsets of [image: there is no content].

Definition 1. Let A⊆[image: there is no content], [image: there is no content]. The set of all middles between pairs of elements of A is defined by

M(A):={z∈[image: there is no content]:thereexistx,y∈Asuchthat2z≡x+y(modn)}.

When n is odd, 2−1∈[image: there is no content] exists and then

M(A)={2−1(x+y)modn:x,y∈A}.

We will use the notation [image: there is no content] to denote the recursive application to A of the map M, i times, and define [image: there is no content]. For example, [image: there is no content].

Thus [image: there is no content], and for each pair of points [image: there is no content], all points equidistant from x and y are contained in [image: there is no content]. When n is odd, there is a unique midpoint equidistant from x and y.

Remark 1. If n is odd, and A is the arithmetic progression {a0+iδ:0≤i≤m−1}⊆[image: there is no content] for some [image: there is no content], and m, then [image: there is no content] and is consequently easy to compute.

Bellow, we use the following well known Cauchy-Davenport Theorem [8,9].

Theorem 3.

If p is a prime, and [image: there is no content] are two non-empty subsets of [image: there is no content], then

[image: there is no content]

Lemma 1.

Let [image: there is no content] be prime and A⊆[image: there is no content]. Then for any positive integer i,

[image: there is no content]

(1)

Proof.

Since n is odd, [image: there is no content] and so [image: there is no content]. By Theorem 3, [image: there is no content]. Thus the lemma holds for [image: there is no content].

Applying the above inequality recursively, we have that [image: there is no content] where [image: there is no content] is the i-th term of the recurrence relation

am=2am−1−1,form=1,…,i;a0=|A|.

By induction, it is easy to prove that for any positive integer i, [image: there is no content]=2i(|A|−1)+1. This is trivially true for [image: there is no content]. Assuming the inductive hypothesis for [image: there is no content], it follows that

[image: there is no content]=2a[image: there is no content]−1=2(2[image: there is no content](|A|−1)+1)−1=2i(|A|−1)+1.

 

☐

Lemma 2.

Let [image: there is no content] be prime, and A⊆[image: there is no content], [image: there is no content]. Then A⊆M(A)⊆M(2)(A)⊆⋯⊆M([image: there is no content])(A)=[image: there is no content]. Note that it is possible to have M(i)(A)=[image: there is no content] for i<[image: there is no content].

Proof.

The inclusions follow from the definition of the map M.

For [image: there is no content], we have 2[image: there is no content](|A|−1)+1>n. Then by Lemma 1, |M([image: there is no content])(A)|=n, and so M([image: there is no content])(A)=[image: there is no content]. ☐

Lemma 3.

Let [image: there is no content] be prime, and let A⊆[image: there is no content], [image: there is no content]. Then if [image: there is no content] for some [image: there is no content], there exist two distinct positions [image: there is no content] such that z is equidistant from x and y.

Proof.

Since [image: there is no content], by definition of the map M there exist positions [image: there is no content] such that [image: there is no content]. Thus z is equidistant from x and y. Since [image: there is no content], x and y are distinct. ☐

Thus, given a set of unvisited positions [image: there is no content], we are able to construct a nested sequence of sets with the desired property. While |[image: there is no content]|≥2, Lemmas 2 and 3 guarantee that Magnus can move the token to an unvisited position. By repeated use of this idea until |[image: there is no content]|=1, Magnus can visit all but one position. It remains to show that this takes at most [image: there is no content] rounds.

Remark 2. Notice that Derek controls which single position remains unvisited. We will use this fact when we give the strategy for composite table sizes in Section 2.3.

Theorem 4.

Let the table size [image: there is no content] be prime. Then Magnus can visit [image: there is no content] positions in at most [image: there is no content] rounds.

Proof.

Throughout this proof we will use [image: there is no content] to denote the remaining set of unvisited positions, and K the current position of the token. At the beginning of the game, |[image: there is no content]|=n−1, since the token initially occupies a position. Let [image: there is no content].

In order to count the number of rounds required, we use the following idea. Let k be a non-negative integer. By equation (1) in Lemma 1, if |[image: there is no content]|≥[image: there is no content][image: there is no content]+1, then |M(k)([image: there is no content])|≥min{n,[image: there is no content](|[image: there is no content]|−1)+1} = n. It follows that M(k)([image: there is no content])=[image: there is no content], and so Magnus can move the token to an unvisited position in at most k rounds.

Initially, |[image: there is no content]|=n−1=[image: there is no content]20≥[image: there is no content]21+1, so M(1)([image: there is no content])=[image: there is no content] and only one round is required to move the token to an unvisited position. Magnus may continue to visit unvisited positions at the cost of one round per position until |[image: there is no content]|<[image: there is no content]21+1. Thus he visits [image: there is no content]20−[image: there is no content]21 positions in 1×[image: there is no content]20−[image: there is no content]21 rounds.

Similarly, when [image: there is no content]21+1>|[image: there is no content]|≥[image: there is no content]22+1, he may visit [image: there is no content]21−[image: there is no content]22 positions at the cost of at most two rounds per position, for a total of at most 2×[image: there is no content]21−[image: there is no content]22 rounds.

Eventually, |[image: there is no content]|=1=[image: there is no content]2h+1<[image: there is no content]2h+1+1, and he must stop. We thus have that the total number of rounds is at most

1×[image: there is no content]20−[image: there is no content]21+2×[image: there is no content]21−[image: there is no content]22+⋯+h×[image: there is no content]2h−1−[image: there is no content]2h+(h+1)×[image: there is no content]2h−[image: there is no content]2h+1=[image: there is no content]20+[image: there is no content]21+⋯+[image: there is no content]2h−(h+1)[image: there is no content]2h+1(bytelescoping)≤[image: there is no content]20+1+[image: there is no content]21+1+⋯+[image: there is no content]2h+1−(h+1)(since[image: there is no content]2h+1=1)=(n−1)(120+121+122+⋯+12h)≤2(n−1).

 

☐

2.3. When n is composite

Let n be composite, and let p be the smallest odd prime factor of n. Then by Theorem 1 we have [image: there is no content]. We will give a recursive strategy for Magnus, proving that he can visit at least [image: there is no content] positions in at most [image: there is no content] rounds. The better bound on the number of rounds is obtained using the recursive strategy from [1].

We present the strategy in two phases. In the first phase of the strategy, Magnus partitions the table into p congruence classes each of size [image: there is no content], moves the token to [image: there is no content] of these classes using a strategy based on Section 2.2, and in each of these [image: there is no content] classes recursively applies this two-phase strategy to visit at least f*([image: there is no content]) positions within the class. Thus at the end of the first phase, Magnus will have visited at least (p−1)f*([image: there is no content]) positions, and at most (p−1)[image: there is no content]=f*(n) positions. If Magnus succeeds in visiting [image: there is no content] positions then the second phase is not needed. Otherwise, he uses a second technique to visit some of the unvisited positions left over from the first phase, bringing the total number of visited positions up to [image: there is no content].

2.3.1. The first phase: Decomposition into classes, and recursive visitation

Lemma 4 (Decomposition).

Let the table size be [image: there is no content], where a and b are integers greater than 1. Suppose that on a table of size a (resp. b), Magnus has a strategy α (resp. β) to visit [image: there is no content] (resp.[image: there is no content]) positions in [image: there is no content] (resp. [image: there is no content]) rounds. Then on the table of size n, Magnus is able to visit [image: there is no content] positions in [image: there is no content] rounds.

Proof.

We partition the table positions (i.e., the elements of [image: there is no content]) into the b congruence classes modulo b, each of size a:

[image: there is no content]={i+jb:0≤j≤a−1}for0≤i≤b−1

We first note that Magnus can restrict his play to positions in a particular class. Let K denote the current position of the token, and suppose that [image: there is no content] for some [image: there is no content]. Magnus can then play as follows on an imaginary table of size a whose positions are the elements of [image: there is no content]. On each round, Magnus employs strategy α to calculate a magnitude ℓ as if the table size were a, but then chooses [image: there is no content] as the actual magnitude to use. Then the new position of the token will be K±bℓ∈[image: there is no content], and so the token will remain within the class.

Magnus’ overall strategy will be to repeatedly move the token to an unvisited class, and then, by restricting his play to positions within that class, use strategy α to visit [image: there is no content] positions within that class in [image: there is no content] rounds.

Now suppose that [image: there is no content] for some i, and notice that for any magnitude ℓ, (K±ℓ)modn∈[i±ℓ(modb)]b. Magnus can use this idea to play on an imaginary table of size b whose positions correspond to the b congruence classes. By employing strategy β on this imaginary table, Magnus will visit [image: there is no content] different classes in [image: there is no content] rounds. Each time the token lands in an unvisited class, Magnus temporarily restricts his play to that class, and employs strategy α until he has visited [image: there is no content] positions within that class. He then continues with strategy β until he reaches another unvisited class.

Since Magnus can visit [image: there is no content] classes in [image: there is no content] rounds, and can visit [image: there is no content] positions in [image: there is no content] rounds within each class, the total number of positions visited will be [image: there is no content] and the total number of rounds will be [image: there is no content]. ☐

Magnus applies the Decomposition Lemma (Lemma 4) by letting [image: there is no content], where p is the smallest odd prime factor of n, and partitioning the table into p congruence classes modulo p, each of size [image: there is no content]. He then proceeds as in the proof of the lemma, letting strategy β be the technique for playing on a table of prime size from Section 2.2. Theorem 4 then guarantees that he will visit [image: there is no content] congruence classes. As he visits each class, he restricts his play to it and, depending on the size of the class, chooses one of the following strategies to be strategy α:

	Case 1)

	
If the size is a power of two, he uses the strategy from Section 2.1. Then by Theorem 2 he will visit all positions in the class.

	Case 2)

	
If the size is a prime, he uses the strategy from Section 2.2. Then by Theorem 4 he will visit all but one position in the class.

	Case 3)

	
Otherwise, if the size is composite, he uses the strategy being described here (Section 2.3), applied recursively.

We will use the terminology exploring a class to refer to the process of restricting play to a class and choosing an appropriate strategy α. We will also say that a class that has been visited in this fashion has been explored.

See phase 1 of algorithm 1, below, for a pseudo-code description of this strategy.

Recall that Magnus’ goal is to visit [image: there is no content] positions (in as few rounds as possible). Since only [image: there is no content] classes have been visited, Magnus will have visited [image: there is no content] positions only if he visited all [image: there is no content] positions in each of the [image: there is no content] classes. But this is possible only when [image: there is no content] for some integer k, since only in case 1 does Magnus visit every position in a class. So for most table sizes n, the first phase is insufficient for Magnus to visit [image: there is no content] positions. We solve this issue by visiting in the second phase some of the leftover unvisited positions, either in the classes that Magnus has explored, or in the one class that was never visited.

2.3.2. The second phase: Visiting leftover unvisited positions

Here, Magnus’ strategy is the same as in Phase 2 from [1]. At the end of the first phase, there is one unvisited class, which we denote [image: there is no content], and [image: there is no content] explored classes, which we denote [δ1]p,…,[δ[image: there is no content]]p. Inductively we assume that on a table of size [image: there is no content] Magnus can visit f*([image: there is no content]) positions in at most 3([image: there is no content]−1) rounds. (This will follow from the inductive hypothesis in our proof in Section 2.3.3.) It follows that at the end of the first phase at least f*([image: there is no content]) positions have been visited in each of the explored classes. Without loss of generality we assume the worst case, in which exactly f*([image: there is no content]) positions were visited. Let [image: there is no content] be the second smallest odd prime factor of n. By Theorem 1, f*([image: there is no content])=[image: there is no content]−1[image: there is no content]·[image: there is no content]. Then in each explored class, [image: there is no content]−f*([image: there is no content])=np[image: there is no content] positions remain unvisited.

We consider two ways in which Magnus can bring the total number of visited positions up to [image: there is no content]. If Magnus visits all np[image: there is no content] leftover positions in each of the explored classes, then he will have visited every position in [image: there is no content] classes for a total of f*(n)=(p−1)[image: there is no content] positions. If instead he visits f*([image: there is no content]) positions of [image: there is no content], then he will have visited all but np[image: there is no content] positions in every class, leaving n[image: there is no content]≤[image: there is no content] unvisited positions in total. But this means that he has visited [image: there is no content] positions.

Therefore Magnus’ goal will be to either move the token to the class [image: there is no content], at which point he can recursively explore that class, or to visit all unvisited positions in [δ1]p,…,[δ[image: there is no content]]p.

Notice that since γ,δ1,…,δ[image: there is no content] are the p distinct elements of p, we have that γ,2−1(δ1+γ),…,2−1(δ[image: there is no content]+γ) are also distinct in [image: there is no content]. Therefore, up to re-ordering, we may write the explored classes as [2−1(δ1+γ)]p,…,[2−1(δ[image: there is no content]+γ)]p. Let [image: there is no content] be an unvisited position for some [image: there is no content], and suppose for the moment that Magnus is able to move the token to a position [image: there is no content]. Consider what happens when Magnus chooses the magnitude [image: there is no content]. If Derek chooses the positive (clockwise) direction, then the token moves to [image: there is no content], and Magnus visits the unvisited position. Otherwise, the token moves to K−(J−K)∈[image: there is no content].

Using the above idea, Magnus has the following strategy. As in the first phase, he uses the technique from Section 2.2 to play on an imaginary table of size p, where each position on this table corresponds to a class. Then by Theorem 4 he will visit [image: there is no content] classes. If at any time he visits the class [image: there is no content], he recursively explores it and is done. Otherwise, he will visit each of the [image: there is no content] explored classes, [2−1(δ1+γ)]p,…,[2−1(δ[image: there is no content]+γ)]p. Each time he visits a class [image: there is no content] he has the opportunity to visit an unvisited position in the class [image: there is no content].

By repeating this process np[image: there is no content] times (for the np[image: there is no content] unvisited positions in each explored class) he will eventually visit all unvisited positions in every explored class.

We give Magnus’ strategy in pseudo-code in algorithm 1, below. It remains to prove that this strategy visits at least [image: there is no content] positions in at most [image: there is no content] rounds.

	Algorithm 1 Recursive algorithm for exploring a table of size n.

	
	Require:

	
p is the smallest prime factor of n.

	Require:

	
The table is partitioned into p congruence classes modulo p, [image: there is no content], each of size [image: there is no content].-

	1:

	
//Phase 1: Visit [image: there is no content] congruence classes, and recursively explore each one.

	2:

	
//In the below loop, Magnus plays on an imaginary table of size p where each position corresponds to a class, as in the Decomposition Lemma (Lemma 4). The strategy from Section 2.2 is used as strategy β in the Lemma.

	3:

	
while fewer than [image: there is no content] classes have been visited do

	4:

	
 Move to an unvisited class [image: there is no content]. //May require multiple rounds.

	5:

	
 //Now choose strategy α.

	6:

	
 if |[image: there is no content]|=[image: there is no content] for some integer k then

	7:

	
 Use the strategy from Section 2.1 to visit all [image: there is no content] positions of [image: there is no content] in [image: there is no content]−1 rounds.

	8:

	
 else if |[image: there is no content]|=q, where q is prime then

	9:

	
 Use the strategy from Section 2.2 to visit [image: there is no content] positions of [image: there is no content] in at most [image: there is no content] rounds.

	10:

	
 else

	11:

	
 Recursively apply this algorithm to the class [image: there is no content].

	12:

	
 end if

	13:

	
end while

	14:

	
//Phase 2: Visit remaining unvisited positions.

	15:

	
//We denote the unvisited class [image: there is no content], and the explored classes [δ1]p,…,[δ[image: there is no content]]p.

	16:

	
while there are unvisited positions in [δ1]p,…,[δ[image: there is no content]]pdo

	17:

	
 Mark the classes [δ1]p,…,[δ[image: there is no content]]p as not yet visited in this iteration.

	18:

	
 //In the below inner loop, Magnus again plays on an imaginary table of size p where each position corresponds to a class, using the strategy from Section 2.2.

	19:

	
 while more than one class remains marked do

	20:

	
 Move to a marked class [image: there is no content] for some [image: there is no content]. //May require multiple rounds.

	21:

	
 Choose the magnitude so that the token will move to either [image: there is no content] or an unvisited position in [image: there is no content]. //Token moves in one round.

	22:

	
 if the token is in [image: there is no content]then

	23:

	
 Recursively apply this algorithm to the class [image: there is no content], and stop.

	24:

	
 else

	25:

	
 Unmark the class [image: there is no content].

	26:

	
 end if

	27:

	
 end while

	28:

	
end while

2.3.3. Proof of the strategy

We will prove that Magnus’ strategy allows him to visit at least [image: there is no content] positions in at most [image: there is no content] rounds. First notice that Derek controls whether the token ever reaches [image: there is no content]. For in Section 2.2, Derek controls which position remains unvisited (Remark 2), and so here controls which class remains unvisited (on the imaginary table whose positions are classes). Furthermore, each time the token is in a class [image: there is no content] for some i, Derek controls whether the token moves to [image: there is no content].

We will thus make the assumption that Magnus visits [image: there is no content] if and only if he does not visit any of the leftover unvisited positions in the explored classes. This assumption is justified by Derek’s primary goal to minimize the number of positions visited by Magnus. For if Magnus is allowed to visit both [image: there is no content] and at least one leftover unvisited position in the explored classes, the total number of visited positions will be greater than [image: there is no content] and since [image: there is no content], the total number of visited positions will be greater than [image: there is no content].

Theorem 5.

Let [image: there is no content] where p is the smallest odd prime factor of n. If Derek does not allow for more than [image: there is no content] visited positions and therefore is consistent in his choices (as stated above), then there exists a strategy for Magnus to visit at least [image: there is no content] positions in at most [image: there is no content] rounds.

Proof.

Let s denote the number of odd prime factors of n. We will prove by induction on s that Magnus visits at least [image: there is no content] positions in at most [image: there is no content] rounds.

	Base case 1)

	
[image: there is no content], [image: there is no content]. Then by Theorem 2 Magnus visits f*(n)=[image: there is no content] positions in [image: there is no content] rounds.

	Base case 2)

	
[image: there is no content], p prime. Then by Theorem 4 Magnus visits [image: there is no content] positions in at most [image: there is no content] rounds.

	Base case 3)

	
[image: there is no content], [image: there is no content], p prime. Then in the first phase Magnus visits all [image: there is no content] positions in each of [image: there is no content] classes. He requires at most [image: there is no content] rounds to visit the classes, and [image: there is no content]−1 to explore each class, for a total of at most 2(p−1)+(p−1)([image: there is no content]−1)≤3(n−1) rounds. No second phase is needed.

We now let [image: there is no content] and assume the following inductive hypothesis: If n has [image: there is no content] odd prime factors then Magnus can visit at least [image: there is no content] positions in at most [image: there is no content] rounds.

Let n=[image: there is no content][image: there is no content]p2⋯ps, where [image: there is no content] are prime and listed in increasing order. Then there are [image: there is no content] classes, each of size n[image: there is no content]. Magnus’ goal is to visit at least f*(n)=[image: there is no content]−1[image: there is no content]n positions, or equivalently, to leave at most n[image: there is no content] positions unvisited.

In the first phase of the algorithm, Magnus visits [image: there is no content]−1 classes and recursively applies the algorithm to explore within each class. Then by the inductive hypothesis, he leaves at most n[image: there is no content]−f*(n[image: there is no content])=n[image: there is no content]p2 unvisited positions in each explored class. Without loss of generality, we assume the worst case of n[image: there is no content]p2 unvisited positions. Furthermore, [γ][image: there is no content] has not been visited, so a total of ([image: there is no content]−1)n[image: there is no content]p2+n[image: there is no content] positions remain unvisited.

Magnus requires at most 2([image: there is no content]−1) rounds to visit the [image: there is no content]−1 classes (Theorem 4 as applied in the first phase). Furthermore, by the inductive hypothesis he requires at most 3(n[image: there is no content]−1) rounds to recursively explore each class. So by lemma 4, at the end of the first phase, at most 2([image: there is no content]−1)+3([image: there is no content]−1)(n[image: there is no content]−1) rounds have occurred.

For the second phase we consider two cases.

	Case A)

	
Magnus never visits [γ][image: there is no content]. Then in order to achieve his goal Magnus must visit all of the leftover unvisited positions in the [image: there is no content]−1 explored classes. This requires that he repeatedly visit the explored classes n[image: there is no content]p2 times (using the strategy from Section 2.2). Each time, he takes at most 3([image: there is no content]−1) rounds, 2([image: there is no content]−1) from Theorem 4, and [image: there is no content]−1 from the one round to move from [2−1(δi+γ)][image: there is no content] to [δi][image: there is no content] for each 1≤i≤[image: there is no content]−1. Thus a total of at most 3n[image: there is no content]p2([image: there is no content]−1) rounds are required for the second phase.

	Case B)

	
Magnus visits [γ][image: there is no content], but no leftover unvisited positions in the explored classes. By the inductive hypothesis, Magnus leaves at most n[image: there is no content]p2 positions unvisited in [γ][image: there is no content]. Since this is also true of the explored classes, a total of at most [image: there is no content]n[image: there is no content]p2≤n[image: there is no content] positions remain unvisited, and Magnus achieves his goal.

We now count how many rounds this requires. At the end of the first phase, at most one round is required to move the token to [γ][image: there is no content], for if the token is not already in [γ][image: there is no content] then it is in [2−1(δi+γ)][image: there is no content] for some i. By the inductive hypothesis Magnus requires at most 3(n[image: there is no content]−1) rounds to explore [γ][image: there is no content]. Thus a total of at most 1+3(n[image: there is no content]−1) rounds are required for the second phase.

In both cases, Magnus visits at least [image: there is no content] positions, and a simple calculation shows that he achieves this goal in at most [image: there is no content] rounds. ☐

2.3.4. Efficiency of the strategy

In order for Magnus to calculate magnitudes in the above algorithm, he must know at each round the smallest integer k such that M(k)([image: there is no content])=[image: there is no content] (see the proof of Theorem 4 in Section 2.2). In general, the only way we know to determine this is to consecutively compute [image: there is no content],M([image: there is no content]),M(2)([image: there is no content]),… until we reach [image: there is no content]. Furthermore, Lemma 3 requires that as we calculate these sets we record for each position z∈M(i)([image: there is no content])∖M(i−1)([image: there is no content]) ([image: there is no content]) a pair of positions x,y∈M(i−1)([image: there is no content]) such that z is equidistant from x and y. With a naive algorithm, this is computationally time consuming. Given a set S of size m, computing [image: there is no content] requires calculations of 2−1(x+y)(modm) for each [image: there is no content], and so is [image: there is no content].

3. Open Problems

We propose several open problems for future study.

	
What is the most efficient way for Magnus to compute magnitudes in this strategy?

	
Can we prove a tighter upper bound on the number of rounds required by Magnus? We conjecture that there is a strategy for Magnus to visit [image: there is no content] positions in at most [image: there is no content] rounds, where c is a small constant.

	
Can we find a nontrivial lower bound for the number of rounds Magnus needs to visit [image: there is no content] positions?

	
Which strategy of Derek’s would maximize the number of rounds Magnus requires to visit [image: there is no content] positions?

Acknowledgments

I am very grateful to Noam Sturmwind for editing assistance.

References

	1.
Nedev, Z.; Muthukrishnan, S. The Magnus-Derek Game. Theoret. Comput. Sci. 2008, 393, 124–132. [Google Scholar] [CrossRef]

	2.
Nedev, Z. Universal Sets and the Vector Game. INTEGERS: Electr. J. Combinat. Number Theory 2008, 8, #A45. [Google Scholar]

	3.
Hurkens, C.A.J.; Pendavingh, R.A.; Woeginger, G.J. The Magnus–Derek game revisited. Inf. Proc. Lett. 2008, 109, 38–40. [Google Scholar] [CrossRef]

	4.
Sturmwind, N.; University of Victoria, Victoria, BC, Canada. Personal communication, 23 June 2008.

	5.
Nedev, Z.; Quas, A. Balanced Sets and The Vector Game. Int. J. Number Theory 2008, 4, 339–347. [Google Scholar] [CrossRef]

	6.
Nedev, Z. An algorithm for finding a nearly minimal balanced set in [image: there is no content]. Math. Comput. 2009, 78, 2259–2267. [Google Scholar] [CrossRef]

	7.
Sloane, N. On line Encyclopedia of Sequences. Availible online: http://www.research.att.com/ njas/sequences/ (accessed on 8 July 2010).

	8.
Cauchy, A.L. Recherches sur les nombres. J. Ec. Polytech. 1813, 9, 99–116. [Google Scholar]

	9.
Davenport, H. On the addition of residue classes. J. Lond. Math. Soc. 1935, 10, 30–32. [Google Scholar] [CrossRef]

© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.

nav.xhtml

 algorithms-03-00244

 		
 algorithms-03-00244

