
Algorithms 2010, 3, 224-243; doi:10.3390/a3030224

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Segment LLL Reduction of Lattice Bases Using Modular
Arithmetic
Sanjay Mehrotra ? and Zhifeng Li

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston,
IL 60208, USA

? Author to whom correspondence should be addressed; E-Mail: mehrotra@iems.northwestern.edu;
Tel.: +1-847-491-3155; Fax: +1-847-491-8005.

Received: 28 May 2010 / Accepted: 29 June 2010 / Published: 12 July 2010

Abstract: The algorithm of Lenstra, Lenstra, and Lovász (LLL) transforms a given integer
lattice basis into a reduced basis. Storjohann improved the worst case complexity of LLL
algorithms by a factor of O(n) using modular arithmetic. Koy and Schnorr developed
a segment-LLL basis reduction algorithm that generates lattice basis satisfying a weaker
condition than the LLL reduced basis with O(n) improvement than the LLL algorithm. In
this paper we combine Storjohann’s modular arithmetic approach with the segment-LLL
approach to further improve the worst case complexity of the segment-LLL algorithms by a
factor of n0.5.

Keywords: Lattice; LLL basis reduction; reduced basis; successive minima; segments;
modular arithmetic; fast matrix multiplication

1. Introduction

Given row vectors b1, . . . , bn ∈ Zd an integer lattice L (for short lattice) is defined as

L :=

{
v ∈ Zd|v =

n∑
i=1

zibi, zi ∈ Z, bi ∈ Zd
}

Several important theoretical and practical problems benefit from studying lattices. These include
problems in geometry [1], cryptography [2], and integer programming [3]. An important problem,

Algorithms 2010, 3 225

whose study dates back to 18th century, is the problem of finding i-th successive minimum of a lattice,
i = 1, . . . , n. This problem involves finding the smallest number λi (and possibly an associated lattice
element) such that there are i linearly independent elements in L of length at most λi [1, Chapter 8]. The
shortest lattice vector problem is a special case of finding the shortest lattice vector only. This is a difficult
problem to solve. For example, it is shown by Ajtai [4] that the problem of finding the shortest non-zero
lattice vector under l2 norm is NP-hard under randomized reduction [4]. Micciancio [5] showed that an
α-approximate version of this problem (under randomized reduction) remains NP-hard for any α <

√
2.

The problem of finding the shortest lattice vector under l∞ norm is shown in the class NP-complete by
van Emde Boas [6].

Knowing that finding the exact shortest lattice basis is difficult in the worst case, the problem of
finding approximate successive minima is addressed by many researchers. In this context various
notions of reduced bases have been proposed. In particular, notions of LLL-reduced, semi-reduced,
Korkine-Zolotarev reduced, Block 2k reduced, semi block 2k reduced, and segment reduced bases are
used by Lenstra, Lenstra, and Lovász [7], Schönhage [8], Kannan [9], Schnorr [10], and Koy and Schnorr
[11], respectively. We define these and additional concepts below.

1.1. Definitions of Reduced Lattice Bases

Without loss of generality we assume that b1, . . . , bn are linearly independent. Superscript t is used
to denote the transpose of a vector or a matrix. The l2 norm is given by ‖y‖ = (yyt)0.5. [x] denotes the
nearest integer to a real number x (if non-unique then choose the candidate with smallest magnitude),
dxe denotes the smallest integer greater than or equal to x, and bxc denotes the largest integer less than
or equal to x. Ti,j is the entry at the i-th row and j-th column of a matrix T. We use I to represent an
identity matrix, and ei to represent its i-th column.

Let B ∈ Zn×d be such that the i-th row of B is given by bi for 1 ≤ i ≤ n. For a given lattice basis
b1, . . . , bn the Gram-Schmidt algorithm determines the associated orthogonal vectors b∗1, . . . , b

∗
n together

with coefficients Γj,i(1 ≤ j < i ≤ n) defined inductively by

b∗i = bi −
i−1∑
j=1

Γj,ib
∗
j , where Γj,i = b∗jb

t
i/‖b∗j‖2 (1.1)

This can be rewritten as B = ΓtB∗, where B∗ denotes the matrix whose i-th row is b∗i , and Γ is a
upper triangular matrix with Γi,i = 1 and Γj,i (j < i) is given in (1.1). Let Di,...,j := ‖b∗i ‖2 · · · ‖b∗j‖2.
We denote D1,...,l by dl. Note that dn is the Gramian determinant of B. When we are considering k
segments of B and B∗, Dk(l−1)+1,...,kl := ‖b∗k(l−1)+1‖2 · · · ‖b∗kl‖2 is the segment Gramian determinant,
and for simplicity we denote it by D(l), where k is fixed.

D1. A basis is called size-reduced if |Γj,i| ≤ 1/2 for 1 ≤ j < i ≤ n. The notion of a size reduced basis
goes back to Hermite [12].

D2. A basis is called (δ,η)-reduced if (δ − Γ2
i,i+1)‖b∗i ‖2 ≤ ‖b∗i+1‖2 for i = 1, . . . , n − 1, δ ∈ (1

4
, 1],

|Γj,i| ≤ η, η ∈ [1/2,
√
δ). For δ = 3

4
and |Γj,i| ≤ 1/2 it is called 2-reduced because the above

inequality becomes ‖b∗i ‖2 ≤ 2‖b∗i+1‖2. A basis is called δ-LLL reduced if it is size-reduced and

Algorithms 2010, 3 226

δ-reduced. It is simply called LLL reduced if it is size-reduced and 2-reduced. The LLL reduced
basis was introduced by Lenstra, Lenstra, and Lovász [7].

D3. A basis is called semi-reduced if it is size-reduced and satisfies weaker conditions
‖b∗i ‖2 ≤ 2n‖b∗i+1‖2 for i = 1, . . . , n− 1.

D4. A basis is called Korkine-Zolotarev basis if it is size-reduced and if ‖b∗i ‖ = λ1(Li) for i = 1, . . . , n,

where Li is the orthogonal projection of L on the orthogonal complement of span{b1, . . . , bi−1}.

The concepts of block reduced and segment reduced basis are defined by dividing a basis into k blocks
or segments, i.e., n = mk, and then specifying appropriate conditions on basis vectors within each block
and among blocks.

D5. A basis b1, . . . , bmk is called Block KZ reduced basis if it is size-reduced and if the projections
of all 2k-blocks bik+1, . . . , b(i+2)k on the orthogonal complement of span{b1, . . . , bik} for
i = 0, . . . ,m− 2 are Korkine-Zolotarev reduced.

D6. A basis b1, . . . , bmk is called k-segment LLL reduced if the following conditions hold.

C1. It is size-reduced.

C2. (δ − Γ2
i,i+1)‖b∗i ‖2 ≤ ‖b∗i+1‖2 for i 6= kl, l ∈ Z, i.e., vectors within each segment of the basis

are δ-reduced, and

C3. Letting α := 1/(δ− 1
4
), two successive segments of the basis are connected by the following

two conditions.

C3.1. D(l) ≤ (α/δ)k
2
D(l + 1) for l = 1, . . . ,m− 1.

C3.2. δk2‖b∗kl‖2 ≤ α‖b∗kl+1‖2 for l = 1, . . . ,m− 1.

The case where k = O(
√
n) is of special interest.

1.2. Discussion on Various Reduced Bases

The ratios ‖bi‖
2

λ2i
, i = 1, . . . , n are used to measure the quality of various reduced bases defined

above. We call these approximation ratios. Known bounds on approximation ratios for various reduced
bases, known algorithms for generating them, the worst case running time of these algorithms, and the
bit-precision used in performing the computations (addition, subtraction, multiplication and division) in
these algorithms are summarized in Table 1. The bounds in this table assume k = O(

√
n), and d = O(n).

Following [7,8] we use Msc := max{2n,M0, d1, . . . , dn}, where M0 := maxi=1,...,n ‖bi‖2 to measure the
complexity of these algorithms. Note that Msc = 2O(n2) when ‖bi‖ = 2O(n).

The work of Lenstra, Lenstra, and Lovász [7] is seminal on finding a reduced lattice basis, and its
implication on the problem of finding successive minima. Their algorithm for finding an LLL reduced
basis is polynomial time. In particular, for Msc = 2O(n2) in the worst case it requires O(n5) arithmetic
operations using O(n2) bit numbers. Since the development of the LLL algorithm significant effort has
been directed towards developing methods for finding an improved quality basis in polynomial time,
and finding a worse quality basis with a better worst case computational complexity. Research has also
progressed towards generalizing the LLL algorithm to arbitrary norms [18,19].

Algorithms 2010, 3 227

Table 1. Summary of various LLL-related Algorithms.

Algorithm Lower Bounds on ‖bi‖
2

λ2
i

Upper Bounds on ‖bi‖
2

λ2
i

Arithmetic Steps Precision

LLL reduced [7] α1−iδn αn−1δ−n O(n3 log1/δMsc) O(lnMsc)

LLL reduced [13] α1−iδn αn−1δ−n O(n3 log1/δMsc) O(n+ lnM0)

Modular LLL [14] α1−iδn αn−1δ−n O(n2 log1/δMsc) O(lnMsc)

Semi-reduced [8] α1−i−2n α2n−1 O(n2 log1/δMsc) O(lnMsc)

Kannan [9] 4
i+3

i+3
4

nO(n) lnM0 O(n2 lnM0)

Block KZ [10,15] 1 4
i+3

γ
−2 i−1

2k−1

2k γ
2 n−i
2k−1

2k
i+3
4

O(n(
√
n/2+o(

√
n)) + n4 lnM0) O(n lnM0)

Segment LLL [11] α1−iδ3n αn−1δ−3n O(n2 log1/δMsc) O(lnMsc)

Mod-Seg LLL α1−iδ3n αn−1δ−3n O(n1.5 log1/δMsc) O(lnMsc)

Mod-Seg LLL FMM α1−iδ3n αn−1δ−3n O(n1.382 log1/δMsc) O(lnMsc)

Nguyen and Stehle [16] L2 α1−iδn α1−iδ−n O(n2(n+ ln(M0)) ln1/δ(Msc)) 1.58n fl
Schnorr [17] SLL α1−iδ7n αn−1δ−7n O(n2 lnn log1/δMsc) 3n+ d fl

1 γn is the Hermite constant which is defined as γn = sup{λ1(L)2d
− 1

n
n : for lattices L of rank n}.

The algorithm by Schönhage [8] finds a semi-reduced basis. It requires O(n) less time over the
LLL algorithm. However, the bounds on the approximation ratios for a semi-reduced basis are of
a significantly lower quality. A better complexity for finding a semi-reduced basis is also proved by
Storjohann [14].

Kannan [9] proposes an algorithm for finding Korkine-Zolotarev (KZ) basis that runs in
O(nO(n) lnM0) arithmetic operations on O(n2 lnM0) bit integers. Kannan’s algorithm uses the LLL
algorithm as a black box. This bound for finding a KZ basis is improved by Schnorr [10] to
O(nn/2+o(n) + n4 lnM0) arithmetic operations using O(n lnM0) bit integers. The bound for Schnorr’s
algorithm in Table 1 is given for performing a KZ reduction of a block of size 2k. Schnorr [10]
further introduces the notion of a semi block 2k reduced basis, and uses this concept to show that a
O(k(n/k))-approximate shortest vector is found in O(n2(kk/2+o(k) + n2) ln(M0)) arithmetic operation
using O(n lnM0) bit integers. This leads to a hierarchy of algorithms for finding the shortest lattice
vector, and a semi block 2k reduced basis. The complexity in Table 1 is a special case where k = b2

√
nc.

Koy and Schnorr [20] propose the concept of a segment reduced basis, and give an algorithm
for finding such a basis. Similar to the semi-reduction algorithm of Schönhage [8] the segment
reduction algorithm works with a subset of vectors in the lattice basis at a time. However,
it worsens the approximation ratios only slightly, and in a controllable fashion. Moreover, it
also achieves an O(n) reduction in the worst case complexity over the LLL algorithm. Since
the writing of the original draft of this paper improvements in computational complexity of the
LLL and segment LLL algorithms have also been achieved by showing that the methods can
be modified to perform computations using O(n) bit floating point numbers. In particular,
Nguyen and Stehle [16] rearranged computations in the Cholesky factorization algorithm and
used Babai’s nearest point algorithm to update the Cholesky factor coefficients to show that the
LLL-algorithm can be correctly implemented with O(n) bit floating point precision computations.
By making use of results from numerical analysis on Householder transformation using floating
point arithmetic and rearrangement of computations in Gram-Schmidt algorithm Schnorr [17] has
given an improved segment reduction algorithm that performs O(n5+ε) bit operations for input bases
of length 2O(n).

Algorithms 2010, 3 228

1.3. Paper Contribution and Organization

In this paper we show that the modular arithmetic computation approach of [14] can be combined
with the segment concept in [20] to develop a modular segment reduction algorithm. The novelty of
Storjohann’s is in rearranging the computations in LLL and delaying certain updates, which result in
a computational savings by a factor of O(n). The savings of O(n) in [20] result from localizing the
updates. We show that by combining the strength of the modular arithmetic approach with the Segment
LLL algorithm an O(n0.5) further saving is possible in the worst case when initial integer basis vectors
have 2O(n) magnitude and d = O(n). We also show that it is possible to further improve this complexity
by using fast matrix multiplication.

This paper is organized as follows. In the next section we review the LLL basis reduction algorithm
of Lenstra, Lenstra, and Lovász [7]. In addition we explain the basic computational observations of
Storjohann in this section. In Section 3 we give Storjohann’s modular LLL reduction algorithm and
give the essential results from [14]. Additional notation and concepts needed to describe the modular
approach are also given in this section. In Section 4 we give the segment basis reduction algorithm.
In Section 5 we describe the modular segment reduction algorithm proposed in this paper, and give its
worst case complexity result.

2. Methods for LLL-Reduced Lattice Bases

2.1. The LLL Basis Reduction Algorithm

The LLL algorithm performs two essential computational steps. These are: (i) Size reduction of B
by ensuring that |Γj,i| ≤ 1/2, 1 ≤ j < i ≤ n; (ii) swap of two adjacent rows of B, and subsequent
restoration of Γ. We now explain these two steps.

Size Reduction of B

Let [b̂1, . . . , b̂n]=[b1, . . . , bk−1, bk − [Γj,k]bj, . . . , bn] (j < k) be a basis obtained from b1, . . . , bn. It
can be rewritten as B̂ = U(j, k)B, where U(j, k) = I − [Γj,k]eke

T
j is an elementary unimodular matrix.

It is easy to see that B̂ = Γ̂tB∗, where Γ̂ = Γ − [Γj,k]Γeje
T
k . Note that B∗ is unchanged as a result of

this operation. The operation results in |Γ̂j,k| ≤ 1/2. This computation is called the size reduction of bk
against bj , j < k. Note that Γ̂ is obtained from Γ (i.e., Γ is updated) in O(n) arithmetic operations. After
initial Γ is computed, we can size reduce the entire basis by recursively applying this step in the order
(k, j) = (n, n− 1), (n, n− 2), . . . , (n, 1), (n− 1, n− 2), . . . , (2, 1). This is summarized in the methods
SizeReduceVector and SizeReduceBasis. The method SizeReduceBasis is presented in a more general
setting to allow for size reduction of limited number of vectors in B. Also, note that B need not be
updated since all the information required to reduce B is contained in Γ. The update of B can be stored
in a sequence of elementary unimodular matrices or their product. We represent this matrix by U .

Algorithms 2010, 3 229

Figure 1. Size Reduction of a Basis Vector.

Method: SizeReduceVector (B (or U), Γ, k, j)
ϑ = [Γj,k], bk = bk − ϑbj (or Uk = Uk − ϑUj);
FOR i = 1, . . . , j

Γi,k = Γi,k − ϑΓi,j

Figure 2. Size Reduction of a Basis.

Method: SizeReduceBasis (B (or U), Γ, n, k)
FOR j = n, . . . , k

FOR i = j − 1, . . . , 1

SizeReduceVector(B (or U), Γ, j, i);

Swap of Two Adjacent Rows of B

Let [b̂1, . . . , b̂n] = [b1, . . . , bk, bk−1, . . . , bn] be a basis obtained from b1, . . . , bn. It can be rewritten
as B̂ = U(k − 1, k)B, where U(k − 1, k) is a permutation matrix that permutes the (k − 1)-th row
with the k-th row of B. This operation requires updating ‖b∗k−1‖2 and ‖b∗k‖2 of B∗ and the coefficients
of column/row k − 1 and k of Γ. This can be done by the following recurrence using µ := Γk−1,k,
ν := ‖b∗k‖2 + µ2‖b∗k−1‖2:

Γk−1,k = µ‖b∗k−1‖2/ν, ‖b∗k‖2 = ‖b∗k−1‖2‖b∗k‖2/ν, ‖b∗k−1‖2 = ν, (2.2)[
Γj,k−1

Γj,k

]
=

[
Γj,k

Γj,k−1

]
for j = 1, . . . , k − 2, (2.3)[

Γk−1,j

Γk,j

]
=

[
1 Γk−1,k

0 1

][
0 1

1 −µ

][
Γk−1,j

Γk,j

]
, for j = k + 1, . . . , n. (2.4)

We refer to the procedure implementing above recurrence by Swap (B (or U),Γ, k, k − 1)).
The absolute value of the coefficients in the (k− 1)-th and k-th rows of Γ obtained after the swap can

become larger than 1/2, a further size reduction step is performed to ensure that these coefficients are less
than 1/2. Note that while the restoration of Γ resulting from swap requires O(n) arithmetic operations,
the size reduction step requires O(n2) operations. Hence, the worst case effort resulting from a swap of
two adjacent rows is O(n2).

The Lenstra, Lenstra, and Lovász [7] algorithm for finding an LLL-reduced basis is summarized in
Figure 3. The number of swaps and the effort needed to restore the size reduced property ofB determines
the worst case complexity of the LLL algorithm.

Lenstra, Lenstra, and Lovász [7] maintain size reduced property of B for two reasons. The first
reason is in checking the condition in the IF statement of the LLL algorithm. This allows us to produce
an LLL-reduced basis upon the termination of their algorithm. Second, the size reduced property of B is
used to bound the size of intermidate numbers generated in the algorithm, which is necessary to establish
polynomial time complexity of the algorithm.

Algorithms 2010, 3 230

Figure 3. The LLL Basis Reduction Algorithm.

Algorithm: LLL [7]
INPUT: B ∈ Zn×d, δ;
OUTPUT: An LLL-reduced basis B;
[Gram-Schmidt] Compute Γ and ‖b∗i ‖, i = 1, . . . , n;
[Size Reduction] SizeReduceBasis(B,Γ,n,1);
Set k = 2;
[LLL iterations] WHILE k ≤ n DO

IF ‖b∗k‖2 < (δ − Γ2
k−1,k)‖b∗k−1‖2 THEN

Swap (B,Γ, k, k − 1);
SizeReduceBasis (B,Γ, n, k);
IF k > 2 THEN k ← k − 1;

ELSE
k ← k + 1;

Figure 4 rearranges the computations in the LLL algorithm of Figure 3 without changing the
algorithm. For the moment we are not concerned with the issue of the size of intermediate numbers.
In particular, the algorithm in Figure 4 will produce the same basis as the algorithm in Figure 3. In fact,
if the computations are performed in infinite precision, then the step indicated in♠ is not even necessary.
If this step is deleted, then the cost of the restoration of Γ after each swap reduces from O(n2) to O(n)

arithmetic operations. Storjohann [14] achieves this while maintaining finite precision with computation
on integers of appropriate length by using modular arithmetic.

Figure 4. The LLL Basis Reduction Algorithm with Rearranged Computations.

Algorithm: LLL [7]
INPUT: B ∈ Zn×d, δ;
OUTPUT: An LLL-reduced basis B;
[Gram-Schmidt] Compute Γ and ‖b∗i ‖, i = 1, . . . , n;
[Size Reduction] SizeReduceBasis(B,Γ,n,1);
Set k = 2;
[LLL iterations] WHILE k ≤ n DO

SizeReduceVector(B,Γ,k,k − 1);
IF ‖b∗k‖2 < (δ − Γ2

k−1,k)‖b∗k−1‖2 THEN
Swap(B,Γ, k,k − 1);
IF k > 2 THEN k ← k − 1;

ELSE
♠ For j = k − 2, . . . , 1 SizeReduceVector(B,Γ,k,j);
k ← k + 1;

Algorithms 2010, 3 231

3. Storjohann’s Improvements

We now describe Storjohann’s [14] modifications. The LLL algorithm is first described as a fraction
free algorithm to allow all computations on integer (not rational) numbers. The modular arithmetic
modification that allows one to maintain finite precision is given subsequently.

3.1. The LLL-Reduction with Fraction Free Computations

For the matrix BBt we have an integral lower triangular matrix F and an integral upper triangular
matrix T such that T = F (BBt) (See Geddes, Czapor, and Labahn [21]). F and T are called the fraction
free factors of BBt. Fraction free factors of a matrix are computed in O(n3) arithmetic operations using
standard matrix multiplication. It is known that

T = F (BBt) =

d1

. . . Ti,j
...

.
dn

 (3.5)

where Ti,j = djΓi,j . Recall that BBt is positive definite since the row vectors of B are linearly
independent. Hence T and F are unique. Also, F = diag{1, d1, . . . , dn−1}Γ−t, T = diag{d1, . . . , dn}Γ,
‖b∗i ‖2 = di/di−1 while taking d0 = 1, and d1, . . . , dn are integers because b1, . . . , bn are in Zd. Note also
that TF t = diag{d1, d1d2, d2d3, . . . , dn−1dn}.

Storjohann [14] gave a fast matrix multiplication algorithm for computing F and T . It requires
O(nθ ln(n)(lnMsc)

1+ε) bit operations on integers of bit length O(lnMsc), where θ < 2.376 and ε is
a positive constant when the fast matrix multiplication algorithm of Coppersmith and Winograd [22] is
used. θ = 3 and ε = 1 when the standard matrix multiplication is used.

In Figure 5 we give Storjohann’s rearrangement of the computations of Figure 4 using fraction
free computation. The ModifiedLLL algorithm performs two types of unimodular operations. (i)
FFReduce: subtracting a multiple of a row of B from another row of B, and (ii) FFSwap: swapping a
row of B with an adjacent row of B. The ModifiedLLL algorithm works by recording the unimodular
row operations on B in a unimodular matrix U initially set to be an identity matrix, and updating the
entries of T . There is no need to update B or B∗ in the algorithm, except in a post processing step. It
is sufficient to update matrices U and T during the algorithm’s iterations. The fraction free updates of
U and T corresponding to these unimodular operations are given in Figures 6 and 7, respectively. Note
that one execution of FFReduce or FFSwap is performed in O(n) arithmetic operations.

Algorithms 2010, 3 232

Figure 5. Modified LLL Basis Reduction Algorithm.

Algorithm: ModifiedLLL [14]
INPUT: B ∈ Zn×d, δ;
OUTPUT: An LLL-reduced basis B;
(1) [Fraction free Gaussian elimination]

T ← F (BBt);
(2) [δ-reduction and size reduction]

k = 2, U = In;
WHILE k ≤ n DO

FFReduce(U ,T ,k,k − 1,[Γk−1,k]);
IF dk

dk−1
< (δ − Γ2

k−1,k)
dk−1

dk−2
THEN

/* Case 1. */
FFSwap(U, T, k);
IF k > 2 THEN k ← k − 1;

ELSE
/* Case 2. */
♠ FOR j from k − 2 to 1 DO FFReduce(U, T, k, j, [Γj,k]);
k ← k + 1;

(3) [Post Processing]
B ← UB;

Figure 6. Fraction Free Subtract Subroutine.

Subroutine: FFReduce(U, T, k, r, q)
/* Subtract q times row r from row k of U and update T . */
row(U, k)← row(U, k)− q ∗ row(U, r);
col(T, k)← col(T, k)− q ∗ col(T, r);

Figure 7. Fraction Free Swap Subroutine.

Subroutine: FFSwap(U, T, k)
/* Switch rows k − 1 and k in U and update T . */
switch rows k − 1 and k in U ;
row(T, k)← (1/Tk−1,k−1)(Tk−2,k−2 ∗ row(T, k) + Tk−1,k ∗ row(T, k − 1));
switch rows k − 1 and k of T ;
switch columns k − 1 and k of T ;
row(T, k)← (1/Tk−2,k−2)(Tk−1,k−1 ∗ row(T, k)− Tk−1,k ∗ row(T, k − 1));

Algorithms 2010, 3 233

The LLL and ModifiedLLL algorithms use ∆ :=
∏n−1

i=1 di to measure progress. The FFSwap step of
the algorithm reduces ∆ by a factor δ [7]. This is because when bk and bk−1 are swapped, ‖b∗k−1‖2 ‖b∗k‖2

remains constant, and the new value of ‖b∗k−1‖2 is reduced at least by a factor δ. As a consequence dk−1

is reduced by a factor δ, while all other di do not change. The value of ∆ is unchanged in the FFReduce
step of the algorithm because B∗ does not change after this step. Since 1 ≤ ∆ ≤ Mn−1

sc , Case 1 in
the ModifiedLLL algorithm occurs only O(n log1/δMsc) times. Hence this part of the algorithm is
executed in O(n2 log1/δMsc) arithmetic operations. Case 2 of the algorithm can also occur at most
O(n log1/δMsc) times, each requiring O(n2) arithmetic operations. Hence, this part of the algorithm is
executed in O(n3 log1/δMsc) arithmetic operations. Finally a δ-LLL reduced basis is generated by UB,
which is performed in O(n2d) operations under standard matrix multiplication, and in O(n1.376d) using
the algorithm of Coppersmith and Winograd [14,22]. Lenstra, Lenstra, and Lovász [7] showed that the
bit length of the numbers on which the arithmetic operations are performed is bounded by O(log2Msc).
This gives the complexity result in Table 1, where d = O(n) for simplicity.

The following lemma gives bounds on the size of intermediate lattice bases generated during the LLL
and ModifiedLLL algorithms. This property is used when using computations with modular arithmetic.

Lemma 1 [7]. Let B be an input basis to the LLL and ModifiedLLL algorithms. The quantities
maxi{‖b∗i ‖} and maxi{di} are non-increasing in the LLL and ModifiedLLL algorithms. Furthermore,
upon termination

‖bi‖2 ≤ nM0, for 1 ≤ i ≤ n

Proof: Recall that size reduction/subtract does not change B∗, consequently for all i, ‖b∗i ‖ is unchanged
in this step. Swapping bi and bi−1 decreases ‖b∗i−1‖ by a factor of δ and the updated ‖b∗i ‖ is bounded by old
‖b∗i−1‖. Hence, the non-increasing property is established. We have ‖bi‖2 = ‖b∗i ‖2 +

∑i−1
j=1 Γ2

j,i‖b∗j‖2 ≤
nM0, since ‖b∗i ‖ ≤ ‖bi‖ ≤M0 in the beginning, and throughout the LLL and ModifiedLLL algorithms.
The bounds obviously hold at termination. �

3.2. The Modified LLL Algorithm with Modular Arithmetic

Storjohann [14] uses modular arithmetic to keep the intermediate numbers bounded during the
algorithm’s iterations. Given an integer a, and an integer M > 0, we write a (mod M) to mean the
unique integer r congruent to a modulo M in the symmetric range, that is, with −b(M − 1)/2c ≤ r ≤
bM/2c. Similarly, U(mod M) stands for the same operation for all entries of matrix U .

The modular basis reduction algorithm of Storjohann [14] is given in Figures 8 and 9. Its worst
case computational complexity is given in Table 1. The notable difference of this algorithm from
the ModifiedLLL algorithm is in the modular arithmetic operation that is performed in the methods
ModReduce and ModSwap.

Let M = 2d(nM0)1/2e + 1 so that by Lemma 1 the entries in the reduced basis matrix upon the
termination of the ModifiedLLL algorithm are bounded in magnitude by (M − 1)/2. The modular
approach hinges on the observation that UB(mod M) = ŪB(mod M), where Ū = U(mod M).
Note that in the “infinite” precision version of the ModifiedLLL algorithm, where the ♠ step is not
performed, one allows U to grow. However, in the modular arithmetic version the elements of U and T
remain bounded.

Algorithms 2010, 3 234

Figure 8. The Modular LLL Basis Reduction Algorithm.

Algorithm: ModularLLL [14]
INPUT: B ∈ Zn×d, δ,M ;
OUTPUT: An LLL-reduced basis B;
(1) [Fraction Free Gaussian elimination]

T ← F (BBt);
(2) [δ-reduction]

k = 2, U = In, and M = 2d(nmax(‖b1‖2, . . . , ‖bn‖2))1/2e+ 1;
WHILE k ≤ n DO

ModReduce(U, T,M, k, k − 1, [Γk−1,k]);
IF dk

dk−1
< (δ − Γ2

k−1,k)
dk−1

dk−2
THEN

ModSwap(U, T,M, k);
IF k > 2 THEN k ← k − 1;

ELSE
k ← k + 1;

(3) [Size Reduction]
FOR k from 2 to n DO

FOR j from k − 1 to 1 DO ModReduce(U, T,M, k, j, [Γk,j]);
(4) [Post Processing]

B := UB(modM);

Figure 9. ModSubtract and ModSwap subroutines.

Subroutine: ModReduce(U, T,M, k, r, q)
/* Subtract q times row r from row k of U and update T . */
FFReduce(U, T, k, r, q);
FOR i to k − 1 DO Ti,k ← Ti,k (mod didi−1M);
FOR j to d DO Uk,j ← Uk,j (modM);

Subroutine: ModSwap(U, T,M, k)
/* Swap rows k − 1 and k in U and update T . */
FFSwap(U, T, k);
FOR i to k − 2 DO Ti,k−1 ← Ti,k−1 (mod didi−1M);
FOR i to k − 1 DO Ti,k ← Ti,k (mod didi−1M);
FOR j from k to n DO Tk−1,j ← Tk−1,j (mod dk−1dk−2M);
FOR j from k + 1 to n DO Tk,j ← Tk,j (mod dkdk−1M);

We have shown above how to bound the entries of U by M = O(M0) during the course of the
algorithm. Lemma 1 has already bounded the diagonal entries di of T throughout the algorithm. The
following lemma gives a way to keep the off diagonal entries of T bounded.

Lemma 2 [14]. Let T be the matrix of (3.5), M a positive integer, and i and j indices with 1 ≤ i < j ≤
n. There exists a unit upper triangular integral matrix V such that TV is identical to T except in the

Algorithms 2010, 3 235

(i,j)-th entry which is reduced modulo didi−1M . Furthermore, V can be chosen so that V̄ = V (mod M)

is the identity matrix.

Storjohann [14] constructed the matrix V in Lemma 2 as follows. Let V0 be the n × n strictly
upper triangular matrix with column j equal to column i of F t and all other entries zero, let q =

[Ti,j/(didi−1M)], and take V = I − qMV0. Note that V tB is also a basis for L. Since the matrix
V tB is not calculated; the corresponding operation should be recorded in U . However, U remains
unchanged, because U = V̄ tU(mod M) and V̄ = In. The entries of matrix T corresponding to this row
transformation on B are updated by multiplying T with V , which has the desired effect of reducing Ti,j
modulo didi−1M . This modular reduction is performed in the ModReduce and ModSwap calculation.
We remark that because of the above operation the intermediate lattice bases B that correspond to the
matrix T may no longer be polynomially bounded in the size of the starting B, however, it is no longer
important because an intermediate B is never recorded.

4. The Segment LLL Reduction of Lattice Bases

Recently Koy and Schnorr [20] introduced the concept of a segment LLL reduced basis (See
Definition D7), and gave an algorithm for finding such a basis. The segment LLL reduced basis
satisfies a slightly weaker condition, however, it is computed by Koy and Schnorr [20] in O(n)

fewer arithmetic operations. The algorithm of Koy and Schnorr works on two segments of B, i.e.,
[Bl−1, Bl] = [bk(l−1)+1, . . . , bk(l+1)] at a time. This algorithm is outlined in Figure 10. The work in the
SegmentLLL algorithm comes from the calls to a subroutine Loc-LLL(l) given in Figure 11. Subroutine
Loc-LLL(l) performs a local LLL basis reduction on the segment [Bl−1, Bl] and records the operations
in a unimodular matrix Ul ∈ Z2k×2k, as explained below.

Figure 10. The Segment LLL Basis Reduction Algorithm.

Algorithm: SegmentLLL [20]
INPUT: B ∈ Zn×d, k,m, n = km, δ;
OUTPUT: A k-segment LLL-reduced basis B;
[Gram-Schmidt] Compute Γ, and ‖b∗i ‖, i = 1, . . . , n;
[Size Reduction] SizeReduceBasis(B,Γ,n,1);
Set l = 2;
[Segment-LLL Iterations] WHILE l ≤ m− 1 DO

Loc-LLL(l);
IF l > 2 and (D(l − 1) > (α/δ)k

2
D(l) or δk

2‖b∗k(l−1)‖
2 > α‖b∗k(l−1)+1‖

2)

THEN l← l − 1; ELSE l← l + 1;

The Local-LLL reduction (Subroutine Loc-LLL(l)) works on B̂ := [Bl−1, Bl]
t and Γ. The matrix Γ

in (4.6) is partitioned into segments with each segment has 2k basis vectors.

Algorithms 2010, 3 236

Γ =

1 · · · Γ1,k(l−1) Γ1,k(l−1)+1 · · · Γ1,k(l+1) Γ1,k(l+1)+1 · · · Γ1,n

. . .
...

...
...

...
...

1 Γk(l−1),k(l−l)+1 · · · Γk(l−1),k(l+1) Γk(l−1),k(l+1)+1 · · · Γk(l−1),n

1 · · · Γk(l−1)+1,k(l+1) Γk(l−1)+1,k(l+1)+1 · · · Γk(l−1)+1,n

. . .
...

...
...

1 Γk(l+1),k(l+1)+1 · · · Γk(l+1),n

1 · · · Γk(l+1)+1,n

. . .
...
1

≡

 ΓA

ΓC ΓE

 (4.6)

Figure 11. The Local LLL Iterations.

Algorithm: Loc-LLL(l)
INPUT: Γ, B, B̂, δ;
OUTPUT: Reduced B̂ and updated Γ;
Initialize Ul = I2k, (ΓC)beg = ΓC ;
[Local LLL-reduction]

SizeReduceBasis (Ul,ΓC ,2k,1);
δ-LLL reduce B̂ using the LLL-iterations while updating ΓC and
recording the unimodular operations in the matrix Ul
(i.e., perform Step 2 of ModifiedLLL on B̂);
(ΓC)end = ΓC ;

[Update B̂] B̂ ← U tl B̂;
[Segment Size Reduction]

Update ΓA ← ΓAUl;
ΓE ← (ΓC)endU

−1
l (ΓC)−1

begΓE ;
SizeReduceBasis (B,Γ,n,k(l − 1) + 1);

When working in Loc-LLL(l) all LLL swaps and size reductions are restricted to the input 2k

segment. Only the matrix ΓC is updated while performing the segment LLL swaps and size reductions.
The unimodular operations updating ΓA, and the operations required to update ΓE are stored in the
matrix Ul. The updates for ΓA and ΓE are performed only after it is no longer possible to perform an
LLL-swap based on the information in ΓC . ΓA and ΓE are updated as follows:

ΓA = ΓAUl, ΓE = (ΓC)endU
−1
l (ΓC)−1

begΓE

Here (ΓC)beg and (ΓC)end are ΓC matrices recorded at the beginning and end of the Local
LLL-reduction step in Loc-LLL(l). Since only matrix ΓC is updated during the LLL unimodular
operations in this segment the corresponding updates of ΓC and Ul are performed usingO(k2) arithmetic
operations. The total number of swaps in all calls to Loc-LLL(l) is bounded by O(n log1/δMsc), hence
the total work in the Local LLL-reduction step is bounded by O(nk2 log1/δMsc) arithmetic operations.

Algorithms 2010, 3 237

The cost of updating ΓA and ΓC , and performing the Segment Size Reduction step in each execution of
Loc-LLL(l) is O(ndk) arithmetic operations.

Let decr denote the number of times that the condition

(D(l − 1) > (α/δ)k
2

D(l) or δk
2‖b∗k(l−1)‖2 > α‖b∗k(l−1)+1‖2)

holds and l is decreased. The number of times Loc-LLL(l) is called is m−1+2 ·decr. Koy and Schnorr
[20] showed that decr ≤ 2m−1

k2
log1/δMsc < 2 n

k3
log1/δMsc. Hence the total work in the Segment Size

Reduction step of Loc-LLL(l) is O(n
3

k2
log1/δMsc) arithmetic operations when d = O(n). This leads to

the computational complexity result in Table 1 when k =
√
n and d = O(n). We have omitted details

on the bounds on the length of the elements in Ul and Γ (see Koy and Schnorr [20] for details).

5. The Modular Segment LLL Reduction with Modular Arithmetic

5.1. Algorithm and Its Complexity

We are now in a position to give our segment LLL reduction algorithm with modular arithmetic. It
finds a segment LLL reduced basis with an O(n0.5) improvement in the computational complexity when
Msc = 2O(n2). This algorithm is given in Figure 12. The major difference in the ModSegmentLLL and
SegmentLLL algorithms is in performing the ModLocSegmentLLL step presented in Figure 13. In
this subroutine we perform updates using modular arithmetic while working with B̂. The subroutines
ModReduce and ModSwap require O(k) operations in comparison to the O(k2) worst case operations
in the algorithm of Koy and Schnorr described in the previous section.

Figure 12. The Modular Segment LLL Basis Reduction.

Algorithm: ModSegmentLLL
INPUT: B ∈ Zn×d, k,m, n = km, δ, U = In,M ;
OUTPUT: A k-segment LLL-reduced basis UB(mod β);
(1) [Fraction free Gaussian elimination]

T ← F (BBt);
l = 2 and β = qβM ;

(2) [Modular Segment Iterations]
WHILE l ≤ m− 1 DO

ModLocSegmentLLL(l);

IF l > 2 and (D(l − 1) > (α/δ)k
2
D(l) or δk

2 dk(l−1)

dk(l−1)−1
> α

dk(l−1)+1

dk(l−1)
)

THEN l← l − 1; ELSE l← l + 1;
(3) [Global Size Reduction]

FOR i from 2 to n DO
FOR j from i− 1 to 1 DO ModReduce(U, T,M, i, j, [Γj,i]);

Algorithms 2010, 3 238

Figure 13. The Modular Local Segment LLL Basis Reduction.

Algorithm: ModLocSegmentLLL
INPUT: U, B̂, T, δ,M ;
OUTPUT: locally reduced B̂ and updated U, T ;
1. [Preprocess C] ModSegemntSizeReduce(C,W, β);

Cbeg := C;

Update U with U ←
 Ik(l−1)

W t

In−k(l+1)

 U(mod M), and A← AW (mod didi−1M);

2. [Local δ-Reduction] Initialize i = 2, Ul = I2k and β = qβM ;
WHILE i ≤ 2k DO

ModReduce(Ul, C, β, i, i− 1, [Γi−1,i]);
IF di

di−1
< (δ − Γ2

i−1,i)
di−1

di−2
THEN

ModSwap(Ul, C, β, i);
IF i > 2 THEN i← i− 1;

ELSE i← i+ 1;
3. [Postprocess C] ModSegmentSizeReduce(C,W, β),

Cnew ← C, Ul = WUl(mod β);
4. [Update A, U] A← AUl;

For all rows in A, Ai ← AiUl(mod didi−1M), where Ai is the ith row of A;

U ←
 Ik(l−1)

Ut
l

In−k(l+1)

 U(mod M);

5. [Update E] E ← HC−tnewUlC
t
begR

−1E, where H,R are given in the discussion.
For all rows in E, Ei ← Ei (mod didi−1M), where Ei is the ith row of E;

Figure 14. Size Reduction of a Segment Using Modular Arithmetic.

Algorithm: ModSegmentSizeReduce (C,W,β)
INPUT: C, β;
OUTPUT: updated C and unimodular matrix W ;
i = 2k,W = I;
FOR i = 2k, . . . , 2

FOR j = i− 1, . . . , 1

ModReduce(W,C, β, i, j, [Cj,i])

We now explain the steps in ModLocSegmentLLL. While working with the matrix B̂, let us partition

T =

 A

C E

similar to the partitioning of Γ in (4.6). We perform two types of unimodular operations on B̂ in the
ModLocSegmentLLL algorithm. The Preprocess C and Postprocess C steps are performed to ensure
that the lattice basis vectors corresponding to C are size reduced before and after performing the Local

Algorithms 2010, 3 239

δ-Reduction step. This allows us to bound the size of matrix Q needed to update E after completing the
Local δ-Reduction step.

The calls to ModReduce and ModSwap are as in the case of the ModularLLL algorithm with the
important difference that they are now performed on a segment. ModReduce subtracts a multiple of a
row (column) from another row (column). This unimodular operation is recorded by updating Ul modulo
β. The constant β used in the ModSegmentLLL algorithm is taken to be a multiple of M . A choice of
β is specified below in Lemma 4. This inferior value is used in the intermediate computations because
during the algorithm we don’t have a bound on the elements of B̂. However, the fact that the initial
and terminating B̂ are size reduced ensures that a proper bound on β is still possible. The subroutine
ModSwap performs all necessary computations to update C and Ul when two rows of B̂ are swapped.
The elements of C are recorded modulo didi−1β. As in the case of Storjohann’s modification of the LLL
algorithm, there is no need to record the modulo operations in Ul.

The matrix Ul is further updated in the Postprocess C step by incorporating all the unimodular
transformations recorded in W while working on the size reduction of the basis vectors corresponding
to C. Here the elements of Ul are recorded modulo β. Note that while Ul is recorded modulo β, U is
recorded moduloM . UpdatingA and U is straightforward. In Section 5.2 we show that the computations
involving Ul andA can be performed with integers ofO(lnMsc) bit length. To this end we use the results
from Storjohann [14] for his analysis of the semi-reduction algorithm.

The total computational effort in Steps 1, 3, 4, and 5 of the ModLocSegmentLLL algorithm is
O(nk2) arithmetic operations. Following [20] and [14, Theorem 18], there are at most n(log1/δMsc)

swaps in all the executions of the ModLocSegmentLLL algorithm, each swap requiringO(k) arithmetic
operations. Hence, we improve the total computational efforts in Step 2 [Modular Segment Iterations]
of the ModSegmentLLL algorithm to O(nk log1/δMsc) arithmetic operations. Since there are a total of
O(n

k3
log1/δMsc) calls to the ModLocSegmentLLL algorithm we are led to the following theorem.

Theorem 1 Using standard matrix multiplication, for k = O(
√
n) and d = O(n), Step 2 of

Algorithm ModSegmentLLL performs O(n1.5 log1/δMsc) arithmetic computations. We can perform
these computations using integers of bit length O(lnMsc).

The proof of the first statement in Theorem 1 is already complete. The second statement on the bit
length needed for computations in proved in Section 5.2. We note that Step 1 of the ModSegmentLLL
algorithm computes F and T , and Step 3 performs a global size reduction. Step 1 is performed in
O(n3) arithmetic operations on integers of bit length O(lnMsc) [14]. Step 3 is also performed in O(n3)

arithmetic operations on integers of bit length O(lnMsc). Therefore, we have the following corollary.

Corollary 1 For a basis b1, . . . , bn ∈ Zd and d = O(n), the running time of Algorithm
ModSegmentLLL is bounded by O(n1.5 log1/δMsc) arithmetic operations using integers of bit length
O(lnMsc).

The bound in Corollary 1 is n0.5 better than the bound in Algorithm SegmentLLL when Msc =

2O(n2), which is possible in the worst case. Section 5.2 is devoted to showing the correctness of Algorithm
ModSegmentLLL and proving Theorem 1.

Algorithms 2010, 3 240

5.2. Correctness of the ModSegmentLLL Algorithm

The following lemma allows us to compute U modulo M , and T modulo didi−1M during the
ModSegmentLLL algorithm.

Lemma 3 Upon termination, the reduced basis from the SegmentLLL and ModSegmentLLL
algorithms has the following upper bound

‖bi‖2 ≤ nM0 for 1 ≤ i ≤ n, and ‖b∗i ‖ ≤M0

throughout the algorithm.

Proof: Follow the proof of Lemma 2, while observing that size reduction or modular reduction of the
elements in T leave ‖b∗i ‖ unchanged. �

The following lemma of Schönhage allows to give a proper value of β, which is used to reduce the
entries of Ul and C modulo β. We now show that Ul, A, C, and E are correctly updated using integers
of O(lnMsc) bits.

Lemma 4 [8] Let B̂beg, B̂end ∈ Z2k×d be size-reduced bases. The unimodular matrix Û that transforms
B̂beg to B̂end, satisfies

‖Û‖1 ≤ (2k)2(
3

2
)2k−1Msc ≤M2

sc

where ‖Û‖1 = maxj{‖Û t
j‖1} and Û t

j is the j-th column of Û .

Lemma 4 allows to take β = qβM , where qβ = [(2dM2
sce + 1)/M] + 1 while reducing the entries of

Ul modulo β. Note that taking β as a multiple of M is important because Ul is used to update U whose
elements are computed modulo M.

Updating E

Let R be the 2k× 2k diagonal matrix with the i-th diagonal entry dk(l−1)+idk(l−1)+i−1 for 1 ≤ i ≤ 2k,
and H the 2k × 2k diagonal matrix with H1,1 = (Cnew)1,1dk(l−1) and Hi,i = (Cnew)i,i(Cnew)i−1,i−1 for
2 ≤ i ≤ 2k, where dk(l−1)+i, 1 ≤ i ≤ 2k are the diagonal entries of Cbeg. Following Storjohann’s
development of his algorithm for finding a semi-reduced basis in [14, Equation (29)], we can show that
the matrix E is updated by

Ẽ = QE, where Q =
1

dk(l−1)

H(C−1
new)tUldk(l−1)C

t
begR

−1

These computations are performed in a specific order to maintain integrality of operations: (i) backtrack
fraction free Gaussian elimination by pre-multiplying E by dk(l−1)C

t
begR

−1; (ii) pre-multiply by the
basis modular transformation matrix Ul; (iii) forwardtrack fraction free Gaussian elimination by
pre-multiplying the result from (ii) by (1/dk(l−1))H(C−1

new)t.
To establish a bound on the magnitudes of the integers in Ẽ, we need to bound ‖C−1

new‖∞. Let S be
the 2k× 2k diagonal matrix with the i-th diagonal entry (Cnew)i,i for 1 ≤ i ≤ 2k so that S−1Cnew is unit
upper triangular with all off diagonal entries ≤ 1/2, (Recall that the basis vectors corresponding to Cnew

Algorithms 2010, 3 241

are size-reduced). In particular, the entries in (S−1Cnew)−1 are 2k × 2k minors of (S−1Cnew) which is
bounded by (2k)k using Hadamard’s inequality. It follows that the entries in C−1

new = (S−1Cnew)−1S−1

are bounded by (2k)k because di ≥ 1, 1 ≤ i ≤ n. We get

‖Ẽ‖∞ = ‖QE‖∞ ≤ (2k)3‖H‖∞‖C−1
new‖∞‖Ul‖∞‖Ct

beg‖∞β
≤ (2k)3M2

sc(2k)k(2k)2(3/2)2k−1MscMscβ

≤ 2(2k)k+5(3/2)2k−1M6
sc (5.7)

The above inequality shows that the entries of Ẽ are bounded by O(lnMsc + k ln k) bit length.
Furthermore, if Ẽ is computed by multiplying E with matrices in Q from right to left, then all
intermediate matrices are fraction free, and the computations are performed on integers of size
O(lnMsc). This completes the proof for the correctness of the algorithm.

5.3. The Modular Segment LLL using Fast Matrix Multiplication

The complexity of Step 2 of the ModSegmentLLL algorithm is bounded by the following theorem
when using fast matrix multiplication.

Theorem 2 If d = O(n), k = dn
1

5−θ e, then using fast matrix multiplications Step 2 of the
ModSegmentLLL algorithm can be performed in O(n1+ 1

5−θ (log1/δMsc)) operations using integers of
bit length O(log2Msc).

Proof: As discussed above, there are at most n(log1/δMsc) LLL-exchanges, each requiring O(k)

arithmetic operations for a local δ-reduction. According to [20, Theorem 3], there are decr ≤
2 n
k3

log1/δMsc calls of the ModLocSegmentLLL algorithm. Each call requiresO(nkθ−1+nk+k2(ln k))

arithmetic operations for updating matricesA and T . The complexity of Step 2 of the ModSegmentLLL
algorithm is bounded by

O(nk(log1/δMsc)) +O(2
n

k3
(log1/δMsc)(nk

θ−1 + nk + k2(log2 k)))

≤O(nk(log1/δMsc)) +O(
n2

k4−θ (log1/δMsc))

=O(n1+ 1
5−θ (log1/δMsc))

when k = dn
1

(5−θ) e. �
Storjohann [14] showed that the fraction free Gaussian elimination and Step 3 of the algorithm can be

performed in O(nθ log n) arithmetic operations for θ = 2.376 with integers of bit length O(lnMsc).
The bound in Theorem 2 is O(n1.382(log1/δMsc)) where Msc > 2n. Hence Step 2 of Algorithm
ModSegmentLLL dominates the overall effort giving the following corollary.

Corollary 2 For d = O(n), and k = dn
1

(5−θ) e the running time of Algorithm ModSegmentLLL is
bounded byO(n1.382 log1/δMsc) operations using integers of bit lengthO(lnMsc) when using fast matrix
multiplication.

Algorithms 2010, 3 242

6. Concluding Remarks

Schnorr [17, Section 6] remarked that it is possible to further improve the running time of the iterated
subsegment algorithm in [17] using modular arithmetic. This is possible since the iterated subsegment
algorithm runs inO(n3 lnn) operations by recursively transporting local transforms from a segment-level
to the next higher segment. Note that by comparison the basic segment-LLL algorithm analyzed in this
paper requiresO(n3.5) operations while using standard arithmetic, andO(n3+ 1

5−θ) operations while using
fast matrix multiplications. In all cases the modular arithmetic computations are performed on numbers
of length O(n2). Unfortunately the worst-case O(n2) bit-length required for the modular arithmetic is
large, and floating point arithmetic is more practical. Numerical experience using implementations based
on floating point arithmetic were reported in [23] for the LLL algorithm and in [11] for the segment-LLL
reduction algorithm. The possibility of combining modular arithmetic with floating point computations
remains a topic of future research.

Acknowledgement

The research of both authors was funded by NSF grants DMI-0200151, DMI-0522765, and ONR
grant N00014-01-1-0048/P00002 and N00014-09-10518.

References

1. Cassels, J.W.S. An Introduction to the Geometry of Numbers; Springer-Verlag: Berlin, Germany,
1971.

2. Dwork, C. Lattices and their application to cryptography. Availible online: http://www.dim.
uchile.cl/m̃kiwi/topicos/00/dwork-lattice-lectures.ps (accessed on 15 June 2010).

3. Lenstra, H.W. Integer programming with a fixed number of variables. Math. Operat. Res. 1983,
8, 538–548.

4. Ajtai, M. The shortest vector problem in L2 is NP-hard for randomized reductions. In Proceedings
of the 30th ACM Symposium on Theory of Computing, Dallas, TX, USA, May 1998; pp. 10–19.

5. Micciancio, D. The shortest vector in a lattice is hard to approximate to within some constant.
SIAM J. Comput. 2001, 30, 2008–2035.

6. van Emde Boas, P. Another NP-complete partition problem and the complexity of computing short
vectors in lattices; Technical report MI-UvA-81-04; University of Amsterdam: Amsterdam, The
Netherlands, 1981.

7. Lenstra, A.K.; Lenstra, H.W.; Lovász, L. Factoring polynomials with rational coefficients. Math.
Ann. 1982, 261, 515–534.

8. Schönhage, A. Factorization of univariate integer polynomials by diophantine approximation
and improved lattice basis reduction algorithm. In Proceedings of 11th Colloquium Automata,
Languages and Programming; Springer-Verlag: Antwerpen, Belgium, 1984; LNCS 172, pp.
436–447.

9. Kannan, R. Improved algorithms for integer programming and related lattice problems. In
Proceedings of the 15th Annual ACM Symposium On Theory of Computing, Boston, MA, USA,
May 1983; pp. 193–206.

Algorithms 2010, 3 243

10. Schnorr, C.P. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput.
Sci. 1987, 53, 201–224.

11. Koy, H.; Schnorr, C.P. Segment LLL-reduction with floating point orthogonalization. LNCS,
2001, 2146, 81–96.

12. Hermite, C. Second letter to Jacobi. Crelle J. 1850, 40, 279–290.
13. Schnorr, C.P. A more efficient algorithm for lattice basis reduction. J. Algorithms, 1988, 9, 47–62.
14. Storjohann, A. Faster Algorithms for Integer Lattice Basis Reduction; Technical Report 249;

Swiss Federal Institute of Technology: Zurich, Switzerland, 1996.
15. Schnorr, C.P. Block Korkin-Zolotarev Bases and Suceessive Minima; Technical Report 92-063;

University of California at Berkley: Berkley, CA, USA, 1992.
16. Nguyen, P.Q.; Stehlé D. Floating-point LLL revisited. LCNS 2005, 3494, 215–233.
17. Schnorr, C.P. Fast LLL-type lattice reduction. Inf. Comput. 2006, 204, 1–25.
18. Kaib, M.; Ritter, H. Block Reduction for Arbitrary Norms. Availible online: http://www.mi.

informatik.uni-frankfurt.de/research/papers.html (accessed on 15 June 2010).
19. Lovász, L.; Scarf, H. The generalized basis reduction algorithm. Math. Operat. Res. 1992, 17,

754–764.
20. Koy, H.; Schnorr, C.P. Segment LLL-reduction of lattice bases. LNCS 2001, 2146, 67–80.
21. Geddes, K.O.; Czapor, S.R.; Labahn, G. Algorithms for Computer Algebra; Kluwer: Boston, MA,

USA, 1992.
22. Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. J. Symbol.

Comput. 1990, 9, 251–280.
23. Stehlé, D. Floating-point LLL: Theoretical and practical aspects. In The LLL Algorithm;

Springer-verlag: New York, NY, USA, 2009; Chapter 5.
24. Schönhage, A.; Strassen, V. Schnelle Multiplikation grosser Zahlen. Computing, 1971, 7,

281–292.

c© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
http://creativecommons.org/licenses/by/3.0/.

	Introduction
	Definitions of Reduced Lattice Bases
	Discussion on Various Reduced Bases
	Paper Contribution and Organization

	Methods for LLL-Reduced Lattice Bases
	The LLL Basis Reduction Algorithm
	 Size Reduction of B
	 Swap of Two Adjacent Rows of B

	Storjohann's Improvements
	The LLL-Reduction with Fraction Free Computations
	 The Modified LLL Algorithm with Modular Arithmetic

	The Segment LLL Reduction of Lattice Bases
	The Modular Segment LLL Reduction with Modular Arithmetic
	Algorithm and Its Complexity
	Correctness of the ModSegmentLLL Algorithm
	 Updating E

	The Modular Segment LLL using Fast Matrix Multiplication

	Concluding Remarks

