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1 LIMOS, Université Blaise Pascal, Ensemble scientifique des Cézeaux, F-63177 Aubière, France
2 Department of EE & CS, United States Military Academy, West Point, NY 10996, USA;

E-Mail: Jean.Blair@usma.edu (J.R.S.B.)
3 LIRMM, 161, Rue Ada, F-34392 Montpellier, France; E-Mails: bordat@lirmm.fr (J.P.B.);

simonet@iutmontp.univ-montp2.fr (G.S.)

? Author to whom correspondence should be addressed; E-Mail: berry@isima.fr;
Tel.: +033-4734-05357; Fax: +033-4734-07639.

Received: 1 January 2010; in revised form: 9 February 2010 / Accepted: 22 February 2010 /
Published: 24 March 2010

Abstract: Graph search algorithms have exploited graph extremities, such as the leaves of
a tree and the simplicial vertices of a chordal graph. Recently, several well-known graph
search algorithms have been collectively expressed as two generic algorithms called MLS
and MLSM. In this paper, we investigate the properties of the vertex that is numbered 1 by
MLS on a chordal graph and by MLSM on an arbitrary graph. We explain how this vertex
is an extremity of the graph. Moreover, we show the remarkable property that the minimal
separators included in the neighborhood of this vertex are totally ordered by inclusion.

Keywords: graph search; graph extremity; LexBFS; MCS; MLS

1 Introduction

Various properties that identify a vertex as an extremity of a graph have long been exploited in both
graph theory and the design of efficient graph algorithms. The endpoints of a path, for example, are its
two extremities; leaves are the extremities of a tree. Because this simple notion has proved very useful
in dealing with trees, graph theorists have endeavored to extend it to broader graph classes.

For chordal graphs (graphs with no chordless cycle of length greater than 3), extremities were
defined as the simplicial vertices (a vertex is simplicial if its neighborhood is a clique), concurrently by
Dirac [1] and by Lekkerkerker and Boland [2]. This concept led to efficient recognition algorithms for
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chordal graphs, based on the characterization of Fulkerson and Gross [3], who showed that a graph is
chordal if and only if it has a simplicial elimination scheme, which repeatedly finds a simplicial vertex
and removes it from the graph. This process defines an ordering α on the vertices, called a perfect
elimination ordering (peo for short).

To compute a peo efficiently, Rose, Tarjan and Lueker [4] introduced Algorithm LexBFS
(Lexicographic Breadth-First Search). LexBFS finds a peo in a single linear-time pass if the input graph
is chordal, numbering the vertices from n to 1. Thus the vertex numbered 1 by LexBFS is a simplicial
vertex (we will say that LexBFS ends on a simplicial vertex).

Tarjan and Yannakakis [5] later simplified LexBFS into MCS (Maximum Cardinality Search), which
likewise finds a peo in a chordal graph and thus ends on a simplicial vertex. Both algorithms work
by numbering the vertices from n to 1. They maintain, for each unnumbered vertex, a label which
corresponds to the set of already numbered neighbors. At each step, a vertex of maximum label is
chosen to be numbered next. (LexBFS and MCS are given in Section 3.) These algorithms, which are
graph search algorithms, have thus been specifically designed to find an extremity in a chordal graph. As
we will explain in Section 2, both LexBFS and MCS actually find a special kind of simplicial vertex.

For special classes of non-chordal graphs, search algorithms have been proved to define other forms
of extremities: Dahlhaus, Hammer, Maffray and Olariu [6] used MCS to find a domination elimination
ordering on HHD-free graphs; on AT-free graphs, Corneil, Olariu and Stewart [7] defined dominating
pairs of vertices, and used LexBFS to find such a pair efficiently [8], as the vertex numbered 1 by LexBFS
belongs to a dominating pair, and a second pass of LexBFS will find a second such vertex.

Results have also been proved on LexBFS for powers of graphs: Brandstädt, Dragan and Nicolai [9]
show that any LexBFS-ordering of a chordal graph is a common perfect elimination ordering of all odd
powers of this graph. (see also e.g. [10] on distance-hereditary graphs).

In view of these results, we will now focus our attention on a broader spectrum of search algorithms.
Corneil and Krueger [11] introduced MNS (Maximal Neighborhood Search), as an algorithm which

encompasses both LexBFS and MCS, and also computes a peo if the graph is chordal. Berry, Krueger and
Simonet [12] extended the family of search algorithms by defining a generic algorithm MLS (Maximal
Label Search). Algorithm MLS has two input variables: a graph and a labeling structure describing a set
of labels and a partial order on this set. Thus MLS defines a family of search algorithms, each different
labeling structure defining a search algorithm. LexBFS and MCS for example are obtained as instances
of MLS by choosing specific labeling structures, which are given in Section 3. [12] further showed
that the set of orderings of the vertices of a given graph computable by MLS (with all possible labeling
structures) is equal to the set of orderings computable by MNS, which ensures that MLS always finds a
peo if the graph is chordal.

In this paper, we investigate the extremities which the MLS family of algorithms define as vertex
number 1. Our aim is to contribute elements which can help in the design of graph algorithms, in
particular for exploiting structural properties of the input graph.
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The paper is organized as follows:

• In Section 2, we give some basic graph notations which we use throughout, and then discuss
chordal graphs and their extremities in further detail, explaining how minimal separators can help
refine the notion of simplicial vertex.

• We then go on to present minimal triangulations and their relationship with search algorithms.
Section 3 gives the general MLS search algorithm, as well as specific instances of MLS such as
LexBFS and MCS.

• After these sections which summarize and explain previous results, we examine in Section 4 the
specific structure of the minimal separators included in the neighborhood of the vertex labeled 1
by search algorithms, and also discuss the fashion in which these algorithms number the connected
components defined by these separators.

• In Section 5, we specify what kind of extremity this vertex numbered 1 is, depending on what kind
of labeling structure is used.

• Section 6 examines the special properties exhibited by LexBFS.

• In Section 7, we discuss the specific orderings defined by MLS and MLSM.

• In Section 8, we examine the problem of deciding whether a given vertex is the number 1 vertex
of an MLS execution.

• We conclude in Section 9.

2 Notations and Previous Results

We will begin this section with a few notations, then go on to discuss minimal separation, chordal
graphs and minimal triangulation.

2.1. Basic definitions and notations

All graphs in this work are undirected and finite. A graph is denoted G = (V,E), with n = |V |, and
m = |E|. The subgraph of G induced by the subset A of vertices is denoted G(A). The neighborhood of
a vertex x inG is denotedNG(x). The closed neighborhood isNG[x] = {x}∪NG(x). The neighborhood
of a set of vertices A is NG(A) = ∪x∈ANG(x)−A, and NG[A] = A∪NG(A) (we will omit subscript G
when the graph we work on is clear from the context.)

A clique is a set of pairwise adjacent vertices. A module is a subset X of vertices which share the
same external neighborhood: ∀x, y ∈ X,N(x)−X = N(y)−X .

A graph is connected if for any pair {x, y} of vertices, there is a path from x to y. When a graph is
not connected, the maximal connected subgraphs are called the connected components of the graph.

An ordering α on the set V of vertices is a one-to-one mapping from {1, 2, ..., n} to V . In every figure
of this paper showing an ordering α on V , a vertex x will be named by its number α−1(x). To simplify
notations, we will sometimes refer to vertex α(1) as simply 1.

Throughout, for any integers i < j, [i, j] will denote the set of integers {i, i+ 1, .., j}.
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2.2. Minimal separators and chordal graphs

A notion which is central to chordal graphs and their extremities is that of minimal separation:

Definition 2.1 A subset S of vertices of a connected graph G is called a separator (or sometimes a
cutset) if G(V − S) is not connected. A separator S is called an ab-separator if a and b lie in different
connected components ofG(V −S), a minimal ab-separator if S is an ab-separator and no proper subset
of S is an ab-separator. A separator S is a minimal separator, if there is some pair {a, b} such that S is
a minimal ab-separator.

Alternately, S is a minimal separator if and only if G(V − S) has at least 2 connected components
C1 and C2 such that N(C1) = N(C2) = S, and S is a minimal separator for any {x, y} with x ∈ C1

and y ∈ C2.

Example 2.2 In Figure 1, the minimal separators of the graph are: {b, c}, {c, d}, {b, f}. Minimal
separator {b, c} defines connected components {e, f} and {a, d, g, h}. In Figure 2, the minimal
separators are: {b}, {b, d}, {e}. Note how minimal separator {b} is included in minimal separator {b},
which minimally separates vertices {e, f, g} from vertices {a, c, d, h}, while minimal separator {b, d}
minimally separates vertices {a, c} from vertex h.

Figure 1. Chordal graph H1 with set of minimal separators {{b, c}, {c, d}, {b, f}}. The
substars of a are {b, c}. The moplexes are {g, h} and {e}. Vertex a is simplicial but does not
belong to a moplex. and {c, d}.

Figure 2. Chordal graph H2 with set of minimal separators {{b}, {b, d}, {e}}. {a, c} is a moplex.
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Dirac [1] introduced the concept of minimal separator in order to characterize chordal graphs as the
class for which every minimal separator is a clique. This notion was concurrently (though implicitly)
used by Lekkerkerker and Boland [2], as they defined the notion of substar: the substars of a vertex x
are the minimal separators included in the neighborhood of x. [2] characterized chordal graphs as the
graphs for which every substar of every vertex is a clique. We will see later on in this paper that the
notion of substar will help us refine some notions of extremities.

Definition 2.3 Let G = (V,E) be a graph, let x be a vertex of V , let (Ci) be the connected components
of G(V −N [x]). The substars of x are the elements of (NG(Ci)).

Property 2.4 The substars of x are the minimal separators included in NG(x).

Example 2.5 In Figure 1, the connected components ofG(V −N [a]) are: C1 = {e, f} andC2 = {g, h}.
N(C1) = {b, c}, N(C2 = {c, d}, thus the substars of vertex a are {b, c} and {c, d}.

Berry and Bordat [13] refined the notion of simplicial vertex with new kind of extremity. This is a
group of pairwise adjacent vertices, which they call a moplex:

Definition 2.6 [13] Let X be a set of vertices of a graph G. X is a moplex of G if X is a clique and a
module of G whose neighborhood is a minimal separator.

The vertices of a moplex are in some sense equivalent, because they share the same external
neighborhood (i.e., they form a module); thus they also share the same substars. Moreover, this common
neighborhood is a minimal separator, which means that there is one largest substar (which includes all
the other substars). Note that a moplex X may contain a single vertex x; in this case we will call X a
trivial moplex.

In Figure 1, {g, h} is a moplex, e is a (trivial) moplex. In Figure 2, {a, c} forms a moplex, with
substars {b} and {b, d}.

The notion of moplex strengthens the notion of simplicial vertex, as in a chordal graph any vertex
of a moplex is simplicial, whereas in some chordal graphs, there may be simplicial vertices which do
not belong to any simplicial moplex. In Figure 1, for example, a is simplicial but does not belong
to a moplex.

[13] showed that LexBFS always ends by numbering consecutively all the vertices of a moplex, even
on a non-chordal graph. It follows from [14] that MCS run on a chordal graph has the same property.

This notion of moplex is important in the context of this paper, as our aim is to investigate exactly
which kinds of extremities the MLS algorithms define.

2.3. Extremities defined by minimal triangulations

For arbitrary graphs, extremities have been yielded by algorithms which compute a minimal
triangulation of a graph (a chordal graph obtained from this graph by adding an inclusion-minimal
set of edges).

Obviously, one can use the characterization of Fulkerson and Gross to embed a graph into a chordal
graph by repeatedly choosing a vertex, adding to its neighborhood every edge whose absence violates
the simpliciality condition, and then removing the vertex from the current graph, thus simulating a
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simplicial elimination scheme and a perfect elimination ordering α on the vertices. This process (called
the elimination game) defines a triangulation of G denoted G+

α . Ohtsuki, Cheung and Fujisawa [15]
proved that to compute such a triangulation which is minimal, one has to use a special ordering on the
vertices, called a minimal elimination ordering (meo for short). [15] showed that an ordering is a meo
if and only if at each step of the simplicial elimination game, a special vertex is chosen. Since they did
not give these vertices a name, and since the notion is of importance to our work, we call these vertices
OCF-vertices. Let us restate their characterization using the notations previously defined in this paper:

Definition 2.7 [15] A vertex x in G = (V,E) is an OCF-vertex of G if for every pair {y, z} of distinct
non-adjacent neighbors of x in G, y and z belong to some common substar of x.

[15] showed that in any non-clique graph, there is an OCF-vertex.

Example 2.8 In Figure 3, a is an OCF-vertex: its substars are {b, c} and {c, d}, and only edges bc and
cd are missing in the neighborhood of a.

Figure 3. A non-chordal graph G. The set of minimal separators of G is:
{{b, f}, {c, d}, {c, e}, {a, d, e}, {a, d, f}, {a, b, g, h}, {a, e, g, h}, {a, f, g, h}}.

An OCF-vertex x can be viewed as an extremity of an arbitrary graph: if x is chosen first in an instance
of the elimination game, x will be a simplicial vertex of the corresponding minimal triangulation. The
notion of moplex, (the definition of which is not restricted to chordal graphs), also strengthens the notion
of OCF-vertex, since all the vertices of a moplex are OCF-vertices, but some OCF-vertices may not
belong to a moplex.

In Figure 3, a is an OCF-vertex but does not belong to a moplex. {g, h} is a moplex, and both g and
h are OCF-vertices.

Algorithm LEX M, introduced in the same seminal paper as LexBFS [4], finds a meo efficiently, so
vertex number 1 of LEX M is always an OCF-vertex. LEX M was extended to Algorithm MCS-M by
Berry, Blair, Heggernes and Peyton [16]. MCS-M computes a meo efficiently using the same label
simplification that MCS used to improve LexBFS. In an arbitrary graph, LEX M was shown by [17] to
end on a vertex of a moplex.
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3 Search Algorithms

To make the paper self-contained, we will now give algorithms MLS and MLSM, as well as its
instances LexBFS, MCS and MNS, which are used for examples and counter-examples in this paper.

3.1. Algorithms MLS and MLSM

The definitions of Algorithms MLS and MLSM are based on the notion of labeling structure.

Definition 3.1 [12] A labeling structure is a four-tuple (L,�, l0, Inc), where:

• L is a finite set of labels,

• � is a partial order on L, with ≺ denoting the corresponding strict order,

• l0 is an element of L,

• Inc is a mapping from L× {2, 3, ...} to L such that:
for any integer i > 1 and for any labels l and l′,
the following properties hold:

(p1) l ≺ Inc(l, i)

(p2) if l ≺ l′ then Inc(l, i) ≺ Inc(l′, i)

The order� is used to choose a vertex of maximal label, l0 to initialize the labels, and Inc to increment
labels.

Algorithms MLS and MLSM are given below.

Algorithm MLS (Maximal Label Search)[12]
input : A graph G = (V,E) and a labeling structure L = (L,�, l0, Inc).
output : An ordering α on V , which is a peo of G if G is chordal.

Initialize all labels as l0; G′ ← G;
for i = n downto 1 do

Choose a vertex x of G′ with maximal label;
α(i)← x;
foreach y in NG′(x) do

label(y)← Inc(label(y), i);

Remove x from G′;
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Algorithm MLSM (Maximal Label Search for Meo)[12]

input : A graph G = (V,E) and a labeling structure L = (L,�, l0, Inc).
output : An meo α on V and a minimal triangulation H = G+

α of G.

Initialize all labels as l0; E ′ ← E; G′ ← G;
for i = n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i)← x;
foreach vertex y of G′ different from x do

if there is a path from x to y in G′ such that every internal vertex on the path has a label
strictly smaller than label(y) then

E ′ ← E ′ ∪ {xy};

foreach y in V such that xy ∈ E ′ do
label(y)← Inc(label(y), i);

Remove x from G′;
H ← (V,E ′);

When using labeling structure L with MLS (respectively MLSM), we will refer to the algorithm as
L-MLS (respectively L-MLSM). We call any ordering on V that can be produced by MLS (respectively
MLSM, L-MLS, L-MLSM) an MLS (respectively MLSM, L-MLS, L-MLSM) ordering.

The following Property was proved in [12]:

Property 3.2 ([12] ) For any graph G and any labeling structure L, Algorithm L-MLSM computing
ordering α on G has the same behavior as L-MLS on G+

α . That is, they give the same labels and
numbers to vertices, provided that they break ties in the same way.

Property 3.2 has two important consequences that are used in this paper:

Consequence 1: Any L-MLSM ordering α of G is a L-MLS ordering of G+
α . Thus a property

of MLS on chordal graphs can in some cases be extended to a property of MLSM on arbitrary graphs
since G+

α is chordal (This is used in Theorem 4.1 and in Property 4.5).
Consequence 2: MLS and MLSM have the same behavior on a chordal graph, since in that case,
G+
α = G. Any execution of MLS on a chordal graph can be seen as an execution of MLSM, and

conversely. Thus any property of MLSM on arbitrary graphs also holds for MLS on chordal graphs.

3.2. Specific search algorithms

LexBFS, MCS and MNS are instances of MLS and LEX M, MCS-M and MNSM (defined in [12]
from MNS) are instances of MLSM, with the following respective labeling structures:

• LexBFS and LEX M: L is the set of lists of elements of {2, 3, ..., }, � is lexicographical order
(a total order), l0 is the empty list, Inc(l, i) is obtained from l by adding i to the end of the list.

• MCS and MCS-M: L = {0, 1, 2, ...}, � is ≤ (a total order), l0 = 0, Inc(l, i) = l + 1.
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• MNS and MNSM: L is the power set of {2, 3, ...}, � is ⊆ (not a total order),
l0 = ∅, Inc(l, i) = l ∪ {i}.

Algorithm LexBFS (Lexicographic Breadth-First Search)[4]

input : A graph G = (V,E).
output : An ordering α of V .

Initialize all labels as the empty string;
for i← n to 1 do

Pick an unnumbered vertex v whose label is maximal under lexicographic order;
α(i)← v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do

append i to l(w);

Algorithm MCS (Maximal Cardinality Search)[5]

input : A graph G = (V,E).
output : An ordering α of V .

Initialize all labels as 0;
for i← n to 1 do

Pick an unnumbered vertex v with maximum label;
α(i)← v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do

l(w)← l(w) + 1;

Algorithm MNS (Maximal Neighborhood Search)[11]

input : A graph G = (V,E).
output : An ordering α of V .

Initialize all labels as the empty set;
for i← to 1 do

Pick an unnumbered vertex v whose label is maximal under inclusion;
α(i)← v (assigns number i to v);
foreach unnumbered vertex w adjacent to v do

l(w)← l(w) ∪ {i};

LEX M and MCS-M can be directly extended from LexBFS and MCS using MLSM.

4 The Separator Structure in the Neighborhood of Vertex 1

In this section, we will study the substars of the vertex numbered 1 by MLS (on a chordal graph) or
MLSM (on an arbitrary graph) (i.e., the minimal separators included in the neighborhood of 1).
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4.1. Results on the separator structure

Our main result is that if there are several minimal separators S1, ...Sk in this neighborhood, then
there is an inclusion order S1 ⊆ .... ⊆ Sk on these separators:

Theorem 4.1

a) For any chordal graph H and any MLS ordering α of H , the minimal separators of H included in
N(α(1)) are totally ordered by inclusion.

b) For any graphG and any MLSM ordering α ofG, the minimal separators ofG included inN(α(1))

are totally ordered by inclusion.

Example 4.2 In Figure 4, describing an execution of MCS on a chordal graph, the substars of 1 are {8}
and {3, 8}; {8} ⊆ {3, 8}.

Figure 4. The slices defined by an execution of MCS on a chordal graph. The substars of 1
are {8} and {3, 8}.

In order to prove Theorem 4.1, we need to examine how the search algorithms scan the various
connected components defined by these separators. We will need to introduce some notations and
definitions in order to describe this.

Let us first explain the structure of the neighborhood of vertex 1, as illustrated by Figure 4.

• The neighborhood of 1 contains minimal separators A1, ..., Ak, which are the substars of 1. In our
example from Figure 4, A1 = {8} and A2 = {3, 8}.

• The removal of N [1] defines connected components. In our example, C1 = {5, 7}, C ′1{6},
C2 = {4}.
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• The neighborhoods of these components are the substars of 1: N(C1) = N(C ′1) = A1 = {8};
N(C2) = A2 = {3, 8}. Thus with each substar is associated at least one of these components;
when there are several components for the same substar, we will need to group them into what we
call super-components: T1 = C1 ∪ C ′1 = {5, 6, 7} is a super-component.

• We will see that in some cases, the MLS algorithms will first number all the vertices of the
super-component T1 which corresponds to the smallest substar A1 as well as this substar. It
will then go on to number the super-component T2 which corresponds to the second smallest
substar A2 as well as what is left of this substar, and so forth. This is the case in our example:
substar {8} along with super-component T1 = {5, 6, 7} will be numbered first (from 8 to 5), then
super-component T2 = {4} will be numbered along with what is left of substar {3, 8}, which is
{3}, thus numbering from 4 to 3.

We will call these numbering classes slices.

• The largest substar, Ak, defines a connected component which contain vertex 1, as well as the
neighbors of 1 which do not belong to any substar (2 in our example). This component ({1, 2} in
our example) defines our slice of largest number, and we will see that it defines a moplex.

We will now give precise notations for these notions:

Notations 4.3 For any graph G = (V,E) and any ordering α on V ,

• a component Ci is a connected component of G(V −N(α(1))).

• a super-component Di is the union of all components with a common neighborhood.

• p denotes the number of super-components

• (D1, D2, ..., Dp) denotes the sequence of the super-components ordered as follows:
∀i ∈ [1, p − 1], α−1(di) > α−1(di+1), where di denotes the vertex of Di with maximum number
(α−1(di) = max{α−1(d), d ∈ Di}).

• the slices are the subsets T1, T2, ..., Tp of V partitioning V as follows: ∀i ∈ [1, p], Ti = Di ∪ Si,
where Si = N(Di)− (∪1≤j<iN(Dj)) = N(Di)− (∪1≤j<iSj), and ti denotes the vertex of Ti with
maximum number.
We say that α numbers the slices in increasing order if it numbers the vertices of T1 first (with the
largest numbers), then the vertices of T2 etc., i.e., if ∀i ∈ [1, p− 1], ∀t ∈ Ti, α−1(t) > α−1(ti+1).

Example 4.4 Let us summarize what we can see in Figure 4, which shows the slices defined by an
execution of MCS on a chordal graph.

• N(1) = {8, 3, 2}

• Substars: A1 = {8} and A2 = {3, 8}.

• Components: C1 = {5, 7}, C ′1{6}, C2 = {4}, with N({7, 5}) = N({6}) = {8},
N({4}) = {8, 3}.
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• Super-components:
- D1 = {7, 5} ∪ {6} = {7, 6, 5}, d1 = 7, S1 = {8}, T1 = {8, 7, 6, 5} and t1 = 8,
- D2 = {4}, d2 = 4, S2 = {3}, T2 = {4, 3} and t2 = 4,
- D3 = {1}, d3 = 1, S3 = {2}, T3 = {2, 1} and t3 = 2,
so p = 3.

• We observe that:
- N(D1) ⊂ N(D2) ⊂ N(D3),
- α numbers the slices in increasing order.

The properties described above can be generalized to the MLS and MLSM orderings, provided that
the order on the labels is a total order (such as the one used for LexBFS and MCS):

Property 4.5

(a) For any chordal graph H and any labeling structure L, if the order on labels is total then any
L-MLS ordering of H numbers the slices in increasing order.

(b) For any graph G and any labeling structure L, if the order on labels is total then any L-MLSM
ordering of G numbers the slices in increasing order.

The following (technical) lemma is the basis for our proofs in this section:

Lemma 4.6 For any MLS ordering α of a chordal graph,

• (a) for any i from 1 to p, ∀s ∈ N(α(1)), if α−1(s) > α−1(di) then s ∈ N(di),

• (b) for any i from 1 to p− 1, α−1(ti) ≥ α−1(di) > α−1(ti+1),

• (c) for any i from 1 to p− 1, ∀s ∈ Si, α−1(s) > α−1(ti+1),

• (d) for any i from 1 to p− 1, if the order on labels is total then ∀d ∈ Di, α−1(d) > α−1(ti+1).

We will devote Subsection 4.2. to the proof of this lemma (this subsection can be skipped by the
reader not interested in the details of our proofs), then go on to use this lemma to finish our proofs.

4.2. A technical lemma

To prove Lemma 4.6, we will use the following notations and preliminary Lemmas.

Notations 4.7 For any execution of MLS on any graph G computing ordering α and any vertices x and
y of G such that α−1(x) ≥ α−1(y),

(i) lx(y) denotes the label of y just before numbering x,
(ii) NNx(y) denotes the set of Numbered Neighbors of y just before numbering x,

i.e., NNx(y) = {z ∈ N(y) | α−1(z) > α−1(x)}.
The subscript will be omitted when the considered step is clear from the context.

The following Lemma is given in [12].
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Lemma 4.8 ([12]) At any step of an execution of MLS on a graph G, for any unnumbered vertices
u, v of G,

(i) if NN(u) = NN(v) then l(u) = l(v),
(ii) if NN(u) ⊂ NN(v) then l(u) ≺ l(v).

Lemma 4.9 For any MLS ordering α of a chordal graph, ∀i ∈ [1, p],
(1) NNdi(di) = NNdi(α(1)) ⊆ N(Di),
(2) if i < p then α−1(ti) ≥ α−1(di) > α−1(ti+1),
(3) NNti(ti) = NNti(α(1)).

Proof: (1) NNdi(di) ⊆ NNdi(α(1)) by definition of di and NNdi(di) 6⊂ NNdi(α(1)) (otherwise
by Lemma 4.8 ldi(di) ≺ ldi(α(1)), which contradicts the choice of di at that step). Hence
NNdi(di) = NNdi(α(1)) ⊆ N [Di] ∩N(α(1)) = N(Di).

(2) We suppose that i < p. By definition of di and ti, α−1(ti) ≥ α−1(di). Let us show that
α−1(di) > α−1(ti+1). If ti+1 6∈ N(α(1)) then ti+1 = di+1 and we are done since by definition
of di, α−1(di) > α−1(di+1). Otherwise, assume for contradiction that α−1(ti+1) > α−1(di). Then
ti+1 ∈ NNdi(α(1)), and by statement 1 we have: NNdi(α(1)) ⊆ N(Di) ⊆ V − Ti+1, so ti+1 6∈ Ti+1,
a contradiction.

(3) For any j < i, NNti(ti) ∩ Dj = ∅ because N(ti) ∩ Dj = ∅ (since Ti ∩ N(Dj) = ∅), and for
any j ≥ i, NNti(ti) ∩ Dj = ∅ because by 2), ∀t ∈ Tj α

−1(ti) ≥ α−1(tj) ≥ α−1(t). It follows that
NNti(ti) ⊆ NNti(α(1)), and we show the equality as above for di. 2

It is easy to show the following lemma:

Lemma 4.10 If G is a chordal graph, µ a chordless path in G and z a vertex of G not belonging to µ
and seeing both extremities of µ, then z sees every vertex of µ.

Lemma 4.11 Let G be a chordal graph, let α be an MLS ordering of G, and for i = 1, 2, ..., p, let s ∈ Si
such that α−1(di) > α−1(s). Since s ∈ Si, there exists a chordless path µ from di to s such that every
internal vertex of µ belongs to Di. Then the following property P holds just after processing di and
remains true until numbering s.
P : there is a vertex v of µ such that every vertex of µ[v, s] is unnumbered, NN(α(1)) ⊂ NN(v) and
∀t ∈ µ[v, s]− {v}, NN(t) = NN(α(1)).

Proof: Let us show that P holds just after processing di. NNdi(di) = NNdi(α(1)) by Lemma 4.9, so
NNdi(α(1)) ⊆ N(di). Also NNdi(α(1)) ⊆ N(s) since, as α is a peo of G, N(α(1)) is a clique of G.
It follows by Lemma 4.10 that for any vertex t of µ, NNdi(α(1)) ⊆ N(t), so NNdi(α(1)) ⊆ NNdi(t),
and as the reverse inclusion holds by definition of di and Si, NNdi(t) = NNdi(α(1)). After processing
di, NN(α(1)) is unchanged and P is true, taking as vertex v the vertex of µ next to di (which is the only
vertex of µ seeing di since µ is chordless).

Let us show that P is true after processing some vertex w, α−1(di) > α−1(w) > α−1(s).
First case: w 6∈ N(α(1)).
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If no vertex of µ[v, s] sees w then w 6∈ µ[v, s] and P remains true with the same vertex v, otherwise
P remains true, taking as new vertex v the last vertex of µ[v, s] seeing w.
Second case: w ∈ N(α(1)).
ws is an edge of G, as N(α(1)) is a clique. We get from edge ws and path µ[v, s] a wv-path such that

every internal vertex t is unnumbered and satisfies NN(t) = NN(α(1)) ⊂ NN(v), so by Lemma 4.8
l(t) ≺ l(v). By Property 3.2, this execution of MLS on chordal graph G can be seen as an execution
of MLSM, according to which wv will be an edge of H with H = G+

α = G. It follows that w sees
v in G. By Lemma 4.10 w sees every vertex of µ[v, s]. It follows that when processing w, w is
added to NN(α(1)) as well as to NN(t) for every vertex t of µ[v, s], and P remains true with the
same vertex v. 2

Lemma 4.12 For any MLS ordering α of a chordal graph, ∀i ∈ [1, p−1],∀s ∈ Si, α−1(s) > α−1(ti+1).

Proof: Suppose there is some s ∈ Si such that α−1(ti+1) > α−1(s). Then by Lemma 4.9
α−1(di) > α−1(ti+1) > α−1(s). Lemma 4.11 ensures the existence of some vertex v such that
NNti+1

(α(1)) ⊂ NNti+1
(v), so by Lemma 4.9 NNti+1

(ti+1) ⊂ NNti+1
(v) and by Lemma 4.8

lti+1
(ti+1) ≺ lti+1

(v), which contradicts the choice of ti+1 at that step. 2

Lemma 4.13 For any MLS ordering α of a chordal graph, if the order on labels is total then
∀i ∈ [1, p− 1], ∀d ∈ Di, α−1(d) > α−1(ti+1).

Proof: Suppose there is some d ∈ Di such that α−1(ti+1) > α−1(d). We can choose d as the first vertex
of Di numbered after ti+1. Just before numbering ti+1, l(ti+1) is maximum (since the order � is total)
with lti+1

(ti+1) = lti+1
(α(1)) by Lemmas 4.9 and 4.8, so lti+1

(d) � lti+1
(α(1)). As by Lemma 4.12,

every vertex of N(Di) is numbered before ti+1, l(d) remains equal to lti+1
(d) until d is numbered. We

thus only have to prove that l(α(1)) is incremented before numbering d. This will lead to a contradiction,
since α(1) is numbered last.

If ti+1 ∈ N(α(1)), l(α(1)) is incremented when numbering ti+1 and we are done.
If ti+1 /∈ N(α(1)), ti+1 = di+1. By Property 4.14, Si+1 is not empty, so let s ∈ Si+1.

α−1(di+1) > α−1(s), and by Lemma 4.11, until numbering s, there is some unnumbered vertex v

such that NN(α(1)) ⊂ NN(v), so by Lemma 4.8 l(α(1)) ≺ l(v), hence l(d) ≺ l(v). This implies
that α−1(s) > α−1(d) and as l(α(1)) is incremented when processing s, it is incremented before
numbering d. 2

As Lemma 4.6 a) can be rewritten as NNdi(α(1)) ⊆ NNdi(di), Lemma 4.6 directly follows from
Lemmas 4.9, 4.12 and 4.13.

4.3. Proofs of Theorem 4.1 and Property 4.5

Property 4.14 For any chordal graph G and any MLS ordering α of G, for any super-component Di,
i ∈ {1, 2...p}, N(Di) ⊂ N(Di+1).

Proof: Let s ∈ N(Di), and let j ≤ i such that s ∈ Sj . By Lemma 4.6 (b) and (c),
α−1(s) > α−1(tj+1) ≥ α−1(ti+1) ≥ α−1(di+1), so by Lemma 4.6 a) s ∈ N(Di+1). Thus
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N(Di) ⊆ N(Di+1) and, as N(Di) 6= N(Di+1) by definition of the sequence (Di), N(Di) ⊂ N(Di+1).
2

For any graph G and any ordering α on V , the minimal separators of G included in N(α(1))

are exactly the neighborhoods of the components different from {α(1)} [18], which are also the
neighborhoods of the super-components of (G,α) different from {α(1)}. Therefore, Theorem 4.1(a)
follows from Property 4.14. Property 4.5(a) follows immediately from Lemma 4.6 (c) and (d).

By Property 3.2 any L-MLSM ordering α of any graph G is a L-MLS ordering of G+
α , which verifies

the above neighborhood properties since G+
α is chordal. Moreover, the neighborhood of α(1) is the

same in G as in G+
α (by definition of G+

α ) and since α is a meo of G, the components of (G,α) and of
(G+

α , α) are the same with the same neighborhoods. (This follows from Theorem 5.12, Invariant 4.9 and
Lemma 6.2 in [19]). Thus the super-components, their neighborhoods and the slices of (G,α) and of
(G+

α , α) are the same, and Theorem 4.1(a) and Property 4.5(a) extend to MLSM on an arbitrary graph,
yielding Theorem 4.1(b) and Property 4.5(b).

If the order on the labels is not total, an L-MLSM ordering (or an L-MLS ordering on a chordal
graph) does not necessarily number the slices in increasing order. Figure 5 gives a counterexample
demonstrating this.

Figure 5. This MNS ordering does not number slices in increasing order on this chordal
graph. (The MNS labels are sets of numbers of neighbors, and set comparison by ⊆ is not a
total order.)

4.4. The separator structure of MLS on a non-chordal graph

Though the algorithms of the MLS family were meant to be run on a chordal graph (in order to
compute a peo), we investigated MLS run on a non-chordal graph. The results are negative: on a
non-chordal graph MLS does not, in general, exhibit properties such as those described above, even
when the order � is total. Figure 6 gives a counter-example of this, using MCS as an instantiation of
MLS. The substars of 1 are {2, 6} and {3, 6}, which are not inclusive. The components of G(V −N [1])

are not numbered following any particular order.
However, we will see in Section 5 that MLS run on a non-chordal graph with a total order on the

labels always ends on an OCF-vertex of the graph.
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Figure 6. MCS on a non-chordal graph. Substars of 1: {2, 6} and {3, 6}. These substars are
not pairwise inclusive.

5 The Extremities Defined by MLS and MLSM

5.1. The extremal moplexes defined by MLS and MLSM

For any MLSM ordering α of a graph G, since α is a meo of G, by [15] α(1) is an OCF-vertex of G.
We will show a stronger property: α(1) is a vertex of a moplex.

Theorem 5.1

• For any chordal graph H and any labeling structure L, L-MLS ends on a vertex belonging to a
moplex. If moreover the order on the labels is total, then the vertices of this moplex are numbered
consecutively.

• For any graphG and any labeling structure L, L-MLSM ends on a vertex belonging to a moplex. If
moreover the order on labels is total, then the vertices of this moplex are numbered consecutively.

To prove this, we need only use the properties of the neighborhood of α(1) described in Section 4 and
the following Lemma.

Lemma 5.2 For any graph G and any vertex x of G, x is a vertex of a moplex if and only if x is an
OCF-vertex and the set of minimal separators of G included in N(x) has a greatest element Smax with
respect to inclusion. In that case, the moplex containing x is N [x]− Smax.

Proof: We suppose that x is a vertex of a moplex X of G. Then N [x] = N [X] and there is a connected
component C of G(V − N [x]) such that N(C) = N(X). Since X is a clique module of G, any
non-adjacent neighbors of x must belong to N(X); i.e. to N(C), so x is an OCF-vertex of G, and the
neighborhood of any connected component of G(V −N [x]) is a subset of N(X) i.e. of N(C), so N(C)

is the greatest minimal separator of G included in N(x) with respect to inclusion.
Conversely, we suppose that x is an OCF-vertex of G and the set of minimal separators of G included

in N(x) has a greatest element Smax with respect to inclusion. Let X = N [x]− Smax. We immediately
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verify that X is a clique module of G, with N(X) = Smax. Let C be the connected component of
G(V − N [x]) such that Smax = N(C). X and C are distinct connected components of G(V − N(X))

such that N(X) = N(C), so N(X) is a minimal separator of G and therefore X is a moplex of G. 2

Proof: (of Theorem 5.1) Since α is a meo of G, α(1) is an OCF-vertex of G [15]. Moreover, by
Theorem 4.1, the set of minimal separators of G included in N(α(1)) has a greatest element Smax with
respect to inclusion. If Dp = {α(1)} then Smax = N(α(1)), else Smax = N(Dp−1). (Note that p > 1

because otherwise G would be reduced to the closed neighborhood of OCF-vertex α(1) and would be a
clique). It follows by Lemma 5.2 that α(1) is a vertex of a moplexX ofG, withX = N [α(1)]−Smax. So
X is equal to either {α(1)} or to Dp. Thus if the order on labels is total then by Property 4.5 L-MLSM
ends on X .

Since by Property 3.2, any chordal graph has the same L-MLS and L-MLSM orderings, we complete
our proof for chordal graphs. 2

5.2. MLS on a non-chordal graph

On a non-chordal graph, in general, an MLS execution does not end on a moplex and does not even
end on a vertex of a moplex, even if the order on labels is total, as shown by Figure 6 for MCS. However,
we show that if the order on labels is total then MLS does ends on an OCF-vertex.

Theorem 5.3 For any graph G, any labeling structure L and any L-MLS ordering α of G, if the order
on labels is total then α(1) is an OCF-vertex of G.

The proof of Theorem 5.3 uses the following Lemma, where for any vertices x and y of G such that
α−1(x) ≥ α−1(y), lx(y) denotes the label of y just before numbering x.

Lemma 5.4 We consider an MLS execution on a graph G computing α and vertices u, v of G such that
α−1(u) > α−1(v). If lu(v) � lu(α(1)) and every neighbor t of v such that α−1(u) ≥ α−1(t) > α−1(v)

is a neighbor of α(1) then lv(v) = lv(α(1)) and every neighbor t of α(1) such that α−1(u) ≥ α−1(t) >

α−1(v) is a neighbor of v.

Proof: At every step between numbering u and numbering v, if the label of v is incremented then
the label of α(1) is incremented too, so by Properties (p1) and (p2) of Definition 3.1 the inequality
l(v) � l(α(1)) is preserved, and since l(v) is maximal just before numbering v, lv(v) = lv(α(1)). Now
if some vertex t numbered between u and v was a neighbor of α(1) but not of v then the inequality would
become l(v) ≺ l(α(1)), which would be preserved until numbering v, a contradiction. 2

Proof: (of Theorem 5.3) We define the partition of V into subsets T ′i , 1 ≤ i ≤ p′, which is a variant of
the partition of V into thin slices. For any i in [1, p′],
- t′i = α(n) if i = 1, otherwise t′i is the first vertex numbered after c′i−1 not belonging to N [C ′i−1],
- c′i = t′i if t′i 6∈ N(α(1)), otherwise c′i is the first vertex numbered after t′i which does not belong to
N(α(1)) (c′p′ = α(1)),
- C ′i is the component of (G,α) containing c′i (C ′p′ = {α(1)}),



Algorithms 2010, 3 117

- T ′i is the set of vertices t such that α−1(t′i) ≥ α−1(t) and (if i < p′) α−1(t) > α−1(t′i+1), so by definition,
the subsets T ′i are numbered in increasing order.

Note that for any i in [1, p′] T ′i ⊆ N(α(1)) ∪ C ′i and that there may be distinct i, j such that C ′i = C ′j ,
so p′ can be greater than the number of components of (G,α).

We first show that for any i in [1, p′], l(α(1)) is maximum among labels of unnumbered vertices just
before numbering t′i. The proof goes by induction on i. It obviously holds for i = 1. We suppose that it
holds for some i < p′. lt′i(t

′
i+1) � lt′i(α(1)), and every neighbor t of t′i+1 in T ′i is a neighbor of α(1) since

by definition of t′i+1, t cannot be in C ′i. By Lemma 5.4 with u = t′i and v = t′i+1 lt′i+1
(t′i+1) = lt′i+1

(α(1)),
and since l(t′i+1) is maximum at that step (because the order � is total) l(α(1)) is maximum too.

Now let y, z ∈ N(α(1)) such that α−1(y) > α−1(z). Let us show that either y ∈ N(z) or there is
some j < p′ such that y, z ∈ N(C ′j). Let i ∈ [1, p′] such that y ∈ T ′i .
First case: ∃j ∈ [i, p′ − 1] | z ∈ N(C ′j)

Let j be the smallest integer j′ such that j′ ∈ [i, p′ − 1] and z ∈ N(C ′j′). If α−1(c′j) ≥ α−1(y) then
α−1(c′j) ≥ α−1(y) > α−1(t′i+1) ≥ α−1(t′j+1), so by definition of t′j+1 as the first vertex numbered after
c′j not belonging to N [C ′j], y ∈ N(C ′j). Otherwise α−1(t′i) ≥ α−1(y) > α−1(c′j) and by Lemma 5.4 with
u = t′i and v = c′j , y ∈ N(c′j), so y ∈ N(C ′j). Thus in both cases y, z ∈ N(C ′j).
Second case: ∀j ∈ [i, p′ − 1], z 6∈ N(C ′j)

α−1(t′i) ≥ α−1(y) > α−1(z) so by Lemma 5.4 with u = t′i and v = z, y ∈ N(z).
Hence α(1) is an OCF-vertex of the input graph. 2

This is the case in particular for MCS (as shown in [16]).
If the order on labels is not total then MLS does not necessarily end on an OCF-vertex. For instance,

let G and α be the graph and the ordering shown in Figure 7. Note that α is an MNS ordering of G and
α(1) is not an OCF-vertex of G.

Figure 7. MNS on a non-chordal graph does not end on an OCF-vertex: the substars of 1
are {3, 8} and {2, 8}, but there is no edge 23.

6 LexBFS, a Special Case

Algorithm LexBFS, with respect to the properties discussed so far, exhibits stronger properties than
any other algorithm of the MLS family (as far as we know). In fact, LexBFS, run on a non-chordal
graph, has the properties which are those of MLS (with a total order) run on a chordal graph:
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1. Vertex α(1) belongs to a moplex, and the vertices of this moplex have consecutive numbers.

2. The minimal separators included in the neighborhood of vertex 1 are totally ordered by inclusion.

Moreover, LexBFS refines the numbering of the slices: LexBFS numbers the components of
G(V − N(α(1)) one by one, instead of numbering the slices (which are groups of components) one
by one. As we will see, we will thus partition the slices into thin slices.

The following result is shown in [13] see their Theorem 5.1 and their Property 5.5):

Theorem 6.1 [13] In an arbitrary graph, the vertex numbered 1 by LexBFS belongs to a moplex whose
vertices are numbered consecutively.

Example 6.2 Figure 8 shows an execution of LexBFS on a non-chordal graphG. The moplex containing
α(1) is X1 = {1, 2}.

Let us now consider an execution of LexBFS on an arbitrary graph G, let X1 be the moplex
containing vertex α(1). We will define the thin slices of the execution in a similar fashion to the
slices (see Notations 4.3):

Notations 6.3 For any graph G = (V,E) and any LexBFS ordering α on V , with X1 the moplex
containing vertex α(1),

• a component Ci is a connected component of G(V − N(X1)), with k the number of such
components.

• (C1, C2, ..., Ck) denotes the sequence of the components ordered as follows: ∀i ∈ [1, k −
1], α−1(yi) > α−1(yi+1), where yi denotes the vertex of Ci with maximum number
(α−1(yi) = max{α−1(y), y ∈ Ci}).

• the thin slices are the subsetsF1, F2, ..., Fk of V partitioning V as follows: ∀i ∈ [1, k], Fi = Ci∪Si,
where Si = N(Ci)− (∪1≤j<iN(Cj)) = N(Ci)− (∪1≤j<iSj), and ti denotes the vertex of Fi with
maximum number.
We say that α numbers the thin slices in increasing order if it numbers the vertices of F1 first (with
the largest numbers), then the vertices of F2 etc., i.e. if ∀i ∈ [1, k−1], ∀t ∈ Fi, α−1(t) > α−1(ti+1).

Example 6.4 Figure 9 shows the thin slices defined by the LexBFS execution on a non-chordal graph
from Figure 8. The thin slices are: {10, 9, 8, 7}, {6}, {5, 4, 3} and {2, 1} = X1.

We will use the following two lemmas from [13]:

Lemma 6.5 No vertex of V − C1 ∪ N(C1) can be numbered before all the vertices of C1 ∪ N(C1)

are numbered.

Lemma 6.6 When LexBFS starts numbering V − (C1 ∪ N(C1)), every unnumbered vertex has exactly
the same label.
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Figure 8. A LexBFS execution on a non-chordal graph. Moplex containing
α(1): X1 = {1, 2}. Components of G(V − X1 ∪ N(X1)): C1 = {10, 7}, C2 = {6},
C3 = {5}. N(C1) = N(C2) = {9, 8}, N(C3) = {9, 8, 4, 3}.

From Lemma 6.6, we deduce that the restriction of the LexBFS numbering to V − C1 ∪ N(C1) will
also be a LexBFS numbering of the corresponding subgraph. LexBFS will thus number recursively first
V −C1 ∪N(C1), then (C2 ∪N(C2))− (C1 ∪N(C1)), and so forth. Thus lemmas 6.5 and 6.6 can easily
be extended to the following, where i > 1:

Lemma 6.7 No vertex of thin slice Fi can be numbered before all the vertices of thin slice Fi−1

are numbered.

Lemma 6.8 When LexBFS starts numbering thin slice Fi, every unnumbered vertex has exactly
the same label.

The following property can then be deduced from Lemma 6.7:

Property 6.9 ([13]) For any graph G (chordal or not), any LexBFS ordering α of G numbers the thin
slices in increasing order.

We will now prove the separator inclusion:

Theorem 6.10 For any graph G (chordal or not) and any LexBFS ordering α of G, the minimal
separators of G included in N(α(1)) are totally ordered by inclusion.

Proof: Let C1, C2, ..., Ck be as above the connected components of G(V − X1 ∪ N(X1) (where X1

is the moplex containing vertex α(1)). We claim that N(C1) ⊆ N(C2) ⊆ ... ⊆ N(Ck). Suppose by
contradiction that there are two components Ci and Cj , i < j, such that N(Ci) 6⊆ N(Cj), and let y be
in N(Ci)−N(Cj). By Lemma 6.8, when LexBFS finishes numbering Ci ∪N(Ci)), all the unnumbered
vertices have the same label; since y sees all the vertices of X1, y must also see all the unnumbered
vertices of Cj , else the labels of α(1) and of some vertex of Cj would be different. Thus y ∈ N(Cj),
a contradiction. 2
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Figure 9. The thin slices defined by the LexBFS execution on a non-chordal graph from Figure 8.

Example 6.11 In Figure 8, the minimal separators included in N(X1) are {9, 8} and {9, 8, 4, 3}, with
{9, 8} ⊂ {9, 8, 4, 3}.

The properties discussed in this section show that LexBFS, when run on a non-chordal graph, exhibits
properties which other known algorithms of the MLS family exhibit only on chordal graphs. This may
make LexBFS very interesting for specific applications.

7 The Orderings Defined by MLS and MLSM

As explained above, MLS computes a peo of any chordal graph, and MLSM computes a meo of any
graph.

We can strengthen these properties to moplex orderings, introduced by [17].
We define a moplex to be simplicial if all its vertices are simplicial. We define a simplicial moplex

elimination scheme in a chordal graph by repeatedly choosing a moplex of the current graph, which is
simplicial since the graph is chordal, and removing it, until the graph is a clique.

If the graph is not chordal, we define the moplex elimination game in the same way as the simplicial
elimination game: we simulate a moplex elimination scheme by repeatedly choosing a moplex of the
current graph, adding every edge whose absence violates the simpliciality of this moplex, and removing
it, until the graph is a clique.

Thus we obtain an ordered partition (X1, X2, ..., Xk) where Xi is a moplex of the current graph at
step i if i < k and Xk is the final clique. A moplex ordering is an ordering α on V that numbers (from 1
to n) the sets Xi of such an ordered partition in increasing order, i.e. such that ∀i ∈ [1, k − 1], ∀x ∈ Xi,
∀x′ ∈ Xi+1, α−1(x) < α−1(x′). Then G+

α is exactly the graph obtained from G by adding all edges
added in the moplex elimination game.

Any LexBFS ordering of a chordal graph, and any LEX M ordering of any graph, defines a moplex
ordering [17]. We extend these results to MLS and MLSM:
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Theorem 7.1

(a) For any chordal graph H and any labeling structure L, if the order on labels is total, then any
L-MLS ordering of H defines a moplex ordering.

(b) For any graph G and any labeling structure L, if the order on labels is total, then any L-MLSM
ordering of G defines a moplex ordering.

Proof: For any chordal graph G and any labeling structure L, if the order on labels is total then any
L-MLS ordering of G is a moplex ordering of G: we have only to point out that by Theorem 5.1, any
L-MLS ordering α of a non-clique chordal graph G ends on a moplex X of G and that the restriction of
α to the chordal subgraph G(V −X) is itself a L-MLS ordering of this subgraph, and the proof follows
by induction on |V |.

For any graph G and any labeling structure L, if the order on labels is total then any L-MLSM
ordering of G is a moplex ordering of G: let α be a L-MLSM ordering of G. For any k from 1 to n, let
Gk
α denote the current graph of the simplicial elimination game just before processing α(k), let V k

α be
its set of vertices, i.e. V k

α = {α(k), ..., α(n)}, and αk be the restriction of α to V k
α . To prove that α is a

moplex ordering of G, it is sufficient to prove that for any k from 1 to n such that Gk
α is not a clique, αk

ends on a moplex of Gk
α. Consider any k, 1 ≤ k ≤ n, such that Gk

α is not a clique and let us show that
αk ends on a moplex of Gk

α.

By Property 3.2 α is a L-MLS ordering of G+
α , so αk is a L-MLS ordering of G+

α (V
k
α ), which is

equal to (Gk
α)

+
αk

. As α is a meo of G, its restriction αk is a meo of Gk
α, for otherwise there would exist

another ordering βk on V k
α that produces some better fill-in than αk, and therefore an ordering β on V

that produces some better fill-in than α, a contradiction. So, (Gk
α)

+
αk

is a minimal triangulation of Gk
α and

therefore, as Gk
α is not a clique, (Gk

α)
+
αk

is not a clique either. It follows from Theorem 5.1 that αk ends
on a moplex of (Gk

α)
+
αk

, which is also a moplex of Gk
α since any moplex of a minimal triangulation of a

graph is a moplex of this graph [13]. 2

8 The MLS-Terminal Vertex Problem on Chordal Graphs

To conclude our investigation of the extremities defined by the MLS family of algorithms, we will
ask the following question:
”Given a graph G and a vertex x of G, is there an MLS execution which gives number 1 to vertex x ?”
We call this the MLS-Terminal Vertex Problem.

Lanlignel [20] showed that LexBFS-Terminal Vertex Problem is NP-complete even for weakly
chordal graphs and Hereditary Dominating Path graphs, and left open its complexity on chordal graphs.

We give a simple characterization of MNS-terminal vertices in a chordal graph:

Characterization 8.1 For any chordal graph G and any vertex x of G, x is MNS-terminal if and only if
x is simplicial and the substars of x are totally ordered by inclusion.

As a consequence, the MLS-Terminal Vertex Problem is polynomial for the class of chordal graphs.
The proof of Characterization 8.1 uses the following well-known property of chordal graphs:
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Property 8.2 [21] (confluence vertex property) Let G = (V,E) be a chordal graph, let C be a
non-empty connected subset such that N(C) is a clique. Then ∃z ∈ C such that N(C) ⊆ N(z).

Proof: (of Characterization 8.1) We will use Algorithm MNS for our proof. If x is MNS-terminal
then x is simplicial since MNS computes a peo of G and by Theorem 4.1, the neighborhoods are totally
ordered by inclusion.

Conversely, we suppose that x is simplicial and neighborhoods of connected components of
G(V − N [x]) are totally ordered by inclusion. Let (C1, C2, ..., Cq) be an ordering on the components
of G(V − N(x)) such that ∀j ∈ [1, q − 1], N(Cj) ⊆ N(Cj+1), with Cq = {x}. For any j ∈ [1, q],
let S ′j = N(Cj) − N(Cj−1), let T ′j = S ′j ∪ Cj and let cj ∈ Cj such that N(Cj) ⊆ N(cj) (cj exists by
Property 8.2 because as x is simplicial, Cj is simplicial too). Let us show that there is a MNS execution
onG numbering the sets T ′j in increasing order. We prove by induction on j that there is a MNS execution
on G numbering successively T ′1, T

′
2, ..., T ′j first. It obviously holds for j = 0. Now suppose that it holds

for j − 1 for some j ≤ q. After numbering T ′1, T
′
2, ..., T ′j−1, for every unnumbered vertex t, l(t) is the

set of numbered neighbors of t, so l(t) ⊆ N(Cj−1) ⊆ N(Cj) ⊆ N(cj). So cj can be chosen at that
step. It remains to show that at any step after numbering cj and some, but not all, vertices of T ′j , it is
possible to choose the next vertex in T ′j . Let y be an unnumbered vertex in T ′j , µ be a cjy-path whose
internal vertices are in Cj , let y′ be the first unnumbered vertex of µ from cj and z′ be the numbered
vertex preceding y′ on µ. Then z′ ∈ l(y′). Let y′′ be an unnumbered vertex whose label is maximal
among those of unnumbered vertices t such that z′ ∈ l(t). So the label of y′′ is maximal among those of
all unnumbered vertices and y′′ ∈ T ′j (since z′ ∈ Cj ∩N(y′′)). Thus y′′ can be chosen at that step. Hence
T ′1, T ′2, ..., T ′q can be numbered in increasing order. As the vertices of T ′q form a clique module (since x
is simplicial) they can be numbered in an arbitrary order and x can be numbered last.

The MLS orderings of a graph are exactly its MNS orderings [12], so its MLS-terminal vertices are
exactly its MNS-terminal vertices. 2

9 Conclusions

We have shown that the MLS family of algorithms exhibits interesting extremal properties for MLS
on a chordal graph, or, equivalently, for MLSM on an arbitrary graph: the substars of vertex 1 are totally
ordered with respect to inclusion, an this vertex belongs to a moplex. These properties may prove useful
for the design of new specific search algorithms.

When run on a non-chordal graph, the properties of MLS are weaker, except for Algorithm LexBFS,
which stands out as having properties in many ways similar to the meo-computing algorithms such as
LEX M, MCS-M, and more generally MLSM. In view of this, it might be interesting to investigate
other search algorithms, such as LexDFS [11]. Another approach would be to experimentally determine
whether the ordering α produced by an execution of LexBFS on a non-chordal graph defines a
triangulation G+

α which is close to minimal.
MLS run on a non-chordal graph with a non-total order on labels does not always end on an

OCF-vertex of the graph. It is an open question as to whether in that case a still weaker kind of extremity
could be defined.
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We also leave open the complexity of LexBFS-Terminal Vertex Problem on chordal graphs, as well
as the complexity of MLS-Terminal Vertex Problem on arbitrary graphs.
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