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Abstract: Using Hidden Markov Models (HMMs) as a recognmitidramework for
automatic classification of animal vocalizationss lmnumber of benefits, including the
ability to handle duration variability through nordar time alignment, the ability to
incorporate complex language or recognition comgBa and easy extendibility to
continuous recognition and detection domains. Ia work, we apply HMMs to several
different species and bioacoustic tasks using gdimed spectral features that can be easily
adjusted across species and HMM network topologiaged to each task. This
experimental work includes a simple call type dfasgtion task using one HMM per
vocalization for repertoire analysis of Asian elepts, a language-constrained song
recognition task using syllable models as bases dortortolan bunting vocalizations, and a
stress stimulus differentiation task in poultry abzations using a non-sequential model
via a one-state HMM with Gaussian mixtures. Resshisw strong performance across all
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tasks and illustrate the flexibility of the HMM freework for a variety of species,
vocalization types, and analysis tasks.

Keywords: Hidden Markov Model (HMM); Greenwood Frequency GegsCoefficients
(GFCCs)

1. Introduction

Within the field of bioacoustics, there is a growimeed for accurate automatic signal classification
for tasks such as call-type classification, indiagtl identification, and assessment of correlation
between vocalization patterns and specific sodgidiemavioral contexts. There are a number of well-
established techniques for vocalization classificatboth template-based and parameter-based.eOf th
template-based methods, many require significanttaning and have difficulty with temporal and
individual variability. In recent years, there hlasen work toward application of more advanced
pattern recognition methods such as those usednrah speech and speaker recognition, in particular
Hidden Markov Models (HMMs). The work presentedeh@rcuses on the use of HMMs as a robust
recognition framework for bioacoustic signal cléisation across a variety of species and
classification tasks.

Existing methods for bioacoustic signal classifmat include multivariate feature analysis,
spectrogram cross-correlation, matched filterirgyral networks, dynamic time warping, and others.
The most well-established of these is spectrograassecorrelation (SPCC) [1,2], in which a
spectrogram (time-sequence of short-time Fouri@nsforms) is directly correlated with test
vocalizations. Spectrogram cross-correlation is pggmto implement, requiring only a single
vocalization example of each type of call to beoggized, and can be easily applied to either the
isolated vocalization task, where recordings haeenbpresegmented into separate files, or to
continuous detection, where a sliding window is legobacross a long recording, with correlation
peaks indicating target detection. This SPCC metisodell-suited to recognizing animal sounds
consisting of tones and frequency sweeps [3]. Hawethe cross correlation approach is unable to
adapt to changes in call duration and alignmend, ignalso significantly impacted by frequency
variation such as shifts caused by vocal indivitdiyalcross callers.

Matched filtering (MF) is a time-series correlatiorethod that uses synthetic waveforms [4] or
synthetic spectrograms [3] instead of recordingngXas. This approach is also easy to implement,
although requiring more effort to construct patteamplates, and has many of the same strengths and
weaknesses as spectrogram cross-correlation. ddatifiNeural Network (ANN) approaches can be
used for classification in many different applicas, depending on the specific choice of input
features and network topologies. If spectrogramueslare used as input features, a common
configuration, then ANNs can adjust the emphasi®mgito various portions of the time-frequency
template, giving improved classification for sonaskts such as species detection [5-7]. However, in
this configuration, ANNs are subject to some of $hene temporal nonlinearity and frequency shifting
weaknesses as SPCC and MF. Dynamic time warpingd8], commonly used in small-vocabulary
isolated word recognition for human speech, is ableandle temporal nonlinearity through optimal
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frame-to-frame alignment of the reference templeta test vocalizations. However, it is difficulb t
implement DTW in a continuous detection framewaxkich is one of the reasons it is now rarely
used for large-scale speech recognition.

HMMs, now used in nearly all state-of-the-art sre@ecognition systems, have begun to gain
attention in bioacoustics as well [9-12]. An HMMasstatistical state machine model where each state
represents a stationary spectral configuration,tearsitions between states represent spectragelan
over time. Benefits of HMMs include their abilitp thandle nonlinear temporal alignment, their
statistical basis for classification, their extdmlity to continuous recognition or detection, ati
ease with which they can incorporate complex laggua other recognition constraints.

The performance of HMM-based systems has been aewchpga other classification methods for
bioacoustic tasks. Weisbuet al. [13] compared the performance of a matched fdted an HMM
system for detecting bowhead whaRalaena mysticetdiscall notes. The matched filter used a
spectrogram template, while the HMM used the thaegest spectral peaks as features for an 18-stage
model. The HMM detected 97% of the notes, whereasviF detected 84%. Anderson [14] compared
an HMM approach to a DTW-based system using a eatassisting of two different species of bird
song. His conclusion was that although the DTWesystvorked better with a small amount of training
data, the HMM system was more robust to noise amb¢alization variability.

One of the issues that makes comparison acrossodsethifficult is that of feature extraction. The
selection of features is an essential componeahwipattern recognition system, often having ashmuc
or more impact on the outcome as the choice otifleation model. For example, SPCC by definition
relies on short-time Fourier transform amplitudesaafeature, whereas MF uses a direct time-series
correlation, and DTW can use any spectral distaneasure between frames. HMMs, as statistical
classification models, are able to use any fransedafeature vector giving meaningful
discriminability across classes, most commonly trapsoefficients. This use of cepstrum coefficgent
is somewhat different than the standard statisérellysis approaches common in the bioacoustics
field, where typical features include whole-vocatian measures such as duration, energy, and
maximum, minimum and average fundamental frequeradyes. Such measures work well with
statistical test techniques such as the t-testSghared test, MANOVA, and factor analysis.
Frame-based features, however, are somewhat mdiieultito use with traditional statistical
approaches [8,15] because there are a variableeruphifeatures per vocalization. Another significan
and often unavoidable problem in bioacoustic sigmakessing is the presence of background noise
due to adverse recording environments, as wellbbagatutional noise due to microphone and sound
propagation variability. Standard spectral featuaes highly sensitive to noise, which can decrease
system accuracy and give misleading results. limportant, therefore, to incorporate signal
enhancement and/or robust feature extraction tqoksi that enhance the vocalization while
suppressing background noise. Common techniquesdace noise artifacts in bioacoustic signals
include basic bandpass filters and related frequased methods for spectrogram filtering and
equalization, often incorporated directly into aisgiion and analysis tools [16]. Other approaches i
recent years have included spectral subtractior], [iTinimum mean-squared error (MMSE)
estimation [18,19], adaptive line enhancement [2@hd perceptually motivated wavelet
denoising [21].
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In the study presented here, we examine the HMMbgmition framework and look at its
applicability to several different types of bioastia classification tasks. The framework is illaséd
with three different datasets, each representingdifferent kind of task. While the same HMM
framework and feature extraction methods are usmdss all tasks, front-end signal processing
methods and implementation details are tailore@aoh application. Application tasks include call
type classification of Asian elephant vocalizatioggllable-based song-type classification of ortola
bunting songs, and age-dependent stress stimalssifotation of poultry vocalizations.

2. Methods
2.1. HMMs

An HMM is a stochastic finite state machine usedhtmlel a speech segment. The segments may be
words, syllables, subword units, or even a compgérase [22]. Fundamentally, an HMM is simply a
set of states connected by transition arcs, astridlted in Figure 1. When modeling time-sequential
patterns, the states of the HMM are typically carve@ with state transitions from left to right,
representing time.

Figure 1. HMM with GMM state observations aligned to an Asiklephant Squeak
vocalization. The first and last state represemityeand exit points for the model, while
internal states, called “emitting” states, are radig to signal frames to maximize overall
model likelihood.
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An HMM is defined by its transition matri&, in which each elemery represents the probability
of moving from state to j, and state observation probabilitie& ), which represent the probability
distributions for each stateObservations, represent the data being modeled, in this caste#tare

vectors of the vocalization frames. Because thesitian matrix is two-dimensional, the system has
the Markov property, i.e. the probability of thexhatate is dependent only on the current state. In
human speech, Gaussian Mixture Models (GMMSs), glted sum of Gaussians that can represent a
wide variety of unimodal and multimodal distributicharacteristics, are commonly used to model the
state observation probability densities. The progneng toolkit used here is the Hidden Markov
Model Toolkit (HTK) from Cambridge University (20p223]. Parameter training is implemented
using the Baum-Welch method (an implementation haf well known Expectation Maximization
algorithm) for maximum likelihood estimation [24]2%nd classification is accomplished using the
Viterbi algorithm [26] to identify the most likelfHMM or HMM sequence given an unknown
vocalization.

Figure 2. GMM model aligned to a non-stress condition pquitscalization.
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The left to right topology and number of stateshea model may be adjusted to accommodate a
wide variety of sequential patterns. Patterns witire variation and complexity are typically assigne
models with more states to represent the differegiimes. In contrast, it is possible to use HMMs to
classify patterns without any temporal structura@laby utilizing a single state HMM with a GMM
observation model, as illustrated in Figure 2, \Wwhieduces it to a simple statistical classifier.
Transitions may also be added so that some stadgsbm skipped completely. This is particularly
useful in terms of modeling beginning and endirignsie regions within vocalizations. Simply by
including extra beginning and ending states, abjtramounts of surrounding silence regions are
implicitly included in the model and there is noedefor precise segmentation of individual
vocalization start and end points. Accommodating firesence of silence and pauses within
vocalizations is another example of temporal naaity that can be easily handled by the HMM
framework but is extremely difficult to incorporateo template based models.

2.2. GFCC/GPLP features

Mel-Frequency Cepstral Coefficients (MFCCs) [27]daRerceptual Linear Prediction (PLP)
coefficients [28] are well-established feature esgntations for human speech analysis and
recognition tasks. Both of these are representtioh the vocal tract spectrum incorporating
perceptual models of the human auditory system.MREC approach warps the linear frequency axis
to match the Mel-scale cochlear frequency map,enhié€ PLP method uses critical band filters, equal-
loudness curve amplitude transformation, and cobépower to intensity transformation. The use of
MFCC and PLP coefficients have several benefidiaracteristics and have been shown to be robust
and highly effective for characterizing human siefec tasks such as speech and speaker recognition.
These features, however, are specific to the huaatory system and need to be modified for
application across a wider variety of animal sp&cie

The features used in this work are a generalizatiaghe MFCC and PLP features [29] based on the
work of Greenwood [30], who showed that many terigsand aquatic mammals have a logarithmic
cochlear-frequency map. MFCCs have been generaiz&teenwood Function Cepstral Coefficients
(GFCCs) by the use of the Greenwood frequency wgrfuinction. PLPs have been generalized to
generalized perceptual linear prediction (gPLP)fft@ents, constructed by substituting a species-
specific frequency warping function and equal loegkcurve. It has been shown [10,31] that these
generalized features are effective for acoustitepatclassification across a wide range of spemnek
applications. The basic calculation method for GEGEto place triangular filters over the Fourier
Transform of each frame, spaced according to thee@vood frequency warping function, and then
take the filter bank energies and use a Discretg@in@oTransform (DCT) to convert the filter bank
energies into cepstral coefficients. In the expenta presented here, a 12-dimensional GFCC vextor i
used as the base feature, to which signal log gnergppended, after which velocity and accelenatio
coefficients (referred to as delta and delta-dettefficients in the speech community) are calcdlate
for each of the 13 original features, yielding arerall 39-element feature vector for each frame. In
addition, the feature vectors are normalized ugdgpstral Mean Subtraction (CMS), a common
technique which simply subtracts the mean valuessceach vocalization. This compensates for fixed
convolutional noise effects like microphone chanralation.
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2.3. Language Models

During the recognition process, multiple HMMs cam donnected together to form recognition
networks. In continuous speech recognition, thedd&umental HMM units are often individual
phonemes, so that this recognition network reptssgmoneme-to-word mappings (i.e., a dictionary),
pronunciation variants, pauses between words ongihes, and word-to-word transitions (i.e., a
language model). The recognition network also sflemechanism for directly incorporating language
model probabilities. For bioacoustic tasks, thisogmition network framework can be used to
represent information about the specific numbertgipds of vocalization sequences expected.

Figure 3. HMM recognition networks. Each unit representgratividual HMM, with the
overall network representing allowable HMM seques{eg Isolated vocalization network,
exactly one HMM per vocalization and one vocalizatiper recording(b) Isolated
vocalization network incorporating a constrainedgizage mode{c) Constrained model
with optional inter-syllable short pauses and beigig/ending silence regiongd)
Transformation into continuous detection network.
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The flexibility of this framework is illustrated biye four different recognition networks shown in
Figure 3. The first of these is just a simple srgbcalization classification network, where each
HMM represents a vocalization pattern and therexactly one vocalization per segmented file. The
second adds substantial complexity, allowing reg&tMM sequences according to specific patterns.
Here, each HMM would typically be a sub-vocalizatianit (such as a syllable of a bird song). The
third is similar to the second but adds optionarsipauses between individual syllables as well as
initial beginning and ending silence models for enoobust alignment. The final network illustrates
the addition of a feedback loop and an optionakgamund noise model in parallel, which changes the
individual vocalization recognition network into antinuous detection network that outputs both



Algorithms2009 2 1417

recognized vocalizations and timestamps across rdine erecording. Vocalization and language
probabilities can also be incorporated into thevoet to maximize the effective detection probabilit

3. Experiments
3.1. Asian Elephant (Elephas maximus): Repertomralysis

Elephants are intelligent, long-living animals thi&e in a complex and fluid society in which
several modes of communication play a role in na@mmg group cohesion and social order, and in
locating and assessing reproductive state of patanates [32,33]. Although the social and behaalior
contexts of Asian elephant communication signa¢sveell studied [34-37], the study of the elephant
vocal repertoire through categorization of callayy acoustic parameters is still needed as a fmasi
future research on individuality and for comparsarf acoustic communication among elephant
species and populations [32]. McKay [38] descrilted basic vocalizations for Asian elephants,
divided into three major categories. However, dhly low frequency rumble has been described by
spectral and temporal features [39].

This study focuses on call type classification Asian elephant repertoire analysis and validation.
Vocalizations were recorded from captive elephaoissed at the Oregon Zoo in Portland, OR (USA)
and from domesticated elephants in Thailand [40,¥bjcalizations were collected in a variety of
social contexts, time frames, and environmentatenconditions in both urban and rural settingsaDat
was recorded from seven known individuals and betwi) and 25 unknown individuals, at distances
ranging from 1 to 100 meters. The primary samptiaig was 44.1 kHz, although a few calls were
alternatively recorded at 32 kHz. Call types wemnually classified using perceptual aural cues and
visual inspection of spectrograms for differentatiof fundamental frequency contour, tonality, and
signal duration. Glaeseat al. [40,41] defined an acoustic repertoire of Asiaapblnts based on
acoustic parameters, and validated structural ndistin among six basic call types (Bark, Roar,
Rumble, Squeak, Squeal, and Trumpet) and the ngngaal Blow. In addition to these basic call
types, five call combinations with these basicébrming their constituent parts are defined (Roar
Rumble, Squeal-Squeak, Squeak train, Squeak-Badk Teumpet-Roar). The frequency range of the
signal energy ranges from 14 Hz up to 9 kHz, and durations range from 0.1 to 14 seconds.
Trumpets, Squeaks, Squeals have energy in the rhigdgpuency range (54 Hz to 9 kHz) and are
differentiated perceptually and through visual edmn by frequency modulation and duration.
Rumbles, Roars, and Barks are limited to the lofwequency range (14 Hz to 5 kHz), and are
differentiated by amplitude modulation and duratidntotal of 2,044 vocalizations were manually
segmented into all call categories. All vocalizatiaare included in the data set, regardless ofabkign
degradation by noise or presence of overlappingadsy

To maximize training set size given the limited roen of examples, 5-fold cross validation is
implemented. In the cross-validation methodoloyg data set is divided into multiple equal subsets
(five for this experiment), with one set used festing and the remaining for training. The prodsss
then repeated once for each test subset, so tttaegample is used as a test point exactly once.

For analysis, GFCC features are extracted fronvélealizations using a moving Hamming window
with a window size of 25 ms with 15 ms overlap. 8 &ement feature vector (standard in human
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speech recognition) is used, with 12 GFCC coefiitisevith cepstral mean normalization plus log-
energy, appended by velocity and acceleration,essribed previously. The Greenwood frequency
warping constants are calculated using 10 Hz-10 teHmcompass the signal energy [40,41]. A total
of 60 triangular filterbanks (more than is usualsed in human speech) are spaced in accordance with
the Greenwood warping function across that frequeaage to guarantee enough filterbanks in the
low frequencies, where a large amount of signatg@nis located. One Hidden Markov Model is used
to model each of the 11 different call types disedsabove, with 12 emitting states per HMM and
GMM state distributions with three Gaussian mixguper state. A range of parameter variations was
also implemented for comparative evaluation, widneyally similar performance present across a
broad range of states and mixtures.

Table 1. Confusion matrix for 12 state HMM with 3 mixturdasic call types are shown
in bold. BRK=Bark, RRM=Roar-Rumble, ROR=Roar, RUM#Rble, SKC=SqueakTrain,
SQG=Squeak-Bark, SQK=Squeak, SQL=Squeal, SQS=S¢matal, TMP=Trumpet,
TRR=Trumpet-Roar. Overall accuracy is 60.1% ¢hance accuracy 28.0%).

Classification

BRK | RRM | ROR | RUM | SKC | SQG | SQK | SQL | sQs| TMP | TRR

BRK | 42 | o | 10| 20| o| o| 1| s| of 6| o
RRM | 0 | 5 8 4 | o]l o] o]l o] o] o 0
ROR | 21 | 5 | 134 | 32 o | o | 1 0
RUM | 7 1 | 20 | 87 0| o |32 ]10] 23| o

S ISkc | o | o 2 64 | 5 | 0o | 10| 22| 3 0
§ sQG | 0| o 1 8 | 18] 3| 2| 1] o 0
SOK | 11 | o 0 26 | 2 | 253 | 16 | 11| 7 0
QL | 12 | o 2 | 38 | 17| o | 11 | 323|103| 66 | O
sQs | o0 0 0 7| 26| 4| 13 75 | 75| 1 0
T™P | 6 0 1 22 | 2| 1| 17| 24| 4] 227| o0
TRR | 0 0 0 0 ol o o 1 0| 4

The confusion matrix over the full data set comalg, including all call types with all overlapping
and noisy calls, are shown in Table 1. The ova@tlracy for the full set is 60.1%. The patterrvaino
by the confusion matrix indicates that a signifitcaamber of the errors are made between highly
confusable call types and between basic call tyges their corresponding call-combinations. By
roughly ordering the columns according to confuligtbetween calls, similarity can be observed by
looking along the diagonal for blocks with sign#id error rates. Some of these patterns are
highlighted in the confusion matrix for referen&milarity between RRM (Roar-Rumble) and RUM
(Rumble) and to a lesser extent ROR (Roar) is naedvell as substantial similarity between SQS
(Squeak-Squeal) and SQL (Squeal). These similardie expected because combination calls are
made up of the basic call types with which they @mefused, and the error patterns help confirm the
repertoire categories.
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More accurate classification is possible by inahgdonly the basic call types, and by excluding
calls with high noise degradation and calls thagrlmap with other calls or sporadic sounds. This
improvement is shown in Table 2, where the accufacya 12 state HMM classifier with three
Gaussian mixtures is 85.0%, across 186 clean \zatains.

Table 2. Call type classification accuracy over reduceddean Asian Elephant data.
Overall accuracy is 85.0%¢ chance accuracy 32.8%).

Classification
BRK ROR RUM SQK sQL T™P
BRK 15 0 0 0 4 3
ROR 3 22 0 0 1 0
T | RUM 1 2 4 0 0 1
o
S| sok 0 0 0 60 1 0
sQL 0 1 0 1 26 2
T™P 0 2 0 3 3 31

3.2. Ortolan Bunting (Emberiza Hortulana): Syllap&ong Variant, and Song Type Classification

The ortolan bunting is an endangered migratory gyass distributed from Western Europe to
Mongolia [42], which has undergone a major popalatdecline in recent years [43,44]. This bird
vocalizes in a range between 1.9 kHz and 6.7 kHkhas a relatively simple song and a repertoire
size that varies between just a few songs per iohgd@ to as many as 24 [45]. The ortolan bunting
vocalizations examined for this study were collddi®m County Hedmark, Norway in May of 2001
and 2002 [46]. The male vocalizations were recordadll out of 25 sites within an area of
about 500 krh The total number of males in the covered areanguR001 and 2002 was
approximately 150. As described by Osiejuk [46]est ortolan vocalizations were recorded
between 04:00 and 11:00 am with a professional B&brder at the sampling rate of 48 kHz.

Songs of ortolan buntings are composed of bases weferred to as syllables. Each syllable is
described using letter notation, as illustratedrigure 4. Songs are categorized by song type, etkfin
according to the general type of syllable pattamg further into specific song variants, defined by
exact repetition pattern. For example, common ggpgs includeab, cd, andhuf, with common song
variants such agaaah aaaaablh cccd andhhhhuff Although individual examples of syllables differ
in length and frequency across individuals, theyntain the same sonogram shape and underlying
temporal pattern.
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Figure 4. Ortolan bunting syllables (from [46]).
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This study focuses on automatic song classificatiatie ortolan bunting. Modeling is done at the
syllable level, so that each syllable type hasraesponding HMM, and then classifying into a syléab
sequence to match individual songs with a spesditg type and song variant.

To evaluate classification accuracy using HMMspbset of 10 frequently produced call types is
used, with 25 calls in each type used for trainamgl 25 for testing, and data across multiple
individuals included in both the training and tests. The call types selected incladech, cd, eb ef,
gb, guf, h, huf, andjufb, which consist of the ten common syllabée®, c, d, e, 1, g, h, j, andu. In addition
a silence model is trained to represent beginnimemding silence and pauses between syllables.

Due to substantial recording noise, all waveformesenhanced using simple band-pass filtering to
eliminate noise outside the active vocalizationgeai2,500 to 7,500 Hz) of these calls, followed by
Ephraim-Malah filtering [18], a statistical signahhancement method common in human speech
processing applications. Analysis is then doneguslamming windows with a window size of 5 ms
with 2.5 ms overlap, accounting for the much fagemporal patterns present in the bunting
vocalizations as compared to the Asian elephamatuifes for classification are the same 39 element
GFCC feature vector described previously for theeAglephant data, with a few minor differences.
The main difference is that the lower and uppeguency limits of the Greenwood function used for
frequency warping are adjusted to 2,500 and 7,500rébpectively, to represent the frequency range
of these calls. In addition, a simple baseline eunermalization is added to the log energy feature.
This consists of performing a second order polyrabiii to the log energy curve for each song, then
subtracting the baseline curve from the log enamgya per-frame basis. This is done because the
amplitude of the individual syllables is commonhetloudest in the middle portion of calls, and the
normalization compensates for the longer-term anmidi changes while still allowing shorter-term
signal amplitude modulations to be representedbyenergy feature and thus used for classification.

Each syllable model consists of a 15 emitting std#M with a single Gaussian, designed to track
the time-evolution of each syllable’s frequencytgat. Multiple Gaussian mixtures are not necessary
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because of the simplicity of the frequency chargsties along each step in the time-frequency patte
Recognition is implemented using a constrained dagg model describing the allowable song
patterns, as illustrated previously in Figure 3.

Classification is evaluated in terms of song-tymeusacy, syllable accuracy, and song-variant
accuracy. Song-type and song-variant accuracy eatomputed directly as the percent of songs with
the correct classification. However, since ther raultiple syllables in each song, syllable accyrac
requires a detailed alignment process, where tbegréezed song is aligned against the correct song
transcription and a dynamic programming method seduto determine the minimal number of
insertions, deletions, and substitutions diffel@img the recognized song or correct song [23]alFin
results are shown in Table 3 below. In additiohl&al shows the increase in syllable accuracyas th
various system improvements described above aredaséquentially, including language modeling
constraints, feature normalization and signal enbarent, short pause models between syllables, and
energy normalization. It can be seen that languagdel constraints, feature normalization (which
reduces individual vocal variability), and fronteesignal enhancement each make very substantial
contributions to accuracy improvement.

Table 3.Song type, syllable, and song variant classificaticcuracy for overall system.

Measure Accuracy
Song Type 100%
Syllable 97.5%
Song Variant 77.6%

Table 4. Increase in accuracy due to sequential system owepnents. Constrained

Recognition Network (CRN) refers to the song-tygeguage model of Figure 3b. Cepstral
Mean Subtraction (CMS) is feature normalizationdascribed in Section 2.2. Signal
Enhancement (SE) is Bandpass plus Ephraim-Mal#drifiy as described above. Short
Pause (SP) is the song-type language model of &i8cyrand Energy normalization (EN)
is baseline curve energy normalization as descriede.

Methodology (15 state HMMs with 1 Gaussian) Syllale!
Accuracy
Baseline 39 element feature vector 61.0%
Baseline + CRNConstrained Recognition Network ) 74.0%
Baseline + CMSCepstral Mean Subtraction) 88.0%
Baseline + CRN +CMS SE (Signal Enhancement) 95.9%
Baseline + CRN + CMS $E + SRShort Pause) 96.7%
Baseline + CRN + CM$ SE + SP + ENEnergy Normalization) 97.5%

3.3. Chicken (Gallus Domesticus): Age-DependemsSt€ondition Classification

Maintaining low-stress living conditions is extregnanportant to the care of domesticated poultry
used for agricultural food production. However,reutly the only clinical tool for directly measugn
stress levels requires measuring hormonal indisaborblood samples, which itself stresses the
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animals. This study is focused on investigating toerelation between vocalization patterns in
agricultural chickens and various stress stimulithis environment, for the purpose of assessing
whether vocalizations could be reliably used adress indicator. Two separate stress-related task
experiments are implemented, one focused on dyrdetiecting living condition stress in vocalizagon
and one focused on evaluating the connection arswags induced by human presence, diet and age.

Vocalizations were collected at the University obn@ecticut Poultry Barn, which houses 25
animals. A stationary microphone to which the ahénveere accustomed was used. Long (multiple-
minute) DAT recordings at a 44.1 kHz sampling raége made after acclimatization to each condition
under test, and then divided into 10 second durasiegments for analysis and classification. The
vocalizations used in these experiments vary froevipus studies in that there are large numbers of
individuals vocalizing simultaneously, so that mdual vocalizations cannot be separated and tisere
no discernible time patterning. This is accommadiatéhin the HMM framework by reducing the
number of states to 1 because there is no timeesegquo be modeled, and increasing the number of
mixtures to 12 to get a finer resolution discriniioa in terms of overall spectral characteristiceoas
the population. Thus, the classification methodpectral as opposed to sequential, and the HMM
approach becomes equivalent to a much simpler Ghdlitscal classifier.

Feature extraction is again similar to that of firevious tasks, using a base 39-element GFCC
feature vector, with Hamming frames of 25 ms e&@me overlap of 15 ms, and 26 filter banks for
analysis. The lower and upper frequency limits seeto 125 Hz and 2,000 Hz [47], respectively,
based on the approximate hearing range. However|oth energy coefficient is not included since
there is nmeed for a loudness pattern due to the non-tempaekl, and to avoid any bias that might
be introduced by overall vocalization amplitudaifierent conditions,

3.3.1. Age dependent living condition detection

The goal of the first task is age-dependent livimgdition classification. Newly hatched chicks
were recorded at the ages of 1, 2 and 3 monthsjxirdifferent stress factor conditions. These
conditions include: No stimulus (Control), Heat (Human Presence (HP), Heat + Human Presence
(H + HP), Crowding (C), Heat + Crowding (H + C).d& baseline Control condition was without any
humans present and an ambient temperature of 6feeted-ahrenheit, the Heat condition was
conducted at an ambient temperature of 100 dedtaleenheit, the Human Presence condition was
conducted with one individual present in the bamg the Crowding condition was conducted with
space per chicken reduced by 1/3 over standardnmemded conditions. A total of 1,355 vocalization
segments were recorded across the three age gaodssx conditions.

Classification is run over each age category séglgrasing 10-fold cross validation. An example
confusion matrix for the 3 month old data subsethiswn in Table 6, and overall accuracies are given
in Table 5. Chance accuracy in all cases is bet@#&ef35%. The results suggest that vocalizations are
affected by condition and also that vocal producpatterns become more consistent over time. It can
be seen that, as might be expected, the highesusion is between conditions with overlapping
stimuli, for example Heats Heat + Human Presenes Heat + Crowding. Accuracy between the
disjoint stimuli Heat, Human Presence, and Crowanguch higher.
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Table 5. Sample condition classification confusion matfis; 3 month old age group.
Accuracy 72.4%\s chance accuracy 25.3%).

Classification
Control | H P |H+HP | c | H+C
Control 97 0 2 0 0 0
H 0 39 7 12 7 0
[ HP 5 1 70 0 20 0
S| H+HP 0 12 0 24 0 6
C 7 2 0 34 1
H+C 3 1 0 11 9 19

Table 6.Overall 6 condition classification accuracy fo2l and 3 month old age groups.

Accuracy
1 month 60.5%
2 months 62.0%
3 months 72.4%

To examine the change in vocalization patterns ametion of age, a cross testing experiment is
done by training and testing on disjoint age grodsexample of these results, training on one tmont
old data and testing on two and three month old,d&t shown in Tabl&. Accuracy drops in
proportion to age differences between training tstl set conditions, dropping from 60.5% within the
same age group (from Table 6), to 49.1% on 2 moldk (a one month age differential), to 34.9% on
3 months (a two month age differential).

Table 7. Accuracy of 2 and 3 month old chick vocalizatiarsng models trained on 1
month old data.

Accuracy
2 months 49.1%
3 months 34.9%

3.3.2. Stress and Diet detection

A second study on poultry vocalizations is also lempented, focused on determining whether
vocalization patterns could be used to differeatidietary conditions (meat vegetable fed), stress
vs nonstress conditions (human presence being tressststimulus), and age of the animals
(young, 0—4 weeksjs mature, 5-6 weeks).

Results for stress classification are shown in @&blAll accuracies are above 90%, and indicate
that within these conditions, human presence sigesslatively easy to detect. The slightly higher
accuracy for mature vocalizations may be simplyadated with age, in that vocalization patterngiten
to be more stable and established in older indalgluor may be due to learned reactions or
preferences.
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Table 8. Stress (Sys.Nonstress (NS) classification as a function of age diet conditions.

Meatfed | cjassification Veg fed Classification
0-4 weeks old 0—4 weeks old
98.6% NS S 94.40% NS S
s | NS |176| O 5| Ns | 224 1
8 8
= S 5 190 - S 22 164
Meat fed Classification Veg fed Classification
5-6 weeks old 5—-6 weeks old
100% NS S 98.9% NS S
© NS 72 0 © NS 92 0
8 8
— S 0 89 — S 2 82

Table 9. Meatvs Vegetarian diet classification as a function @& and stress conditions.

NOnstress | Classification Stress Classification
0-4 weeks old 0-4 weeks old
61.6% Meat | Veg 69.6% Meat | Veg
© Meat 157 140 © Meat 128 46
g g
- Veg 24 106 - Veg 62 119
Nonstress | Classification Stress Classification
5-6 weeks old 5-6 weeks old
89.2% Meat | Veg 28.4% Meat | Veg
% Meat 63 9 % Meat 71 19
— Veg 9 85 — Veg 18 63

In comparison, determining whether or not diet ingsact on vocalization patterns is a much more
difficult classification task. Table 9 presents tlesults on this question. The main observaticihas
diet does impact vocalization patterns with acdesabigh enough to confirm significance in all Gase
Additionally, it can be seen that the nonstresseddition vocalizations are much easier to
discriminate than the stress condition vocalizagjoand that more mature animals are easier to
differentiate than young animals. This indicatest thliet-related vocalization differences are
diminished by stress but increase with age. Maxinageuracy, for mature animals in the nonstressed
condition, are relatively easy to discriminate ba basis of diet, at 89.2%. Looking comprehensively
at all the poultry experiments, the main overaldasion is that while vocalization patterns incea

in consistency and differentiability with age, sseconditions can be differentiated across all
age levels.
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4. Conclusions

Overall, the experimental results show consistemfopmance across a diverse set of species and
application tasks. The use of a robust automa#isstication model can offer insight into reperoir
variation, individual vocal variability, social ctaxt correlations, stress conditions, and many rothe
important animal behavior questions. Hidden Marlkédwedels, with a flexible recognition network
topology and probabilistic framework for classitiom, coupled with generalized spectral features
such as GFCCs for application across many specoffer an extremely robust and powerful
framework for many bioacoustic applications.
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