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Abstract: The emergence of novel sensing elements, computiodes, wireless
communication and integration technology providegpracedented possibilities for the
design and application of intelligent systems. EagWw application system must be designed
from scratch, employing sophisticated methods rapfiom conventional signal processing
to computational intelligence. Currently, a sigraint part of this overall algorithmic chain
of the computational system model still has to Bsembled manually by experienced
designers in a time and labor consuming procesthignresearch work, this challenge is
picked up and a methodology and algorithms for raated design of intelligent integrated
and resource-aware multi-sensor systems employinglti-abjective evolutionary
computation are introduced. The proposed methogotagkles the challenge of rapid-
prototyping of such systems under realization gandts and, additionally, includes features
of system instance specific self-correction fortaimed operation of a large volume and in a
dynamically changing environment. The extensiorihefse concepts to the reconfigurable
hardware platform renders so called self-x sengstems, which stands, e.g., for self-
monitoring, -calibrating, -trimming, and -repairfdgealing systems. Selected experimental
results prove the applicability and effectivenesswr proposed methodology and emerging
tool. By our approach, competitive results wereieatd with regard to classification
accuracy, flexibility, and design speed under aold#l design constraints.
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1. Introduction

Intelligent integrated multi-sensor systems aradifig a more and more widespread range of
applications in areas including the automotivepgeace and defense industries, industrial, medical,
building automation and security uses, and intetliighouse and wear. This remarkable increase of
applications is due to the ongoing advances inaeasd integration technology [1-4], computing
nodes [5,6], wireless communication [7-9], and algorocessing algorithms [10-13]. Such intelligent
multi-sensor systems also require, however, a tavggety of sensor electronics and sensor signal
processing techniques to be efficiently employedllithese different applications.

Currently, a significant part of intelligent sensystems are still manually created by more or less
experienced designers and need to be adapted ragimeered for each new application or different
task. The design process goes through the mairs stegensor selection and scene optimization,
analog and digital hardware selection or conceptiomoice of signal and feature processing,
dimensionality reduction, and classification. Altigh the sensor selection, sensor parameter selectio
and the processing steps of dimensionality redadiind classification are more and more the subject
of automation efforts, employing learning and optation techniques [14-16], the decisive tasks of
selection, combination, and parameter setting ofibc signal processing and feature computation
method are currently left to the human designers #&adious, time and labor consuming task with
potentially suboptimal outcome. In particular, tireat diversity of available methods and tools from
conventional signal processing to computationaliigience techniques imposes severe challenges on
the experience and qualifications of the desig8anilar problems have already inspired research and
implementation in the field of industrial vision cathe design of corresponding image processing
systems in the last fifteen years [61,62]. Howeverage processing and general sensor signal
processing show substantial differences due tonyidg physical principles. Thus, only inspirations
from this work can be abstracted to our field ofrkvand numerous extensions and modifications
reflected by our research goals are required.

In numerous cases, the utilization of a single @ens insufficient for deriving important
information about particular measured objects. Otbgearch activities have shown the need for multi
Sensors or sensor arrays, e.g., in chemical seagiplications, for improving of the decision-making
or the overall system performance [2,17]. Howewtkese multi-sensor systems will increase the
problem complexity and load on the designer forosiog and combining the proper signal processing
and feature computation operators and the setfitigedoest parameters.

In a general approach for intelligent decision mgkiask, e.g., airbag triggering in cars under the
constraint of seat occupancy, the sensor signal€@mnputed by operators of feature computation to
extract the important features employed in a di@ssunit for the recognition task. The features
extracted from multi-sensor signals by feature catajon operators enrich the dimensionality of data
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which as a result increases the computationaltedifod could decrease the performance of a classifie
due to the curse of dimensionality [18]. Theref@eme form of dimensionality reduction is usually

applied to reduce the feature space of the data.ddthe common dimensionality reduction methods,
i.e., feature selection, has been applied in the opétian of intelligent sensor system design in order
to reduce the cost measurement of overall systemeliminating the unimportant sensors and feature
computation operators [19]. The feature computateord classifier selection, as well as the

corresponding parameterization are crucial stepthéndesign process of intelligent multi-sensor
systems.

In many optimization approaches for classificatiasks, an objective or fithess function is mostly
computed based on only the classification resliteur design approach, the multi—objective funttio
is used based on the classification accuracy [@0grlap and compactness measurement of data
structure [16] along with the constrainig. the computational effort of feature computation dghe
number of selected feature [19]. In the contexbof application domain, there are two commonly
applied approaches of multi-objective optimizatihrat have been proposed to solve the multi—
objective problemsi.e., the aggregating method and Pareto—optimal metf@t. In this paper, the
aggregating method is adopted for this enginegunofplem for reasons of feasibility and complexity.
More advanced schemes can be studied in the taggssof the work. For optimizing sensor selection,
the combination and parameterization of feature pudation, feature selection, and classifier,
evolutionary computation (EC) techniques, in patic Genetic Algorithms (GA) [22,23] and Patrticle
Swarm Optimization (PSO) [24,25] have been cho&sth GA and PSO have been applied to
optimize a variety of signal processing and feattwenputation as well as classification problems
[12,19,20,26]. However, most of these prior apphheacaim at optimizing only a single operator,
without regard for the the overall system design.

Furthermore, according to predictions of technolaggdmaps, mobile sensor nodes are expected to
become constantly smaller and cheaper [27], pa@tintiffering fast computation, constrained only by
limited energy resources. This means that a desleeto achieve an efficient constrained design,
select the combination of data processing techsiqudich give low computation effort and only
require small memory, but still perform well. Traad a couple of other features, distinguish general
sensor systems clearly from the field of industkieion, where also several design automation or
learning system designs can be observed [44,45sd&tan provide some inspiration, but are not
sufficient for the challenges in the general sesystem field.

Some research activities which have proposed mstladl contributed to the activities for
automated design of intelligent sensor systemshaedly discussed in [28-30]. In [28], the authors
focused on the sensor parameter selection for &-sausor array using genetic algorithms. In [20],
method to assist the designer of a sensor systefimdmg the optimal set of sensors for a given
measurement problem was proposed. In [30], theoasithroposed an algorithm based on particle
swarm optimization (PSO) of model selection. Thigodathm is capable of designing the best
recognition system by finding a combination of precessing methods, feature selection, and learning
algorithms from a given method pool, which provides best recognition performance. The approach
of Escalanteet al. [30] does not try to optimize the selected stathamodels, e.g., nearest-neighbour
classifier and probability neural network, with aed to resource awareness.
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Our goals are to contribute to the automation tdliigent sensor systems that efficiently employ a
rich and increasing variety of sensor principled afectronics for an increasing number of technical
fields and tasks at feasible cost. For this purpese propose a concept, methodology, and a
framework for automated design of intelligent msknsor systems (ADIMSS) based on well
established as well as newly evolved signal pracgsand computational intelligence operators to
build an application-specifc system. The proposedhodology is converted to a constantly growing
toolbox based on Matlab. Our ADIMSS approach presioth rapid-prototyping properties, as well
as adaptation or reconfiguration properties reguindhen facing the deployment of the designed
system to a larger volume of hardware instances,sensors and electronics, as well as the time-
dependent influence of environmental changes amyaghe aim of our emerging tool is to provide
flexible and computational effective solutions,idaprototyping under constraints, and robustnesk an
fault tolerance at low effort, cost, and short gdadime. Such self-x features, e.g., for self-marniriy,
-calibrating, -trimming, and -repairing/-healingsgsms [60], can be achieved at various levels of
abstraction, from system and algorithm adaptatiowrdto self-x sensor and system electronics. Our
proposed architecture for intelligent sensor systdesign can be applied in a broad variety of $ield
Currently, we are focusing on ambient intelligencekpme automation, MEMS (Micro
Electromechanical Systems) based measurement systdameless—sensor—networks, and automotive
applications.

The next section will describe the conceived mebhagly of self-x intelligent sensor systems. In
Section 3 we summarize aspects of evolutionary coation relevant for our particular work, focusing
on genetic algorithm and particle swarm optimigatiSection 4 discusses approaches to design and
optimise physical aspects of the sensor front-8edtion 5 treats options for systematically optings
sensor signal processing and feature computatidhaae. Section 6 regards available dimensionality
reduction techniques and introduces in this contautial issues of solution stability. Section 7
extends the employed optimisation and assessmetitod® to the classification task. Hardware
constraints and resource awareness are treatetidogxample of a particular low power classifier
implementation. For the aim of step by step denratish of our approach, data of gas sensor systems
or electronic nose and other benchmark datasetappied to demonstrate the proposed method of
sensor systems design (the approach has also ppkedato industrial tasks and data, but publicatio
permission is currently not granted).

2. Concepts and Architecture of Multi-Sensor SignaProcessing

Intelligent sensor systems for potentially complexognition tasks are composed of involved
methods and algorithms with numerous parametegsir&il exemplifies the standard building blocks
of intelligent multi-sensor systems related to gegtion applications. Of course, the graph shown
simplifies the actual system, as more complex &ires can be employed, e.g., for hierarchical
classification or sensor fusion concepts. The tegliask of selecting, combining, and parameterizing
methods of a method pool or even conceiving/dewetppew algorithms, is commonly burdened on a
human designer. Such a manual, human—centerechdasigess naturally consumes substantial human
effort, time, and cost. Depending on the particdesigner’s expertise, the manual approach cdn stil
deliver mediocre results. To alleviate the requiedfrt and to achieve competitive results, design
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automation activities emerged as in other discgdjre.g., chip design. Thus, in our work we puisue
shift of paradigm from expert-driven to automatedign. In the following, we will outline the condep
and describe our methodology, including the emerghkDIMSS tool based on evolutionary
computation for constrained optimized design otlilgent sensor systems. The following subsections
will discuss how the human expert can be effegfiveplaced by automation, similar to the
development in other domains, e.g., microelectsnic

Figure 1.Block diagram of typical intelligent multi-sensgrsgem. The design in each step
or block depends human observation and assistance.
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2.1. Global Optimization

Basically, in an automation approach, the humareg>gould be removed by a global optimization
unit that is supported by a knowledge base, eogtaining seed solutions and recommended parameter
ranges and settings, for such search space redu($ee Figure 2). However, the concurrent
optimization of the sensor selection, sensor patersieand the chain of sensor signal processing
methods will easily become infeasible for practsgdtems. As well-known, for instance, from feature
selection, such exhaustive search approaches, ithotmmising with regards to achievable solution
guality, can only be applied to moderate searchespanensions. Thus, for reasons of tracktabilig a
feasibility, a consecutive local optimization obguoblems is pursued and developed.

Figure 2. The concept of intelligent multi-sensor system giesiased on global optimization.
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2.2. Local Optimization

The procedure of local optimization follows tlkvide-et-imperaprinciple and dismantles the
design problem into a set of local, smaller desigrblems with reduced search space, e.g., select or
combine methods and to optimize their parameterstrocture gradually in the chain of sensor signal
processing. However, the individual design stepgedd on each other. This dependence can be
honored, by letting the subproblems exhange inftonawith their neighboring blocks. The simplest
way to do this is to sequentially evolve the syst@&he direction of local optimization can deottom-
up or ‘top-down optimization, as suggested by Figure 3. In thguFe, the top row repeats the general
block strucuture of the intelligent multi-sensost®yn under design composed of multi-sensor/sensor
array (including signal conditioning), signal prespessing and enhancement, feature computation,
dimensionality reduction, and classification (irdilg the hierarchical classifiers). The second row
illustrates the distributed optimization of the igestool, which in each local optimization block
contains a potentially extensible collection ofy@n methods and algorithms of sensor and recognitio
systems and the local optimization tool, includsiggle or multiple assessment methods from Section
3.5, for searching and finding of the best struetamd parameters in each block. In addition talee
named assessment functions, which quantify theeaeti decision making ability on the regarded
level, further constraints related to, e.g., cormpahal complexity and/or energy consumption, could
be included as multiple objectives in the optimat approach on each level. As most the
optimization tasks pursued here, rely on the canoépearning-from-examplesdata and supervised
information must be made available in an approgii@tm on that level. This includes also statisiyca
meaningful validation techniques employed in theigie hierarchy.

Figure 3. The concept of intelligent multi-sensor system giediased on local optimization.
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In the third row, the knowledge base or memory bligcdepicted. Its main task is to avoid starting
from scratch and to reduce the search space coityplgxcollecting and employing design knowledge
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from previous applications. The initial design (expdriven) can be obtained from the knowledge of
expert designer or the previous best solution. Kiievledge about the methods or parameters from a
specific application of sensor systems can be eppio rapidly design for similar application, but
usually result in sub-optimum. Those design denssiand parameters of each block in the intelligent
systems commonly still need a refinement or adjastnby the optimization procedures. The issue of
determining a similar problem in the database gngesto interesting recognition tasks on a metaile
[46].

2.3. Multi-objective Design of Intelligent Multi4&sor Systems

As became clear from the previous discussion, titenaated design of intelligent multi-sensor
system commonly is a multi-objective design problémaddition to the primary goal of excellent
decision-making performance, numerous other goalst tne met. This is illustrated in detail in Figure
4. Appropriate assessment and optimization metlardsrequired to support the demanded mult-
objective decision-making. Agglomerative or Parapproach [21] could be employed here. In
particular, some of the goals or constraints shamwrkigure 4 relate to hardware properties. In
particular, sensor and analog electronics impaae&sind dynamic constraints that should be known a
design time. Even digital implementations, if designd deployment platform are substantially
different, will constrain the implementation.

Figure 4. Objectives and constraints to be considered ingdesy of intelligent
multi-sensor systems.
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In part, these constraints could be modeleatiori and incorporated into the optimization activities
of the design to find a solution with acceptablecdmination honoring the given constraints. Imtsr
of evolutionary computation, this approach is comimadenoted as extrinsic evolution. Figure 5
shows the feedback of target hardware platform tcaimgés to the design system running on the
resources of an unconstrained computational platfe.g., PC or workstation, to be incorporated in
the design process (top arrow, case 1).
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Figure 5. Feedback of hardware platform related constramtbe design process.
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This kind of constraint modeling and honoring wabrk, if indeed at design time the actual
constraints can be accurately predictesl, modeled accurately, and no dynamic changes odtus.
can be assumed for, e.g., reduced accuracy of ed-pwint architecture and its computational
implications. However, moving forward from the dephent of a single prototype to real-world
deployment of a potentially large volume of insesicadditionally effects have to be heeded for
successful system design. Figure 6 shows threeephafs system design and applications, that is,
design time so far covered by the preceeding dssonsas well as deployment time and operation
time.

Figure 6. Three differenphases of the system design and application cycle.
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In deployment time, the system solution evolvedfaois duplicated or copied to numerous
hardware instances. These will all show instanezifip static variations or deviations, due to well
known manufacturing tolerances. Thus, a tuninghef éxisiting system solution in the light of the
hardware deviations is required for compensatiah r@storation of a uniform performance over the
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systems lot. Generally, this requires feedbackastivare-level system performance, as in industrial
circuit trimming. Figure 5 already depicts the miagpof the system solution to the hardware platform
(bottom arrow) and the result or performance realiéor optimization (top arrow, case 2.). Thisdkin
of optimization loop, taking hardware in the logggdenoted as intrinsic evolution or self-trimmiiog,

in the history of neural computation, as chip-ie-tbop-learning [52]. It must be mentioned herat th
in particular, putting the sensors in the loopsaggested also by researchers from NASA in evodvabl
hardware [47], requires significant physical effortsophisticated alternative solutions.

Finally, at operation time, the trimmed systemanses face aging and drift due to environmental
changes. This could also comprise both hard or defitcts encountered in microelectronic circuits.
Continuous self-monitoring of the achieved systeimllowed by continued self-trimming or
self-repair/healing is required. For digital prosieg reconfigurable circuits, e.g., FPGA, are
commonplace and widely available to render suchxsginctionality. For the crucial case of sensor
front-ends and electronics, reconfigurable techesgare also gaining more and more ground. For
instance, such research has been conducted by NAGAas well as in our group, by dynamic PSO
application [40] based on reconfigurable sensoctedaic platform [41]. The generalization of these
concepts and their incorporation into our desigrtho@ology is proposed here and exemplified in
Figure 7.

Figure 7. Enhanced design methodology for intelligent muttirsor systems based on
intrinsic and extrinsic optimization.
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Here, the assumed hardware platform is no longetriceed to be hardwired. Instead,
reconfigurability and availability of redundant oesces on the digital, analog, and sensor levas ar
assumed to achieve true self-x intelligent sengstesns. The underlying substantial additional éffor
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will in particular pay-off for safety critical syams, systems out of easy maintenance reach ana futu
microelecronic systems, that will become incredgingilnerable to statistical and environmental
perturbations. Further, the sensor data acquisgioth conditioning must not strictly adhere to the
established linear design. Simple solutions, opmistically exploiting available processing capiil
could be found and employed.

For cost—effective systems based on today’s offstiedf components, predominantly the extrinsic
part of our design methodology will be employed #mel corresponding tool implementation pursued
as a near—term research goal. The static deviatigisin the deployment phase in part could be
covered also by the extrinsic case, employing tedéil modeling techniques well established in the
field of yield optimization and design centering.gie [53]). As a long-term goal, the intrinsic
architecture and approach will be pursued, whicéo alequires accompanying hardware design
activities for true self-x intelligent sensor syate

2.4. Implementation of ADIMSS

The concept of ADIMSS is implemented in the Mattdatform. The design process is done in one
way of using aottom-upapproach, where the optimization process runs fsamblock after another
block starting from the sensor block to the clasaifon block. Anoffline mode is set in the process of
generating intelligent sensor systems, wherea®ordime mode is done for testing the generated
intelligent sensor systems. The first process isditect the signals of sensors using DAQ toolbox.
Then, the raw signals of sensors are divided matioing and validation sets. The training set isdu®
design the systems in the learning process (modkeldifferent structures and meta-parameters). The
trained system that performs best on the validasienis then selected as the final system. In the
ADIMSS implementation, the validation techniques available for the user or designer to select one
of four options, which are holdout method, k-foldogs-validation, leave-one-out (LOO) cross—
validation, and bootstrap method [18].

Figure 8 shows the list of toolboxes used in ourlMBS implementation. All the functions or
subroutines set by designers are invoked in the magram. When a new function is developed, this
new function can be straightforwardly added in likeof the toolbox and directly called in the main
program. The procedures of individual local optiatian are shown in Figure 9. The dataset from one
step or block is processed and recorded along thighlabel or class information. The number of
examples or patterns is same from the datasetnsiseaw signals, but the dimensional data feeded
into each block is different. The raw data are wagat by means of signal acquisition device (multi-
sensor) and extracted by feature computation blbbk. extracted feature data are saved into a matrix
form, where the row index represents features hadcolomn index represents patterns or examples.
The label or class affiliation of patterns is saued row vector of separated file.
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Figure 8. The list of toolboxes used in ADIMSS framework.
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3. Evolutionary Techniques for Intelligent Sensor $stems Design

Evolutionary techniques have been applied to sohany areas of problems, which require
searching through a huge space of possibilitiesdtutions. The capability of evolutionary techregqu
to find the complex solution, either in static omdmic optimization problems, is adopted in our
methodology of ADIMSS. The flexibility to encode myproblems in one representation of candidate
solutions is one of the reasons to apply thesentqubs in our design methodology. Also, many of
optimization problems have non-derivable cost fioms, therefore, analytical methods cannot be
applied.

The key optimization tasks in ADIMSS corresponding-igure 3 are selection and combination;
parameter settings and process structure deteionn&o9]; and evolving mapping function. For each
optimization task in ADIMSS small adaptations oé thptimization algorithms are required. Those
modifications mostly occur in the representationtleé candidate solutions, the mechanisms of
evolving operators (e.g., genetic algorithms) adatmg operators (e.g., particle swarm optimization
parameter settings, and the fitness functions. réqeired modifications have to be specified, when
entering a new method to method pool.

Two metaheuristic optimization algorithms, name&®gnetic Algorithms (GA) and Particle Swarm
Optimization (PSO), are described briefly in thappr, as well as their modification to cope with ou
particular design methodology.
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3.1. Genetic Algorithm

Genetic algorithms (GA) are search algorithms basethe concept of natural selection and natural
genetics [22,23]. GA optimization is a powerful teath the ability not to get stuck in unfortunate
local solutions like gradient descent. This allowe to find feasible and superior solutions in many
real applications. Due to this reason, we adojst diptimization concept of GA to solve the problems
faced in our design methodology.

Briefly, the main steps of the GA are initializatiggenerate an initial population), selection for
recombination (e.g., Roulette Wheel Selection ourfiament Selection), recombination (e.g., one
point crossover), mutation, selection for reprodurct replacement (e.g., elitism with the best 34610
of the population), and termination conditions (maxm number of generations exceeded or objective
function criteria achieved).

Each candidate solution is referred as an indiliduahromosome of a population. An individual
encodes a point in the search space of a giverlggnolIhe individuals are compared by means of a
fitness function. The fitness value is used to guite recombination and survival of individuals.

A few modifications from the basic concept of G/Ae areeded to cope with our particular system
design requirements. The modifications of GA impemwation are due to the representation of
candidate solutions that are usually composed tafrbgeneous structure and different types of values
(i.e, binary, integer, and floating-point). Those typasvalues in the single candidate solution
representation usually require properly selectedraiprs (e.g., crossover and mutation) and the
combination of those operators. For example, theved Gaussian kernels of feature computation
reported in [26] applied five different mutationesptors to deal with replacement of entire set of
solutions, kernel replacement, magnitude adjustmiernel position adjustment, and kernel width
adjustment. Those five mutation operators are otlatt by the dynamic weight factor. However, the
main steps of GA still remains as shown in Figue 1

Figure 10.The generaprocess of GA.
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To find an optimal solution, Genetic Algorithms a#ly require a large number of individuals in the
population (around 50 to 100). Two operators, ngmelcombination and mutation, play an important
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role to increase the population diversity and teuea the exploration of the search space in finthieg
best solution.

Recombination (crossover) operators are applietgtidistically according to a crossover r&g
which is typically in the range [0.5,1.0]. Usuatlyo parents are selected and then a random vaigble
drawn from [0,1) and compared Ry. If the random value is lower than the crossoagz ., then two
offspring are created via recombination of two p&sg otherwise they just copy their parents.
Recombination operator can be distinguished intm ¢ategories, hamelgiscreterecombination and
arithmeticrecombination [48].

Discrete recombination is the process of exchantfisgsegments of parents (crossover) to produce
offspring, as illustrated in Figure 10One pointcrossover works by choosing a random number in the
range of the encoding length, then splitting badiepts at this point, and creating the two opffgpri
by exchaning the tails. This operator is mostlydudee to the simplicity. One-point crossover can
easily be generalised td-point crossover, where the representation is broken nmboe than two
segments of contiguous genes, and then takinghattee segments from the two parents creates the
children. In contrast to those two crossover opesatiniform crossover works by treating each gene
independently and making a random choice as totwparent it should be inherited from. This is
implemented by generating a string of random véglequal to the encoding length) from a uniform
distribution over [0,1]. In each position, if thalue is below a parametgy € 0.5), then the gene is
inherited from the first parent, otherwise from thecond. These three crossover operators can be
applied for binary, integer, and floating-point megentations. However, in the case of real-valued
coding (floating-point), these operators have tigadlantage, since these crossover operators only
give new combinations of existing values of flogtpoint. This searching process would rely entirely
on the mutation operator. Because of this, anatbesmbination operators for floating-point strings
are introduced.

Figure 11.Types of discrete recombination.
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Arithmetic recombination works by creating a neviueain the offspring that lies between those of
the parents. Those new values can be producecelgltbwing equation:

z=ax+(1-a)y (1)

wherex; andy; are the genes from the first and second pareggpectively, and the parameter is in
the range [0,1]. The types of arithmetic recombamatan be recognised through how they select the
genes for recombining process. Those ammple arithmetic recombination,single arithmetic
recombination, anavhole arithmeticcecombination. Figure 12 explains the recombimapoocess of

all arithmetic recombination operators.

Figure 12.Types of arithmetic recombinatioor;= 0.5.
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Mutation is a variation operator that uses only qagent and creates one child. Similar to
recombination, the forms of mutation taken depemdhe choice of encoding used. The most common
mutation operator used for binary encoding consigach gene separately with a small probaldity
(mutation rate) and allows each bit to flip (fromtalO or O to 1). It is usually suggested to seery
small value for the mutation rate, from 0.001 t@10.For integer encodings, tha-flipping mutation is
extended taandom resettingso that a new value is chosen at random fromséteof permissible
values in each position with mutation r&g For floating-point representations, a uniform atiain is
used, where the values of selected getre the offspring are drawn uniformly randomly ts domain
given by an interval between a lowker and upperUJ; bound. Table 1 summarizes the most used
operators with regard to the representation oividdals.
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Table 1. Common recombination and mutation noperators agtie binary, integer, and
floating-point representations.

Representation of solutions Recombination Mutation
Binary Discrete Bit-flipping
Integer Discrete Random resetting
Floating-point Discrete, Arithmetic Uniform

3.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochagpitnaization based on Swarm Intelligence, which
also is affiliated to evolutionary computation teitfues. Similar to GA, PSO is a population-based
search algorithm inspired by the behaviour of lalal communities, that exhibit both individual and
social behavior, such as fish schooling, bird flagk swarm of beestc [24].

In PSO, each solution is called a particle. Eachiigga has a current position in search space,
Xi =<>¢,1, X reees Xy > a current velocityy; , and a personal best position in search sppceRarticles

move through the search space, remembering thesbigton encountered. The fithess function is
determined by an application-specific objectivection. During each iteration, the velocity of each
particle is adjusted based on its momentum andenfted by its local best solutign and the global

best solution of the whole swanmg. The particles then move to new positions, andptteeess is

repeated for a prescribed number of iterations. Aidwe velocities and positions in the search spaee a
obtained by the following equations [42]:

vi=wy reu(E -k )+ p - %) 2)
X=X V) (3)

) P T ST
POk ity > £ ') )

[ it et =iE)
p - Pit+l |f f (pT+1) > f (ptg) (5)

Acceleration coefficientx; and ¢, are positive constants, referred to aggnitive and social
parameters, respectively. They control how farréigda will move in a single iteration. These alb
typically set to a value of two [37,43], althougssmning different values @ andc, sometimes leads
to improved performance; andr, JU [O]] are values that introduce randomness into theclsear
process, whilav is the so called inertia weight, whose goal isdatrol the impact of the past velocity
of a particle over the current one. This valueymdally set up to vary linearly from 0.9 to 0.4rohg
the course of a training run [37,43]. Larger valowésv at the start of the optimization, allow the
exploration of particles into a large area and therslightly refine the search space of partictas
local optimum by smaller inertia weight coefficisntThe general optimization process of PSO is
depicted in Figure 13.
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Figure 13.The general process of PSO.
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The original PSO explained above is basically desigfor real-values (floating—point) problems.
Due to the variation in the representation of sotut(e.g., binary or discrete and integer), a
modification of updating position of particles isquired. For a binary representation, the velosity
used to determine a probability threshold. If tiedogity is higher, the values of particles are more
likely to choose ‘1’, and lower values favor the @hoice. One of the functions accomplishing this
feature is the sigmoid function [25]:

1

(V) = m (6)

Then a new position of particle is computed byftil®wing equation:

1 it s(v)>p
Xt+l — i (7)

i

o i (VY <p
wherepis a random numbers from uniform distribution bedw 0 and 1.

The adaptation approach of PSO for integer reptasens is based on the binary PSO, where a
small modification in the scaling function is reagd. The outputs of the scaling function are
symmetric about 0 and both negative and positiveegato lead to high probabilities. The comparison
of scaling function used for binary and integerresentations is shown in Figure 14. The scaling
function [49] is given by:

S =yl
ee

“) ®
The new position of integer PSO is computed byfdHewing equation:
Xit:l =Randl), if rand)< 4 yjl) o

whereRandl()is a random integerand() is a random number from a uniform distribution.wéwer,
this approach is suitable for a small range ofgatevalued problems and for cardinal attributeg.(e.
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the compass points). For large ranges of integeredaproblems and ordinal attribut@sg., 4 is more
close to 5 than 30), the adaptation of particlalmsost similar to real-value PSO. The differencéhia
integer PSO from real-valued PSO in equation (#)asthe velocity values are rounded to the neéares
integer values. The updated particles are commgddllows:

Xt = %, + round( ¥) (10)

Figure 14.Scaling function of binary PSO based sigmoid fuortirs. integer PSO.
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3.3. Representation of Individuals

The first stage of developing application-speciigorithms by evolutionary computation (e.g., GA
and PSO) is to decide on a representation of aidatedsolution to the problem. The representation
structure of individuals is identical for both chrosomes in GA and particles in PSO. The
representation forms of individuals depend on ype tof numbers used to solve a problem. There are
three basic types of numbers mostly used in maaly pmwblems, namely, binary, integer, and real-
valued (floating-point).

Binary representationsncode solutions inta string of binary digits (a bit string). In theoptems
of dimensionality reduction based on automaticueaselection, for instance, the candidate solation
is represented in binary string, where the valu€lomeans that elements of the vector are selected
and ‘0’ is not selected. Trying to solve a pathagsgquare grid, the compass points {North, Eastttou
West} could be mapped to a set of values {0,1,2@}orm a string of integer values (integer
representations) for candidate solutions. Realedlar floating-point representations are the most
commonly used in our design type problem. The ahatdi solution is encoded by a string of real
values.

In the proposed ADIMSS tool, the representatiothef candidate solutions can be homogeneously
one of three types of values or the combinatiothe$e three types of values in a vector form. Dgali
with mixed type of values, an extra string of imf@tion for every segment in the representations of
GA or PSO is separately added to select the properators. Thus, GA and PSO can properly select
the adaptation operators according to this infoionatThis extra information does not evolve during
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the learning process. The general representati@ aaindidate solution is described in the following
equation:

X, ={G,1,G; ,.G, 5....G,} (11)
INFO ={ Infg, Info,, Infa,,..., Infq} (12)
G,={apa,..a,}, k=12,...r (13)
Info, O{ bin, int, float (14)

3.4. Parameter Settings and Knowledge Base

The parameter settings of the optimization algarghalso play an important role to find the best
solution. In our automated system design (ADIMS®)l,tthe parameters of GA and PSO could be
obtained by trial-and—error’ with several fortunate parameters or by automaestch using another
optimization algorithm. In practice this means ttieg original optimization problem is now itselinru
and improved in an additional processing loog,, two nested optimization runs occur. The
employment of such a nested optimization approashtd be traded-off with regard to required effort
and achievable result quality for each application

Using the information from the knowledge base ommey block (see Figure 7) to solve similar
problems as an initial solution, the effort of me&stoop approach can be reduced due to less search
space (intervals). Alsoa priori knowledge obtained through experience can be usethe
optimization problems with regard to system sohsioparameter settings or intervals, and fusion
aspects.

3.5. Assessment Functions and Multi-objective Rnobl

The evaluation of solutions obtained by the optatian algorithms of ADIMSS is commonly based

on classification accuracy. Basically, any classifian be applied as an assessment function. Howeve
algorithms that possess few parameters are favweaid offer a reliable convergence in training. For
instance, the voting-NN classifier is often applied as an assessmanmttifon in automatic feature
selection. In the voting-NN classifier, a test sample is classified in ¢heess represented by a majority
of the k number of selected samples. One varianeafest neighbor methods is the volumd&idN,
where a test sample is classified in the classesgmted by the smallest distance among distances
between the test sample and Kaln sample in each class. Another variant is ghm-volumetrick--
NN [34], which employs the sum of all tHe nearest neighbors per class for its decision. The
classification performance measure is implementdguthe balance accuracy rate, which takes into
account the correct classification rate per classs prevents the searching optimization algorithms
from selecting biased models in imbalanced datagéts assessment function using classification
measure is the average of the correct classificasodescribed in the following equation:

Oy 0, *-- T Gy
L

G = (15)
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where Q = (w1, w2, ..., w ) gives the class affiliation of patterns aqgl denotes the classification
accuracy of a set of patterns with the same clidfisiation w.

The non-parametric overlap measure (NPOM), whidnspired by the nearest neighbor concepts,
provides a very fine-grained value range. The NP@bhsures the quality of the discriminant data
classes in the feature space, where it gives vallose to one for non-overlapping class regions and
decreases towards zero proportional to increasioglriapping of class regions. The NPOM s
computed by:

9, %iiiz;&:z;ﬂ (16)
= N, = ZZj:lnj
n. :1-&
j D, @an
L
Tl @rw (18)

where n; computes the weighting factor for the position tbé j-th nearest neighboD;; is the
Euclidean distance between théh pattern and it$-th nearest neighbor. Ri,j denotes the measure
contribution of the-th pattern with regard to theth nearest neighboty denotes the class affiliation
of the i—th sampleL is the number of classes, aNd is the number of patterns in tleeth class.
Typically, the number of parametenof this quality measure is set in the range af BQ [34].

The nonparameteric compactness measure (NPCM)asedsby linear and non-linear discriminant
analysis. The NPCM is applied to measure the quefitye class compactness and separation in the
feature space. However, this assessment funciibawsters from lack of normalization. The extended
version of NPCM is done employing normalized dists(Euclidean distance) [16, 34], as shown in
the following equation:

dmax - Cli, j

dn  =—mx il
an dmax_dmin

(19)

whered;; is the Euclidean distance between the I-th ang-thesamples. Thus, the normalized NPCM
is computed as follows:

O = WL~ Qya) + (1= W) Gy (20)
: l L 2 N-1 N
Ointra = L ; Nc( NC _1) - J;j_d(a)l ) a)J )5(6‘?’&& )dnj (21)
1 N-1 N
Qinter = @Zl Zl(l_ 5(6()| ’wj )) dnj (22)
NB= 2; ;1(1_5(@ @) 23)

whereda, &) is the Kronecker delta, which &a, «) = 1 for w = ¢ (i.e., both patterns have the
same class affiliation), and 0 otherwid¢is the number of all patterns. The extended compesast
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assessment is an aggregation of two assessmetibhgjce., class compactnesg.) and separation
(ginter), Where it can be considered as a multi-objectinvection based on weighting method. A user
defines the weighting factor, where the defaultirsgtofw is 0.5.

Other assessment functions, such as mutual infaymantropy [57], and SVM classifier [26], can
also be effectively employed in the optimizatiogalthm to evaluate the candidate solutions. They
are the subject of our ongoing studies.

In the proposed ADIMSS, the fithess or assessmenttibn also associates with certain software
constraints (e.g., computational complexity, tiregbility, etc) and hardware constraints (e.g., size,
speed, memory, timer, counter, powetg). Objectives and constraints in design methodolofyy
intelligent multi-sensor systems have been destgribeFigure 4. Optimizing two or more objective
functions, the standard multi-objective optimizatiapproach, in particular, the weighting method is
used, since this method is easy to implement. Maljgctives are converted to one objective by
forming a linear combination of the objectives. Thtige fitness function is generally described as
follows:

wf+w, i+ +w f

S w : (24)

wherew; are called weighting factor§, denote assessment values. As GA or PSO paramtteys,
weigting factorsy; can be determined in two ways., based on the knowledge of designer (as lucky
setting) or based on the systematic search method.

Moreover, to overcome limitations of black-box beba of the so far described optimization
procedures and to add transparency during dedignadtomated assessment in the ADIMSS tool is
complemented by an effective visualization unitattlemploys multivariate visualization based on
dimensionality reducing mappings, such as the Samsmoapping [58]). The visualization unit can be
applied by the designer for step-by-step monitoohthe currently achieved pattern discriminatian i
every part of the whole system during the desigocgss as a visual complement of assessment
functions.

fithess=

4. Sensor Selection and Sensor Parameters
From this section to section seven as shown inr€i@6, we describe the design steps of our design
methodology.
Figure 15. Demonstration of the design steps in the ADIMS®m@ated design methodology.
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As outlined in the introduction, a large and insiag number of commercial sensors is available on
the market. Considering the high number of seléetabnsors for an application, finding a good or
even optimal solution is not an easy task. Seleabiothe best sensor is based on the requireménts o
the measurement system, e.g., accuracy, speedzandrsd cost (see Figure 5).

On the other hand, the quality of the solutionsamiatble with intelligent multi-sensor systems also
depends on sensor parameters and sensor positloese two conditions can be optimized to increase
the results of intelligent sensor systems with régdo classification accuracy. In applicationgyas
sensor systems, the operating temperature of sadiuctor gas sensors is an example of sensor
parameter. The heating element has to be propenyraled to have high sensitivity as well as
selectivity [33,34]. Typical sensor response curaes shown in Figure 16. For selected sensors, an
optimum heating curve could be evolved.

Figure 16. A snapshot of response curves of a gas senstwownsfor H (7 ppm), CH
(1,000 ppm), ethanol (2.4 ppm), and CO (400 ppnT0& relative humidity.
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To obtain the best combination of multi-sensor dreldptimal sensor parameters, an intrinsic local
optimization method is proposed. The local optimaratprocess of intrinsic method is shown in
Figure 17, where the sensors are directly connetethe computational model and optimization
algorithms. The candidate solution of PSO or GAhis fproblem represents the indices of selected
sensors and their determined sensor parametargsetlihe binary representation is used to encode the
sensors, where the value of ‘one’ means that sdassselected and ‘zero’ means the opposite. The
multi-sensor can be composed of single sensorssandor arrays. The sensor parameter can be
encoded using either integer representation ortifiggoint representation, depending on the
problems. The representation of a candidate solugidescribed as follows:

X ={(s: 8 8).( b Beos D)} (25)
INFO ={(bin) (int)} (26)
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wheres are a bit value of a sensdy,are a parameter value of a sensor, wherdl, 2, ..., m The
fitness of each of candidate solution in the iierat is evaluated by the classification rate. The
designer may define a standard model of an intailigsystem to evaluate each of the candidate
solutions created by optimization algorithms (GAP&@O) with regard to the classification rate. ladte

of using such a standard model, other assessmeetidaos based on nearest neighbor methods can also
be directly employed to evaluate the candidatet®wols. The sensor selection and parameter setting
requires intrinsic optimization, which is in thisticular case a resource consuming method due to
physical stimuli presentations and data acquisition

Figure 17. An intrinsic method of the local optimization tdbtain the optimum
multi-sensor and their parameters.

Sensor Signal Acquisition

-
Sensor Data Sensor Data 0O0000 Sensor Data
t=1 t=2 t = max iter

Modeling of Intelligent System / assessment functions

Signal Processing Dimensionality
Physical Sensor(s) Feature L Reduction ‘ Classification
Computation (Feature Extraction / Toolbox
A Toolbox Selection) Toolbox

|

Library of Optimization Algorithms

Sensor selection (e.g., sensor index) Particle Swarm Optimization Genetic Algorithms

and Sensor parameter (e.g., heating,
illumination, position)

5. Signal Processing and Feature Computation

Sensors often generate data with high dimensignathierefore extracting the meaningful
information of sensor signals requires effectivatdiee computation methods. The next design step in
our ADIMSS tool is to obtain the optimal combinatiof signal processing and feature computation
from the method library and to find the best par@mmeettings. The method library is subject to
continuous extension by manually or evolutionacityiceived algorithms.

Signal Pre-processing and Enhancement (SPE) is tastiage of signal processing for noise
removal, drift compensation, contrast enhancemedtsaaling. For example, in the particular case of
gas sensor systems, the methods used in the giggpdcessing and enhancement step are differential,
relative, fractional [32,35], and derivation [33] 3B the framework of ADIMSS, the set of operason
applied to analyze and extract the features atedlisvith ID number, which is included in the
representation of candidate solutions of PSO or G#e ID number is evolved in optimization process
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to indicate the selected method. Table 2 presenitst ®f signal pre-processing and enhancement,
where the method for Kpe = 1 is stated ad\on€, which means that no operation of SPE will be
applied.

Table 2. List of signal pre-processing and enhancement ndsthesed for gas sensor
systems filled in the design tool of ADIMSS.

IDspe Method Equation
1 None
2 Differential h(t) =(()+3,)-(40)+3,) =€)~ €0)
_ = X0(0+4) _ s
3 Relative s(O)(l +o ) s(0)
y et (= X0=%0)
ractional 0)
5 Derivation h(t) = () - {t-1)

Common types of features mostly extracted from sawsor signals are the geometric attributes of
signal curve (e.g., steady state, transient, camatslope, zero-crossings), statistical featureagme
standard deviation, minimum, maximuetg), histogram, spectral peaks (Fourier Transform)y#lét
Transform, Wigner—Ville Transform, auditory featurer fsound and speech signaétc. Table 3
summarizes a small list of feature computation wdsh Here, two operators of heuristic feature
computation i(e., Multi—level thresholding and Gaussian Kernelsplegal in gas sensor systems are
picked up as examples to demonstrate the autoewmafign of feature computation in the proposed
ADIMSS tool.

Table 3. List of operators for extracting of features usedgeénsor signal processing (e.g.,
gas detection).

IDrc Method Parameter

1 Steady-state none

2 Transient integral none

3 Histogram range of bins, down_bnd, up_bnd
4 MLT thresholdsT);L=1,2,...,n

5 GWF e 0o Mg k=1,2,...,n

6 Spectral peaks (FFT)  None

Multi-level thresholding(MLT) operators are a heuristic feature computaticgthod that extracts
the features by counting samples of signal respgolys®g in the range between two thresholds. MLT is
derived from histogram and amplitude distributioomputation by non-equal range of bins [15].
Figure 18 illustrates differential and cumulativg @nd down) modes of MLT computation. The MLT
is optimized by moving of the levels up and dowrtiluthe optimal solution with regard to the
classification rates and other assessment crigetigeved. The number of features extracted by MLT
depends on the number of thresholdings minus anehe optimization process, the numbers of
thresholds are swept from 3 to 10 (the maximum remobthresholds can be defined by designer) and
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in each sweep the positions of the current sehisholds are optimized based on the assessment
function (e.g., the quality overlap measure). le #nd of the optimization process, the optimum
solutions are selected by the aggregating functibthe assessment function and the number of
thresholds used.

Figure 18. Multi-level thresholding used for extracting fessi of slope curves of gas
sensors. MLT is modified from histogram and ampktudistribution computation by
non-equal range of bins. Three methods of MLT aréemdiftial, cumulative (up) and
cumulative (down) modes.
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The Gaussian window functioflGWF) method computes features from sensor sigreded on the
product of two vectors,e., a sensor signal and Gaussian function. The GWRadetonsists of many
kernels, which are Gaussian exponential functiortls different meang;, standard deviations, and
magnitudesM;, wherei = 1, 2, ..., k Those three parameters represent the positiorthwaehd the
height of kernels (see Figure 19). The extractetufea of GWF and Gaussian kernel function [26,37]
are defined as follows:

fi:ZN:& G(s M, 4,0;) (27)

G(s M4 .0)=M &'t 29)
wherexs is a measurement value of sensor signal at santipledndexs = 1, 2, ...,N. The magnitudes
of kernels is in the range from ‘0’ to ‘1’. The apization strategy of GWF is different from MLT
optimization, where the number of kernels evolvesoeding to values of;. If the values oMM; are
zero, then those kernels can be discarded. Themuaxinumber of kernels is defined by the designer.
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Figure 19. Evolving Gaussian kernels used for extractinguiesst of gas sensor responses.
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Table 4 gives the details of the parameter setiddSO and GA related to the methods of feature
computation in the experiments of the benchmarkdgdaset [15]. Those parameter settings of PSO
and GA are defined by the designer manually (asylparameters). However, in the automated system
design, the parameters of optimisation algorithars lee defined by the nested optimization approach.
Both PSO and GA employed for finding the properfiguration of extracting features using the MLT
methods have proved to overcome the suboptimuntieolgiven by expert designer as shown in
Table 5.

Table 4.Parameter settings of GA and PSO.

MLT-DM-GA / MLT-CM-GA MLT-DM-PSO / MLT-CM-PSO GWF-G A

Population 220 Population 220 Population 220

Selection =Roulette Wheel Watart = 0.9;Weng = 0.4 Selection =Tournament
Recombination wdiscrete P,=0.8 ¢;=2;¢c,=2 Recombination «iscrete P. = 0.85
Mutation =uniform; P,, =0.01 Update fcn =floating-point Mutation =uniform P, =0.1
Elitism =10% Maximum generation 200 Elitism =10%

Maximum generation 200 Assessment fcn NPOM (k = 5) Maximum generation 200
Assessment fcn NPOM (k = 5) Assessment fcn k-NN(k = 5)

Table 5. Results of MLT-DM and MLT-CM configured by humanpett (Manual), GA
and PSO (Automated) and result of GWF configure@&By(Automated).

Method do k-NN (%) with k=5  Thresholds or Kernels
MLT-DM 0.982 99.17 13
MLT-DM — GA 0.995 99.67 9
MLT-DM — PSO 1.00 100 9
MLT-CM 0.956 97.17 5
MLT-CM — GA 0.988 99.50 5
MLT-CM — PSO 0.995 99.92 5
GWF — GA 0.991 98.46 3
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As mentioned in Subsection 3.5, multivariate viesion can be employed effectively to provide
insight into the achieved solutions to the desighégure 20 shows an example of multivariate data
visualizations of four gases extracted by evolveau$3ian kernels, where the discrimination of
patterns with regard to their class affiliatiorcisarly depicted.

Figure 20. Visual inspection of four gases data: (a) raw sesgnals and (b) extracted by
evolved Gaussian kernels.

Training Validation

Training Validation

(b)

6. Dimensionality Reduction

In this section, we show the dimensionality reduttaspects related to our automated system
design methodology. There are many available methesed for dimensionality reductionge.,
principle component analysis (PCA), linear discrniamt analysis (LDA), projection pursuit, multi—
dimensional scaling (MDSkgtc [18,58]. A special case of dimensionality redoictdescribed here is
feature selection. Feature selection is a methodintb minimum feature subset giving optimum
discrimination between two or more defined groupshgects. This method is an iterative algorithm,
also called Automatic Feature Selection (AFS). Tdpproach is applied for optimized sensor system
design by reducing or discarding the irrelevantestundant features or groups of features, which are
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extracted by feature computation methods at previtage. Moreover, the sensorial effort will be
saved due to efficient selection. Figure 21 dessrifhe elimination process of unnecessary features
groups of features, as well as sensors.

Basically, the AFS can be divided into two groups, (1) wrapper method that is performed
dependently of the learning algorithm or classifeg., RBF, SVMegtc); and (2) filter approach that
utilizes various statistical techniques underlyitngining data and operates independently of the
classifier [51]. In general, the wrapper methodvjdes selected features that lead to more accurate
classifications than that of the filter method. Her, the filter method executes many times faster
than the wrapper method.

Figure 21. Process of intelligent multi-sensor system dedimgused on the structure
optimization by elimination of redundant featurengutation and sensors.
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6.1. AFS with Acquisition Cost

In designing an intelligent sensor system, thealyje function of the AFS in the optimization tool
(ADIMSS) is often associated with certain cost. @ima of the AFS with acquisiton Cost (AFSC) is to
discard the unnecessary and expensive featuresactuenulative expression of the objective function

IS:
. C f
fit 1-= 1-—=
itness= w o+ V){ Ctj+ w{ ftj (29)

whereq can be the quality of overlap measurement givesubsection 3.5 and/or the classification rate
depending on the user selectian,are weighting factor witrEilWi =1. Csdenotes the sum of costs

from selected feature€; denotes the sum of total cost from all featufes the number of selected
features, andl is the number of whole features. Table 6 showses@nple of defining the cost value
by designer for each mathematical operation usecttract features in feature computation methods.
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Table 6. The cost values for basic operations mostly useevaluate the computational
effort of methods of feature computation.

No. Operation Cost
1 Addition (+) 1
2 Substraction (-) 1
3 Multiplication (*) 4
4 Substraction (/) 4
5 Comparison (3, <,<, =,#) 2
6 Root square 6
7 Exponential (8 8
8 logarithm 8

Table 7 gives the details of the parameter settoig8SO and GA with regard to the automated
design activities based on automatic feature gelegtith acquisition cost and the cost assignmént o
eye image dataset. Again, these parameter settinBSO and GA are heuristically set based on the
knowledge base. The cost assignment for the tle@ife computation operators is determined with
regard to the number of multiplication and additmperations. In these experiments, the assuming
multiplication has the cost of 10 additions. Theref the cost of each feature for Gabor filter, ELA
and LOC is determined as shown in Table 7. Fromettggerimental results shown in Table 8, the
AFSC employing PSO or GA can select low cost asd feimber of featuresd., six of 58 features).

Table 7.Parameter settings of GA and PSO, as well as tip@sitton cost

AFS - GA

AFS - PSO

Eye image data

Population 220

Selection =Roulette Wheel
Recombination wiscrete P, =0.8
Mutation =uniform; P,, =0.01
Elitism =10%

Maximum generation 200
Assessment fcn NPOM (k = 5)

Population =220

Weart = 0.9;Weng = 0.4
c1=2;¢c,=2

Update fcn =binary

Maximum generation 200
Assessment fcn NPOM (k = 5)

Gabor filter = 12 features
ELAC = 13 features

LOC = 33 features

Cost

Gabor filter = 6358 per feature
ELAC = 3179 per feature

LOC = 1445 per feature

Table 8 The AFS and AFSC results for eye-image data [19].

Method Cost Feature 9-NN (%) RNN (%) NNs (%)

without AFS 165308 58 96.72 80.33 97.87
AFS-GA 53176 16 98.36 95.08 96..81
AFSC-GA 13872 6 96.72 95.08 96.81
AFS-PSO 45951 18 100 95.08 98.94
AFSC-PSO 10404 6 96.72 98.36 98.94




Algorithms2009, 1 1397

6.2. Effective Unbiased Automatic Feature Selection

AFS techniques try to find the optimum feature based on the corresponding training set.
Interchange of the training and test sets or ewealler changes in the data can dramatically etfeet
selection. Thus, the issue of selection stabiliiges, in particular for small sample cases, which
heretofore has been largely unanswered. For tlisore in this approach the AFS is augmented by
cross-validation (CV), which is a well known methéat classifier error estimation. The aim of
applying CV is to perturb the training set to obtaelection statistics and information on most
frequently used (stable) features [16,50]. Foransg, the leave-one-out (LOO) method is implanted
within the AFS procedure, where the LOOFS will tgdace based onN(— 1) samples from the
training set for N runs. First and second ordeisgtes can be generated from these N selectiantses
by incrementing the bing for the selected features, gy for selected feature pairs, respectively. The
first and second order statistics of features rsnatized by N. Three methods have been introduced i
[50], namely, Highest Average Frequency (HAF), Hfation Low Rank Feature (ELRF), and
Neighborhood-Linkage Feature (NLF). The first twppeoaches (HAF and ELRF) determine the
unbiased features based on first order statisting, the NLF is based on first and second order
statistics.

The HAF approach is to seek the optimal featuresstilbmong\ solutions produced by LOOFS,
where each solution of active features is multgpligth their probability of the first order staistand
normalized by the number of active features. A tofuis selected from the collection of solutions
found by LOOFS in N runs, if its average frequersyhe highest. LeE, = (f, 1, fn2 ..., fam) be a
solution of consistingV features and-, be a binary-vector, whene = {1, 2,..., N}. The average
frequency is
defined as:

P _ Z:V:Il fn,i Ioi (30)
" A

where A denotes the number of active features.

The ELRF approach is to seek the unbiased featinses, where the probability of selected features
is above a computed threshold. The ELRF ranks ¢atufes based on the frequency of first order
histogram from highest to lowest frequency and mgmates the first order histogram as follows:

R = @ (31)

wherep] is the probability value of the j-th feature aftanking arrangement ands the rank index.

The threshold is computed as follows:

r=2:aR (32)

where M is the number of features.
In the NLF approach, first order statistics is uasd reference to determine the rank of the featur
In this approach the highest rank feature will blected or activated automatically. The rest ofdow
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rank features will be evaluated by referring to #lotive higher rank features. If the evaluatioroné
feature fails to even a single of its active higlak features, the feature will be discarded, mitse it
will be selected and participated into evaluatingcpss for the next lower rank features. This sielec
process is described in more detail in Figure 22.

Figure 22.The evaluating procedure of NFL approach.
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The evaluation process is determined by the folhgvaquation:

Ioi(,zj) > S P (33)
where ,o,‘f) are the  order frequencies of selected fhth feature when thith feature is selected,
and $ denotes the selection stability measurement [Hg&re, the selection stability function is
modified to give proportional assessment value &ir possible cases. The selection stability
measurement is defined by following equation:

U+ f,

St = (Pmax = pmm)m

(34)
where the value d% is in the range between 0 (the worst case situstiand 1 (the best stability).
denotes the accumulation of all frequencies, wladh larger than half of the maximum frequency
value. B denotes the accumulation of all frequencies, wldoh lower than half of the maximum
frequency valuef, is the number of features which their frequenclues are equal zerd, is the
number of features which their frequency valueslanger than half of the maximum frequency value.
This selection stability criterion indicates thdragss of feature selection for the regarded tadkdarta.

In these experiments, we applied benchmark dat&setsrepository and real applicatiorg., wine,



Algorithms2009, 1 1399

rock, and eye-tracking image to give a perspeabiveising these approaches in the sensor system
design. Details of the benchmark datasets are givéable 9.

Table 9. Summary of the benchmark datasets [16].

Dataset Feature Class Samples
Wine 13 3 59/71/48
Rock 18 3 31/51/28

Eye image 58 2 105/ 28

Figure 23 shows the first and second order histogod Wine data achieved by 10 runs of the
LOOFS. Thek-NN voting classifier was used as the fitness fiomctoy manually setting of the
parameter = 5). Tabel 10 gives the detail results of thrppraaches. The selection stability of eye
image data is very low, which indicates that nocefestrong feature is in the eye image data. The
selected features really depend on the patterhsded in the training set, which puts the reliabibf
the system into question. In addition to crosseadlon techniques [16,26], the presented approach f
stable feature selection tackles the general pmobté specialization or overtraining, which is
encountered in learning problems based on a liimtadber of examples. The experience gained for
automated feature selection can be abstractedher tdsks and levels of the overall system design
with the aspect of generating more stable andbieliaystems. Again, the underlying effort must be
traded-off with the expected performance and réiiglgain. Thus, this extension is provided as an
optional feature, that could be omitted if desigeexd and low design effort are more important.

Figure 23.First and second order statistics of Wine data.
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Table 10. Results of selected features by HAF, ELRF, and Mbi#thods usindg—NN
voting classifier withk = 5.

HAF ELRF NLF Class (%)
Dataset Class. (%) Feature Class. (%) Feature Class. (%) Feature Mean Median
Wine 0.57 96.06 4 96.62 6 96.06 4 95.41 96.06
Rock 0.59 99.09 3 95.45 6 99.09 3 97.65 98.18
Eye image 0.09 96.24 7 99.24 22 97.74 17 96.77 96.99

7. Efficient Classifiers Optimization

In the final stage of the computational modellitgpwn in Figure 7, we describe the process of
classifier optimisation. There are two main focuseshe classifier optimisation,e., to select the
proper parameter of the classifier and to obtaam leut well performing classifier. The second fosus
of particular relevance in mobile implementatiore da imposed resource limitations.

The parameters of classifiers play an importarg fol obtaining good results. For example, in the
nearest neighbor classifiek-KIN), the sensitivity ofk parameter has been investigated for the gas
benchmark data as shown in Figure 24 [26]. In aatechfeature selection, employing a classifier as
assessment function (wrapper method), the reprasamtof candidate solutions of GA or PSO is
extended by including the chosen classifier's patans along with the binary feature in the gene or
particle during optimisation. Practically, this debes a special case of simultaneously co-evolving
two steps of the design processs, dimensionality reduction and classification [14].

Figure 24. Sensitivity investigation ok—NN using extracted features by Gaussian kernel
(GWEF) of gas benchmark data. Thparameter values are setas 1, 3, 5, 7, and 9.
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Many classifiers, for instance, nearest neighle) and probabilistic neural networks (PNN),
use the training set gwototypesto evaluate the new patterns. There are numerdated previous
works focused on the designing lean classifiees, particularly resource-aware classifier instances.
Hart proposed that pruning methods reduced the atradulata which has to be stored for the nearest
neighbor classifier called Condensed Nearest Neigf@NN) [55]. Gates proposed a postprocessing
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step for the CNN pruning algorithm called Reduceshiést Neighbor (RNN) [54]. The Restricted
Coulomb Energy (RCE) is a three layer feedforwativork, which gradually selects the prototypes in
a only growing approach and adjusts their radiil ws#tisfactory training. The limitations of CNN,
RNN, and RCE methods are: (1) their result stronigigends on the presentation order of the training
set and (2) prototypes are selected from trainiitgaut any adjustment. The work of Platt introduced
Resource-Allocating Networks (RAN), which are rethto RCE and Radial Basis Function networks
(RBF) [56]. The RAN method allows to insert new totgpes for of Gaussian kernels, which will be
adjusted as well as their centers by gradient dédeehnique in training. This attractive method is
hampered due to well-known gradient descent linotast Improvements can be found, e.g., in
Cervanteset al [39], where a new algorithm for nearest neighblassification called Adaptive
Michigan PSO, which can obtain less number of pypis and is able to adjust their positions is
proposed. These adjusted prototypes using AMPSCclemsify the new patterns better than CNN,
RNN, and RCE. The manner of encoding of the Michi@&O is much better suited to optimize the
named classifiers’ structure than the standard P3Qs, the Michigan approach was chosen for our
work. In [38], a novel adaptive resource-aware Bbilistic Neural Network (ARAPNN) model was
investigated using Michigan-nested Pittsburgh P§Orahms.

Original implementation of PSO and GA encodes amadilate solution (a particle for PSO or a
chromosome for GA) as one complete solution of ghablem. This is also known as Pittsburgh
approach. In optimization algorithms based on Mjahi approach, each individual of the population
represents one of patterns (prototypes) selected fine training set and the population represents a
single solution. This particle representation hasaatages compared with original PSO, where
particles have lower dimension and less computatiefiort, also flexibility in growing and reducing
the number of prototypes.

In the algorithm for optimizing the PNN classifighe Michigan approach is placed as the main
optimisation procedure, which is used for obtainihg best position of prototypes and adjusting the
number of prototypes. The Pittsburgh approach endxbdnside the main algorithm as nested
optimization procedure is applied for obtaining thest smoothing factos) of Gaussian distribution
function, which regulates the density approximatiém the Michigan approach, each particle is
interpreted as a single prototype with its clagifiafon, which is defined as follows:

X, ={(X 0 % e %y ) @)} (35)
INFO ={{ float),(noné} (36)

whered denotes the number of variables or featurgess xhei-th prototype,w; denotes the class
information of the prototype. This class informatidoes not evolve, but remains fixed for each
particle. This is signed by ‘none’ INFO variable. Each particle movement is evaluatedhieylbcal
objective function, which measures its contributionclassifying new patterns with regard to the
statistical value. Two additional operators incldden the PSO algorithm of ARAPNN are
reproduction and reduction of prototypes. These twerator are used to increase or decrease the
number of prototypes. The whole swarm of particgegvaluated by global function, which is the
classification rate of PNN. If the current globahéss larger than pervious one, then the currest b
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swarm will be saved by replacing the old one. Mae&ail description for this optimisation procedure
of ARAPNN can be seen in [38]. Similar to this ceptof the ARAPNN or AMAPSO algorithms, the
basic algorithm of PSO and GA can be expanded dliffed to deal with other classifiers.

Here, we show the feasibility of the optimizatiolgaithm in our ADIMSS tool by performing
experimentation on five sets of well-known benchkr@ata collected from the UCI Machine Learning
Repository. Table 11 describes the parameter gsttoi ARAPNN used in the experiments. The
parameters of the optimization algorithms are sahumlly by the expert designer. In the extension
process of optimization loops, those parametersbeamcluded in the automated searching process.
Tables 12 and 13 show the experimental resultsvefdenchmark datasets. The ARAPNN achieves
less prototypes than RNN and SVM. In the clasdificerates, the performance of ARAPNN are close
to the SVM classifier, but shows better results parad to the performance achieved by RNN and
standard PNN.

Table 11.The parameter settings of ARAPNN .

Population3 patterns per class randomly select as individuals
Wetart = 0.9;Weng = 0.4

€1=0.35¢,=0.35¢c=0.1

Update fcn =floating-point

Maximum generation 50

Fitness fcn docal and global

Data splitting =60% - training and40% - validation

Repeat 20 runs

Table 12 Comparison of the averaged number of prototyptscted by RNN, SVM, and
ARAPNN [38].

Method Bupa Diabetes Wine Thyroid Glass
RNN 123.75 233.20 19.05 20.55 62.25
SVM 140.20 237.65 35.75 27.30 136.85
ARAPNN  41.05 166.45 18.85 12.40 28.24

Table 13 Comparison of the averaged classification rateRMN, SVM, standard PNN
and ARAPNN [38].

Method Bupa Diabetes Wine Thyroid Glass

RNN 59.06 65.64 93.24 94.65 64.71
SVM 66.67 75.91 96.90 96.57 68.13
PNN 62.93 73.92 95.14 95.87 66.10
ARAPNN  64.49 75.57 96.41 96.40 67.70

The proposed optimization scheme in our design it@atre is demonstrated for the final
classification block in extrinsic modee., based on the simulation of our classifier mo#&stension
to intrinsic modej.e., assuming a physical classifier hardware in th@apation loop as in evolvable
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hardware schemes [47], is discussed. In previossareh work, a dedicated low—power 1-nearest—
neighbor classifier has been designed in mixedas@rhitecture in CMOS 046 technology. In our
work, the statistical behavior and deviations waelled as constraints in the extrinsic optimaati

A viable solution was evolved for the given classifion problem and underlying electronic
realization, optimizing the expected applicabildy yield of implemented electronic instances [31].
The pursued approach can easily be extended tmtitiresic case by putting the chip instead of the
statistical computational classifier model in thep. Assessment during evolution is less demanding
this case of nonlinear decision making as for lirestems, e.g., sensor amplifiers [40,41]. To cope
with the instance-specific deviations, basicallyaiied prototypes of the nearest neighbor classifie
the computational system model still have to beistdd by the optimization algorithm with regard to
these hardware constraints in the deployment tiRigure 25 shows the layout and chip of the
classifier, designed in a previous research prpjest well as the conceived corresponding
computational hardware model of tieNN classifier, incorporating statistical features model
instance deviations.

Figure 25. Layout and chip of reconfigurable mixed-signalssifier chip and hardware
modeling of nearest neighbor classifier.
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The current optimisation algorithm only adjusts thked number of prototypes prescribed by the
initial problem solution. Adaptive increase of theototype number to the limits of the available
resources in case of unsatisfactory solution cdodddone in the next step. The procedure of the
prototype optimization is shown in Figure 26.
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Figure 26.Procedure of the hardware constraint prototyperopation.
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Figure 27 shows the experimental results between atljusted prototypes by PSO and the
prototypes which are not adjusted. The PSO alguorittas succeeded in effectively recovering the
classifier performance regarding to classificamcuracies, even for extreme deviations. Howetver, i
still cannot restore up to 100% of classificati@tes for high perturbation cases due to exhausted

prototype resource, which can be tackle by addptinereasing of the prototype number to the limits
of available resources.

Figure 27. Classification accuracies on test set of eye ind@@, where jhand R are
perturbation factors in the computational hardwaocelel [31].
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8. Conclusions

Our paper deals with a particular design automatgpproach to overcome a bottleneck in
conceiving and implementing intelligent sensor eys. This bottleneck is aggravated by the rapid
emergence of novel sensing elements, computing sphogigeless communication and integration
technology, which actually give unprecedented pmigses for intelligent systems design and
application. To effectively exploit these possii®é, design methodology and related
frameworks/tools for automated design are requil&@ summarized the few existing activities,
predominantly found in the field of industrial \asi. We have conceived a methodology, that takes int
account the specificities of multi-sensor—systemd allows to incorporate multiple objectives and
constraints of physical realization into a compotsl model and in a resource-aware design process.

The architecture and current implementation wasahetnated step by step employing gas sensor
and benchmark data examples. It can be shown dngpetitive or superior solutions can be found and
resource—constraints can be included in the dgsigeess. The method portfolio is currently extended
and the potential design space reduction by emptoymfa priori knowledge is advanced.

We have also discussed the extension of the adapkbsign architecture to deployment and
operation time, where, based on appropriate regorgble hardware, self-x properties can be achieved
by intrinsic evolution to achieve robust and wedHprming self-x sensor intelligent systems.

A future extension of the group’s research worKk W directed towards wireless-sensor-networks,
where, in contrast to the lumped systems regardears sensing and decision making is distributed
and load distribution with regards to computatia® gommunication in the context of intelligent
systems. as well as potential occurrence of misdatg must be treated. Corresponding extensions of
the presented methodology and tool will be pursued.
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