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Table 6. Performance comparison among three classifiers with GMM features. 

Classifier Sensitivity Specificity Accuracy Az 
AdaBoost 39.39% 80.77% 64.7%* 0.60 
Random forest 51.52% 80.77% 69.41%* 0.70 
SVM 27.27% 92.3% 67.06%* 0.60 

(*: All p-values <0.0001 comparing with accuracy of Table 4) 

Figure 5. ROC curve for three classifiers with GMM features. 

 
 
6. Discussion 
 

Compared to using only the mean ADC value, the quantitative statistical histogram features and the 

proposed classification system tremendously improved the accuracy from 29.4% to 69.41%  

(Az increased from 0.33 to 0.70). The statistical analysis indicates that all three classifiers are 

significantly different from the conventional mean ADC method with our dataset. Compared to general 

statistical histogram features, the classification with GMM features using random forest technique 

slightly improved the accuracy from 65.88% to 69.41%, while adaBoost and RF classifiers generated 

the same accuracy no matter whether GMM features were included. There is no significant difference 

between the three machine-learned classifiers. 
The conventional mean ADC method performs worse than a random classifier (Az < 0.5). The 

reason is that conventionally researchers hypothesized that mean ADC increases because the tumor 

cell density decrease after an effective treatment. This assumption may not be valid for our dataset, 

because it involves in an anti-angiogenesis drug, which suppresses the cancer cell growth without 

necessary killing tumor cells (decreasing their density) at an early stage (5-7 weeks). Another possible 

reason is that in our dataset many of the GBM tumors are recurrent GBM tumors that are usually 

necrotic. The treatment tends to reduce necrosis and edema, which will diminish ADC. Essentially 

there are two competing processes at work: cell density, edema and necrosis [25]. 

Another state-of-art study included features that capture spatial information in tumor heterogeneity 

features. Functional diffusion map (fDM) [22,23] is a popular technique studying the ADC value 

increase or decrease voxel-by-voxel. Moffat et al. applied fDM to 20 patients, classified patients into 
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the three categories: PR, SD and PD, and reported 100% accuracy [22]. However, the threshold they 

used for classification was determined from a single dataset of 20 patients used for both training and 

testing, while in our experiments, a cross validation analysis was performed. In Moffat et al’s study, 

they explored the assessment of fractionated radiation therapy for different types of brain tumors  

with 20 patients scanned on the same scanner [22]. However, in our study, we focused on the GBM 

brain tumors treated by anti-angiogenesis drugs, which suppress the blood supply for the tumor cells 

and may not directly decrease the tumor cellularity. The difference in accuracy may come from the 

different mechanism of treatment. Additionally, our dataset is from GBM drug trials across multiple 

sites, thus our preliminary study is an important contribution for exploring DWI as an early imaging 

biomarker in a real pharmaceutical drug trial. In future work, we will extract texture feature to include 

spatial information, and shape features will be extracted as well. By introducing a new richer feature 

set indicating more useful tumor information, we aim to include more information about tumors and 

further improve the performance of the classification system. 

One limitation of this study is that we classified CR, PR and SD as responders for the ground truth 

to achieve a binary classification. Since SD and PR may have different patterns in terms of their ADC 

histogram change, a multi-category classification system will be explored in future work. Another 

limitation of the study is that we used the Macdonald criteria at the eighth or tenth week after treatment 

for determining treatment response. In future work, time-to-progression and survival time will be a 

better endpoint to classify treatment response. Another limitation comes from the 3D ROI mapping 

tool. This tool is more computationally efficient compared to the co-registration techniques, but it 

cannot correct for patient motion. Therefore, in our study, a board-certified radiologist’s visually 

checked and edited all segmentation results as needed. In the future, a more sophisticated registration 

method with an image similarity measure may improve the accuracy of the tumor contours on ADC 

maps, and consequently improve the accuracy of the extracted features and the classifier performance. 

ADC values obtained on pre-operative MRI scans are reported to be of prognostic value in patients 

with glioblastoma [25,42]. The term "prognosis" refers to predicting the likely outcome of treatment. 

ADC, reported to be inversely proportional to tumor cellularity, is gaining interest in predicting GBM 

tumor prognosis. Our proposed framework now uses changes in DW-MRI for early prediction of 

treatment response; however, the framework with feature extraction and machine learning technique 

could be generalized to pre-treatment DW-MRI for prognosis prediction. 

In this study, we developed a CADrx framework with machine learning techniques to automatically 

predict tumor treatment response before the size change using DW-MRI. In our preliminary study, our 

major contributions are extracting statistical ADC histogram features, applying GMM to model the 

ADC histogram to interpret the competing effects of cellular density and edema, and applying machine 

learning techniques using all the extracted features. Cell density and edema may be reflected in ADC 

values before size changes are apparent on standard MRI sequences. Therefore, ADC holds promise as 

a biomarker, in determining both which tumors are more likely to respond to treatment and which 

tumors are actually responding.  

In conclusion, this work shows that a CADrx system using quantitative ADC histogram features 

and a machine-learned classifier has better performance in treatment response assessment over 

conventional analysis using only a mean ADC value. This will have major implications for clinical 

trials. This work has potential clinical significance for early treatment response assessment in GBM. 
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