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Abstract: An adaptive mesh refinement strategy is proposed for local damage models that
often arise from internal state variable based continuum damage models. The proposed al-
gorithm employs both the finite element method and the finite difference method to integrate
the equations of motion of a linear elastic material with simple isotropic microcracking. The
challenges of this problem include the time integration of coupled partial differential equa-
tions with time-dependent coefficients, and the proper choice of solution spaces to yield a
stable finite element formulation. Discontinuous elements are used for the representation of
the damage field, as it is believed that this reduction in regularity is more consistent with the
physical nature of evolving microcracking. The adaptive mesh refinement algorithm relies
on custom refinement indicators, two of which are presented and compared. The two refine-
ment indicators we explore are based on the time rate of change of the damage field and on
the energy release rate, respectively, where the energy release rate measures the energy per
unit volume available for damage to evolve. We observe the performance of the proposed
algorithm and refinement indicators by comparing the predicted damage morphology on dif-
ferent meshes, hence judging the capability of the proposed technique to address, but not
eliminate, the mesh dependency present in the solutions of the damage field.

Keywords: adaptive mesh refinement; damage-based refinement indicators; dynamic frac-
ture; discontinuous-Galerkin finite element methods; continuum damage mechanics
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1. Introduction

Continuum damage mechanics (CDM) failure models are well-known and implemented extensively in
many engineering applications. The attraction to these models is partly based on the use of macroscopic
fields to quantify the state of the microstructure of a material, thus allowing for damage models to be
easily incorporated into existing commercial finite element analysis software. A large body of literature
exists on the development and physical basis of continuum damage models; however, in this paper, we
do not seek to add to it. Rather, we explore the use of adaptive mesh refinement techniques to address a
common issue in the implementation of continuum damage models.

Damage models derived in the framework of continuum mechanics with internal state variables often
employ evolution equations for the damage field(s) that are ordinary differential equations (ODEs) in
time, and are thus without the action of any spatial differential operators on the damage field. The
lack of these spatial differential operators induces localization and severe mesh dependence (see, e.g.,
[1]) in the damage field. When not relying on a reformulation of the evolution equation(s), a simple
approach to dealing with the localization problem is to define a physically-based minimum element
size. However, even when this strategy is chosen, mesh dependence of the solution persists, and the
level of mesh refinement necessary for resolving the damage field may be beyond the computational
resources available. With this in mind, the main goal of this paper is to begin to explore whether or not,
after having chosen a physically-based minimum element size, adaptive mesh refinement may offer an
effective strategy to reduce the problem size while still resolving the damage morphology. Note that
we are not proposing a method for eliminating the mesh-dependence of the system (see, for example,
[2–4]), but rather a technique for locally decreasing the mesh size in order to resolve the morphology of
the damage while simultaneously containing the computational cost of the problem.

The algorithm is driven by refinement indicators directly related to the prediction of damage nucle-
ation and evolution without any a priori considerations on the location of so-called damage “hot spots.”
The refinement schemes are employed alongside a finite element formulation previously developed by
the authors in which the basis for the damage field is discontinuous and the time stepping for the damage
field is separate from that used to integrate the displacement and velocity fields. The preliminary results
presented herein show that, to within a limited extent, it is possible to obtain visually similar damage
solutions (for identical sets of initial and boundary conditions) even when starting from different initial
meshes. In this sense, we are encouraged that further development of the algorithm and technique are
warranted; however, we are as yet unable to make claims of convergence in the strict mathematical sense.

This paper is organized as follows: first, we briefly present the derivation of the equations of motion
for a linear elastic material with simple microcracking, as a sample problem on which to apply the
algorithm; second, we provide a detailed description of the numerical methods used in our simulations;
third, we present two original h-refinement algorithms; and finally discuss sample calculations showing
the effectiveness of the proposed approaches at resolving the damage morphology.

2. Linear Elasticity with Microcracking

A linear elastic body with isotropic microcracking is perhaps the simplest example of a continuum
damage model based on the theory of internal state variables. While we view the damage field as describ-
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ing the effects of microcracking, the numerical methods and adaptive meshing algorithms we discuss are
largely independent of this assumption. That is, we make no claim that these techniques are intrinsically
restricted to problems in linear elasticity, or to bodies which fail through microcracking and fracture.

Let B ⊂ R3 be a continuous body, and let Bκ denote a chosen reference configuration, which, for con-
venience, we identify with the configuration at time t = 0. By Bt we denote the deformed configuration
at time t, where t ∈ (0, T ]. The position of a material point relative to a fixed origin in an inertial ref-
erence frame is denoted by X and x for the reference and deformed configurations, respectively. In the
reference configuration the body is assumed to have a mass density ρκ. We denote by u the displacement
field, i.e.,

u(X, t) = x(X, t)−X. (1)

The deformation and displacement gradients are, respectively,

F = I + H and H = ∇u. (2)

Here we follow a Lagrangian formulation, and∇(·) denotes the gradient operator with respect to position
in the reference configuration. The finite strain and symmetric small strain are defined, respectively, as

E = 1
2

(
H + HT + HTH

)
and ε = 1

2

(
H + HT

)
. (3)

Microcracking is the only failure mechanism considered in this model. This assumption allows for the
resulting IBVP to have a simple form, and is well accepted as being successfully modeled by continuum
methods (see [5]). Microcracking within the body is assumed to be isotropic, and we use a single scalar
field to capture its effect. Let φ(X, t) be such a field and, as is often the case in CDM, let φ be restricted
to the interval

0 ≤ φ ≤ 1. (4)

Here φ=0 and φ=1 correspond respectively to the absence of microcracking (a pristine material point),
and a totally failed material point. We assume that the growth of microcracks, and hence the damage
parameter, is irreversible,

φ̇ ≥ 0. (5)

We consider an evolution law for microcracking based on the Griffith criterion, as described by [6]. Let
the damage energy release rate be defined as

G = −∂ψ
∂φ

, (6)

where ψ(E, φ) is the Helmholtz free energy per unit volume. For physically admissible damage evolu-
tions, the energy release rate must be a positive quantity, since during such evolutions damage growth is
expected to entail the expenditure of stored energy. As with the Griffith criterion, we posit that there is
a critical energy release rate Gcr > 0 that must be met before microcracking can evolve. This concept,
coupled with the non-decreasing nature of the damage variable, suggests an evolution law of the form

˙̃φ = ηc 〈G−Gcr〉 , (7)

where ηc > 0 is a crack propagation parameter, and the operator 〈·〉 returns the value of the argument
if the argument is positive, and zero otherwise. In this manner, on a point by point basis, the damage
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variable can only be an increasing function of time, whose time rate of growth is related to the excess
energy release rate required for microcracking to evolve. Notice that the presence of Gcr in the damage
evolution law serves the purpose of a built-in nucleation criterion. In addition, notice that the parameters
ηc and Gcr can be functions of damage. However, for simplicity, in this paper, the parameters ηc and Gcr

are assumed to be constant and uniform.
We treat the damage field φ as an internal state variable (ISV), and as such derive the equations of

motion according to the theory of continuous bodies with internal state variables (see, e.g., [7] and [8]).
Following the Coleman-Noll procedure (see [9]), we obtain the thermodynamic constraints

ψ̃ = ψ̃(E, φ), Ŝ = FS̃ = F
∂ψ̃

∂E
,

∂ψ̃

∂φ
˙̃φ ≤ 0, (8)

where Ŝ is the constitutive response function for the first Piola-Kirchhoff stress tensor, S̃ is the constitu-
tive response function for the second Piola-Kirchhoff stress tensor, and (̃·) represents the material frame
indifferent constitutive response function (see any text on continuum mechanics, e.g., [8] or [10]) of the
denoted quantity.

We can immediately verify that the third constraint in (8) is satisfied by the choice of damage evolution
in (7). Because at any given point in the body φ is an increasing function, there are two distinct cases for
the third constraint in (8):

1. ˙̃φ = 0: Clearly, ∂ψ̃
∂φ

˙̃φ ≤ 0 is trivially satisfied.

2. ˙̃φ > 0: By Equation (7), G > Gcr > 0. By the definition of the energy release rate in (6), ∂ψ̃
∂φ
< 0,

and hence ∂ψ̃
∂φ

˙̃φ ≤ 0 is satisfied.

Following the traditional theory of linear elasticity, we will consider motions under which it is rea-
sonable to assume that

‖H‖ v O(δ) with δ � 1. (9)

Expanding the free energy about E = 0, and retaining up to and including the terms of O(E2), one has

ψ̃(E, φ) ≈ ψ̃(0, φ) +
∂ψ̃(0, φ)

∂E
· E +

1

2

∂2ψ̃(0, φ)

∂E∂E
[E] · E. (10)

Traditionally, when the body is deformation free, it is assumed that there is no stored energy available
for work in the body, and that there is no residual stress in the body. However, in this case we must also
assume that for the previous statement to hold, a non-uniform presence of damage also does not give
rise to recoverable work or residual stress. Consequently, the first two terms of the expansion in (10) are
equal to zero, and we are left with the free energy

ψ̃(E, φ) =
1

2
C[E] · E, where C(φ) =

∂2ψ̂(0, φ)

∂E∂E
(11)

is the fourth-order elasticity tensor. Note that the elastic moduli are now time-dependent via the damage
variable. Borrowing from the large collection of damage mechanics literature, we choose a simple
dependence on the elastic moduli on the damage variable,

C(φ) = (1− φ)βC0, (12)
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where C0 are the elastic moduli when the material is undamaged and β ∈ R+. Combining (12), (11),
the thermodynamic constraints in (8), and the definition of the energy release rate in (6), the free energy,
stress, and energy release rate are

ψ = 1
2
(1− φ)βC0[E] · E, S = (1− φ)βFC0[E], G = (1− φ)β−1C0[E] · [E]. (13)

Substituting the stress and energy release rate into the balance of linear momentum and damage evolution
equation, respectively, yields the equations of motion

ρκü−Div
[
(1− φ)βFC0[E]

]
= bκ, (14)

φ̇− ηc
〈
β

2
(1− φ)β−1C0[E] · E−Gcr

〉
= 0, (15)

where bκ is the body force per unit volume. Following the traditional methods of linear elasticity we
retain only terms of order δ in (14), and we retain terms only up to order δ2 in (15), resulting in the final
equations of motion for a linear elastic material with simple microcracking

ρκü−Div
[
(1− φ)βC0[∇u]

]
= bκ, (16)

φ̇− ηc
〈
β

2
(1− φ)β−1C0[∇u] · ∇u−Gcr

〉
= 0. (17)

The system in (16)–(17) is representative of many damage models, namely a hyperbolic PDE coupled
to an ODE governing the evolution of the internal damage variable. It should be noted that the right-
hand side of (17) is non-smooth, and that the choice of an ODE as the evolution law is specifically what
creates the intrinsically mesh-dependent nature of the damage field. As discussed in the introduction, the
general character of this model is not new, and non-local approaches have been proposed throughout the
literature; however, the focus of this paper is not on the adopted damage evolution law, but the proposed
adaptive mesh refinement algorithm. This algorithm could be applied to many damage models, and the
one presented in this section is merely to provide a test case under which to demonstrate the h-refinement
performance in terms of resolving the damage morphology.

3. Integration of Equations

In this section, we provide the details of the numerical formulation employed to integrate the equations
of motion. The specifics of the adaptive mesh refinement algorithm are described in the next section.
We begin by rewriting the equations of motion (with β = 2) in first order form (in time) with respect to
displacement and velocity, i.e.,

u̇− v = 0, (18)

ρκv̇ −Div
[
(1− φ)2C0[∇u]

]
= b, (19)

φ̇− ηc 〈(1− φ)C0[∇u] · ∇u−Gcr〉 = 0, (20)

The finite element method is applied to (18)–(20), and hence reduces them to a discrete system of ODEs,
which is then integrated using a finite difference method.
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3.1. Finite Element Method

Let ξ(t) = [u(t),v(t), φ(t)]T ∈ V × [0, T ] be a solution of our system, where V = H1 × H1 × L2

is infinite dimensional, T is some end time, H1 is selected as the appropriate function space for the
variables u and v, and where L2 is the chosen function space for the damage field.1 If we view the
system in (18)–(20) in the abstract form

F(ξ(t)) = 0, (21)

we can then concisely write the problem’s weak form as: Find ξ(t) ∈ V × [0, T ] such that:

(F(ξ(t)), ζ) :=

∫
Ω

F(ξ(t))ζ dΩ = 0 ∀ζ ∈ V , ∀t ∈ [0, T ], (22)

where Ω is the spatial domain over which the governing equations of the problem are defined.2 As is
customary with the Ritz-Galerkin Method, we now introduce a finite dimensional space Vh ⊂ V , and
let ξh ∈ Vh denote an element from this space. We let Ξ = {[wi,wi, wi]

T} denote a basis for Vh (i.e.,
span(Ξ) = Vh) such that

wi ∈
(
Q2(K)

)3 and wi ∈ P0(K), (23)

where K is any element in the triangulation Th of the domain Ω, Q2(K) is the space of quadratic La-
grange polynomials with support K and that are globally continuous over the triangulation, and P0(K)

is the space of piecewise constant functions over the triangulation.
We can now reformulate the weak statement of the problem in the usual way: Find ξh(t) ∈ Vh× [0, T ]

such that: (
F(ξh(t)),Ξ

i
)

= 0 ∀Ξi ∈ Ξ, ∀t ∈ [0, T ]. (24)

Substituting (18)–(20) into the above, selecting the following representation of our trial solutions,

uh = U j(t)wj(x), vh = V j(t)wj(x), φh = Φj(t)wj(x), (25)

and applying integration by parts, yields a matrix form of (24),M 0 0

0 Mρ 0

0 0 M0


U̇ j

V̇ j

Φ̇j

+

 0 −M 0

AE 0 0

0 0 0


U j

V j

Φj

 =

 0

Fv

Fφ

 , (26)

where the elements of the block-matrices on the left-hand side of (26) are defined as

Mij = (wj,wi), Mρ
ij = (ρwj,wi), (27)

M0
ij = (wj, wi), AEij =

(
(1− φ)2C0[∇wj],∇wi

)
, (28)

1The notation H1 is standard in the field of partial differential equations to denote the Sobolev space of Lebesgue in-
tegrable functions whose weak derivatives of order one are also integrable. The notation L2 denotes the space of square
(Lebesgue) integrable functions. Although we have not explicitly indicated it, it is understood that the H1 spaces in question
conform to the prescribed Dirichlet boundary conditions for the fields of interest.

2Ω is the domain of the problem.
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and where the elements of the right-hand side of (26) are

Fv =
(
bκ,w

i
)

+ (sκ,wi)∂B , (29)

Fφ =

(
ηc

〈
β

2
(1− φh)β−1C0[∇uh] · ∇uh −Gcr

〉
, wi
)
. (30)

Here sκ is the traction force applied to the boundary of the domain in the reference configuration. The
finite element scheme just defined approximates the damage variable field as a piecewise constant func-
tion. As such, the solution in terms of damage will be discontinuous. With this in mind, whenever a
function is approximated using discontinuous functions, the corresponding finite element formulation
often includes terms dealing with the jump of the approximated field in question across element bound-
aries.3 Note, however, that in our formulation such jump terms are not present because the weak form
of the problem we have defined does not have terms containing the gradient of the damage variable.
Therefore, we are able to use discontinuous elements for the damage field without the additional work
often associated with Discontinous Galerkin methods.

The use of piecewise discontinuous finite elements to represent the damage variable is a departure
from traditional methods, which typically track the damage at the quadrature point level. The authors
feel that if one only keeps a table of the damage variable values, then one surrenders the notion that the
damage variable is actually a field. By considering the damage variable to be a field, it is then possible
to carry out a transparent error analysis in the context of general finite element schemes, and more
deliberately choose proper solution spaces to satisfy stability conditions and physical admissibility. The
selection of a discontinuous approximate solution space for the damage variable allows for solutions with
less regularity, which the authors believe is appropriate for damage models susceptible to localization.
A piecewise constant discontinuous solution space has been found to preserve stability and physically
admissible results in this particular formulation; however, we make no claim that this space is exclusively
appropriate.

When damage is evolving, the system in (26) is non-linear due to the effect of damage growth on
the problem’s coefficients. Additionally, the evolution equation for the damage variable is non-smooth,
while the elastodynamic equations require higher order methods for more accurate integration. We are
therefore drawn to an operator splitting scheme, which first freezes the elastic state and solves for the
next values of the damage, and subsequently freezes the damage state while solving for the next values
of the elastic fields. In this manner, the system is reduced to two successive linear problems. Note that
this approach is not unlike many standard algorithms for integrating systems resulting from continuum
models with internal variables, such as plasticity (see, for example, [12]).

3.2. Finite Difference Method

The time-stepping algorithm has two stages. The first finds the values of the damage at the new
time step, and the second finds the values of the displacement and velocity fields at the new time step.
Specifically, denoting by n the time step, we have

1. Solve explicitly for Φj,n+1 = F1(Φj,n;U j,n, V j,n) using the first order accurate forward Euler
method, where F1 is F when u̇ and v̇ are set to zero.

3This is typically the case in Discontinous Galerkin (DG) finite element methods (see, e.g., [11]).
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Specifically, the system to be discretized is:

M0Φ̇j = Fφ. (31)

Applying the forward Euler method, one arrives at the discrete formulation:

M0
ijΦ

j,n+1 = M0
ijΦ

j,n + ∆tF n
φ (32)

= M0
ijΦ

j,n + ∆t

(
ηnc

〈
β

2
(1− φnh)β−1C[∇unh] · ∇unh −Gn

cr

〉
, wi
)
. (33)

Everything on the right-hand side is known, and thus we can solve for the new values of the damage.

2. Solve implicitly for [U j,n+1, V j,n+1] = F2 (U j,n+1, V j,n+1;U j,n, V j,n,Φj,n+1,Φj,n), where F2 is F
when φ̇ is set to zero.

Note that since we already have the values of Φj,n+1, the resulting system is linear. However, in such a
system the matrices and right-hand-side are not constant, so that some additional care must be exercised
when implementing this process into a computer code. The system we wish to solve is:[

M 0

0 Mρ

][
U̇ j

V̇ j

]
+

[
0 −M
AE 0

][
U j

V j

]
=

[
0

Fv

]
, (34)

which can be more compactly written as:

M ξ̇ + K ξ = F , (35)

where M is the mass matrix on the left-hand side of (34), K is the stiffness matrix on the left-hand side
of (34), and where F = [0, Fv]

T . Applying the Crank-Nicholson scheme (see, e.g., [13]) to the above
yields the discrete form of (34),(

M +
∆t

2
K n+1

)
ξn+1 =

(
M − ∆t

2
K n

)
ξn +

∆t

2

(
F n+1 + F n

)
. (36)

Note that the stiffness matrix (K ) is dependent on the time step only through the damage variable,
which, due to the staggered solution algorithm, is now simply a parameter. The time-step is chosen
based on the concepts of the Courant-Friedrichs-Lewy (CFL) limit (again, see [13]); we employ the
wavespeed to determine the time-step via

∆t = hmin

√
ρ

E
, (37)

where hmin denotes the diameter of the smallest element in the grid.
When the damage is constant, the choice ofQ2 finite elements and a Crank-Nicholson finite difference

scheme results in a formulation which is second-order accurate in both time and space for the elastic
unknowns; however, when damage is evolving we make no claim of the order of the accuracy of the
overall algorithm. We have implemented the numerical methods presented in this section in a custom
C++ program, which relies heavily on the deal.ii finite element library (see, for reference, [14]).
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4. Adaptive Mesh Refinement Algorithm

The adaptive h-refinement implemented in this work uses a posteriori refinement indicators to deter-
mine which cells of the triangulation must be refined (see, for example, [15] and [16]).4 For the damage
model presented in this paper, we are primarily concerned with isolating the damage evolution to a small
area of the domain, and adequately resolving the morphology of the damage solution. Therefore, the
proposed scheme should be viewed as a tool for increasing the resolution of the damage field locally,
while maintaining reasonable problems sizes. While it is hoped that this approach may be beneficial to
producing repeatable results when the solutions are mesh dependent, it is not a cure or fix for such a
condition. Rather, this is a first attempt by the authors at incorporating adaptive refinement into dynamic
damage models.

We construct two refinement indicators, which subsequently require two separate algorithms. The
first indicator is based exclusively on the damage variable

rφK =

0 if hK < hmin,(
φn+1
h − φnh

)
/∆t otherwise,

(38)

while the second is based on the excess energy release rate G−Gcr

rGK =

0 if hK < hmin,∫
K
〈G− cGcr〉 dK otherwise,

(39)

where c is a constant, hK is the diameter of the K-th cell and hmin is the minimum cell diameter allowed
in the simulation. The use of a minimum mesh size is a simple and well-known method for addressing
localization. Here we propose that it should be related to the particular microstructure of the body in
question; however, we provide no relationship between hmin and any specific physics, as the point of this
paper is not the physical model itself but rather numerical techniques. The constant c in (39) allows us
to adjust the excess energy release rate. In particular, c < 1 will cause rGK to be non-zero before damage
growth occurs, and in effect preemptively refine the mesh. The complete mesh refinement algorithms are
given in Figures 1 and 2, for the damage based scheme and the energy release rate scheme, respectively.
The minimum cell length defines the scale at which damage evolution will occur. Accordingly, each of
the algorithms iterates through refinement cycles, within a given timestep, until each cell which has a
non-zero refinement indicator has a diameter less than hmin. No mesh coarsening is implemented, as we
do not want to have damage evolving at a mesh size greater than the minimum one.

Throughout the refinement process, the triangulation is changed, resulting in the need to resize the
associated matrices and vectors, as well as transfer the solution from the previous triangulation to the
new one. This require time and changing memory requirements, and are detrimental to the performance
of the code. However, even with these performance issues, the resulting algorithm is still much faster
than using a fine scale mesh from the onset of the simulation.

4Note that there is a distinction between error estimators and refinement indicators. The former measure the error present
in the approximate solution for a given cell in the triangulation, while the latter simply determines whether or not the cell
should be refined. While these two concepts are often used together, in this paper, we are simply interested in refining the
mesh where damage is evolving without any direct attempt to estimate the error.
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Figure 1. Damage based refinement algorithm flow chart.

Create Grid
Setup & Reorder DoFs

Project Initial Conditions

Begin Time-step Loop

Compute Refinement Indicators
Compute New Solution

Advance Time-step

Write Data Files

Refine Grid
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Figure 2. Energy Release Rate based algorithm flow chart.
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5. Numerical Experiments

In this section we investigate the performance of the proposed algorithms. A simple example con-
sisting of a two-dimensional bar fixed at one end and subjected to an applied load at the other is used to
gain confidence that the proposed algorithms are functioning as desired. A more complicated example,
consisting of a two-dimensional idealization of a compact test specimen is used to evaluate how well
the algorithms address the use of different meshes, by visually comparing the resulting damage fields on
each triangulation.

The geometry of a two-dimensional bar fixed at one end and subjected to a Neumann (traction) bound-
ary condition at the other is given in Figure 3.

Figure 3. Geometry and boundary conditions of a two-dimensional bar fixed at X1 = 0 and subject to
an applied traction at X1 = L.

L/3

X1 = LX1 = 0 X1

X2

The essential boundary conditions are u|X1=0 = 0 and v|X1=0 = 0, and the applied traction force is
defined as the smooth function

sκ(X, t)|X1=L =

 s0
2

(
1− cos 2πt

τ

)
t < τ

2

s0 t ≥ τ
2

, (40)

where s0 = [sx, 0]T . The initial conditions are u(X, t) = 0, v(X, t) = 0, and φ(X, t) = 0.001. This
simple initial boundary value problem corresponds to a two-dimensional bar which is clamped at one
end, and initially at rest with uniform damage, being smoothly loaded up to a particular load at which
time the load is held constant. Thus, a wave will propagate along the bar, eventually striking the fixed
end. The particular material properties and parameters for the following simulations are given in Table 1,
and have been chosen to be representative of a brittle material.

We see in Figure 4 that the mesh refinement is localized to the fixed (left) end of the bar, indicating
that this is where the damage is increasing. This is expected, because as the wave strikes the fixed end

Table 1. Material properties representative of a brittle material, and the loading parameters.

Elastic Modulus 9× 109 Pa Density 1.7× 103 kg/m3

Poisson Ratio 0.3 Gcr 3× 107 J/m3

ηc 0.1 m3/J · s β 2
τ 20µs sx 5× 107 Pa
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Figure 4. Damage-based refinement scheme: from top to bottom, triangulations of the two-dimensional
bar at times t = 0, t =88.5µs, t =106.1µs, and t = 115.9µs. The refinement is concentrated at the
fixed end of the bar, which is where we expect the damage to increase.
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of the bar, we expect from the theory of linear elasticity to have very high strains at the corners of the
domain, and thus an energy release rate that is higher than other locations in the domain. We plot the
values of the damage variable in Figure 5, and see that the damage nucleates at the corners of the domain,
and subsequently, as the corner cells become fully damaged we see the adjacent cell become damaged,
and so on. The damage-based refinement scheme only allows for damage evolution at the smallest
mesh size. We can see this in Figure 5, where the piecewise constant damage is clearly localized to an
individual cell at the smallest refinement level. We see that there is no damage evolution in larger cells,
as desired. We now want to compare the performance of the damage based and energy release rate based
error estimation schemes.

Figure 5. Damage based refinement: from left to right, zoom-in images of the damage at the fixed-end
of the bar X = 0, at t =88.5µs, t =106.1µs, and t = 115.9µs. The damage nucleates at the corners of
the bar, and progresses towards the center.

Figure 6. Energy release rate based refinement, with c = 1: from left to right, zoom-in images of the
damage at the fixed-end of the bar X = 0, at t =88.5µs, t =106.1µs, and t = 115.9µs.

To serve as a check that the simple damage model we have chosen to use for demonstration purposes
is functioning correctly, in Figure 8 we provide a plot of the first principle stress versus the first principle
strain at a point which becomes fully damaged (left) and the corresponding time series of the damage
variable and Helmholtz free energy density (right). The point we have chosen is the center of the bottom
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Figure 7. Energy release rate based refinement, c= 0.5: The same simulation as in Figure 6, but now
with the refinement indicator parameter c = 0.5. Note the difference in the mesh pattern, specifically the
refinement of cells in which damage is not evolving.

Figure 8. The first principle stress versus the first principle strain at a point which becomes fully dam-
aged (left) and the corresponding time series of the damage variable and Helmholtz free energy density
(right). Dynamic effects can be observed in both data sets. On the right, region I corresponds to the
response before damage evolution, region II to the brief period of damage evolution, and region III to
the period when the material is fully damaged.
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left cell in Figure 7. Note that both the parametric (in time) stress/strain plot and time series plot of the
damage and energy are simply records of the motion of a point which becomes fully damaged, and are
not comparable to the usual uniaxial stress strain curves.

Figure 6 shows the damage solution of the same problem, but now using the refinement indicators
based on the excess energy release rate with the parameter c in (39) set equal to one. We observe
that the damage solution in Figure 6, while not identical to that in Figure 5, is quite similar to it. We
attribute the similarity in the damage solutions to the fact that we have set c = 1 in (39), and hence the
energy release rate refinement indicator is the same as the damage based indicator and produces similar
results. To illustrate the effect of adjusting the constant c, in Figure 7 we show the damage solution and
mesh refinement for the same problem, but this time obtained using an energy release based refinement
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indicator with the parameter c = 0.5. Preemptive mesh refinement is now clearly visible in Figure 7,
however, the damage field is still essentially the same as in Figures 5 and 6. Thus, in this circumstance,
it appears that either the damage based or energy release rate based schemes would provide adequate
performance.

5.1. Idealized Compact Test Specimen

To further test and demonstrate the capabilities of the proposed algorithm, we choose to model the
well known experiment of a compact test specimen in tension, in order to simulate conditions under
which Mode I failure would normally occur. However, unlike many experiments of this nature, the
loading on the specimen is monotonic and highly dynamic (as opposed to standard fatigue tests with
slow, cyclic loading). The geometry and initial meshes for the simulations are given in Figure 9, and the
boundary conditions are

sκ(X, t) = 0 X ∈ ∂Bκ\ΓN (41)

sκ(X, t) =

 s0
2

(
1− cos 2πt

τ

)
t < τ

2

s0 t ≥ τ
2

X ∈ ΓN , (42)

where s0 = [0, sy]
T . The initial conditions are u(X, t) = 0, v(X, t) = 0, and φ(X, t) = 0.001, and

the material properties are listed in Table 1, with the exception that now we take ηc = 0.05 m3/J·s and
Gcr = 1× 107 J/m3.

Figure 9. Geometry and initial meshes for the simulations of an idealized 2D compact test specimen.
Vertical traction loading is applied to the faces denoted as ΓN , creating a situation likely to result in
Mode I failure. The meshes were created using the pave (left) and submap (right) methods in Cubit [17].
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Figure 1. Algorithm flow chart

Elastic Modulus 200 GPa
Density 7850 kg/m3

Poisson Ratio 0.3
Gcr 5× 105 J/m3

ηc 1.0 m3 · J−1 · s−1

β 2

6. Conclusions and Discussion
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ΓN

For this specific loading condition and set of material properties (including hmin), we see in Figure 10
that both the damage and energy release rate based refinement schemes show similar results for the
damage solution on both initial meshes, thus demonstrating that the solution is somewhat independent
of the mesh. By this we mean that, while the two damage distributions are clearly not identical, they
do concentrate on the horizontal symmetry line of the compact specimen, as expected. As it turns
out, the differences between the solutions obtained using different initial grids can be traced to the
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specific values used for the parameter hmin in relation to that of the parameterGcr. Before addressing this
issue, we remark that for the results shown in Figure 10, the parameter in the energy release rate based
refinement algorithm is c=0.5, and as such, we notice that the corresponding solutions in Figures 10(c)
and 10(d) have a slightly greater extent of refinement. However, comparing the damage solutions in
Figures 10(a) and 10(b) with those in Figures 10(c) and 10(d), we see that the preemptive refinement of
the energy release rate based algorithm yielded essentially the same damage solution as that produced by
the refinement indicator based on the time rate of change of the damage. Therefore, we conclude again
that in this instance, either scheme is adequate.

Going back to discussing the mesh dependence issue, the most noticeable difference between the
solutions on the grid in Figures 10(a) and 10(c) and the grid in Figures 10(b) and 10(d) is the degree of
localization of the damage solution. In the first set of aforementioned figures, the damage is localized to a
single cell, while in the second set the damage is clearly spread over numerous cells across the horizontal
mid-line of the solution domain. Figures 11(a) and 11(b) show the region of interest in Figures 10(a)
and 10(b), respectively. It is clear in these figures that, with the choice of piecewise constant elements,
the damage solution seems to evolve in cells that are adjacent to the face of an already damaged cell,
as opposed to one which is connected only at a corner. We discovered that this effect becomes more
pronounced as we increase the value of Gcr while keeping the value of hmin fixed.

In fact, taking the value of Gcr = 3 × 107 J/m3, which is three times the value used to produce the
solutions in Figures 10(a)–10(d), we see in Figure 12 that the ability of the algorithm to address the
mesh-dependency of the solution is diminished (again, keeping in mind that the value of hmin is held
constant) to the point that two completely different physical failure patters are obtained. We suspect
that to obtain physically comparable solutions on different initial meshes, we would need to determine
the influence the values of hmin and Gcr have on each other. However, this may not be an acceptable
solution due to the fact that the value used for hmin should be physical-based, that is, as though hmin

were a constitutive parameter. Clearly this also means that comparing solutions with vastly different
values of Gcr while keeping hmin fixed may be questionable. With this in mind, we feel that the results
presented in this paper demonstrate that the proposed algorithm is well suited for locally refining the
mesh in areas of evolving damage, but could certainly be more robust. Specifically, the authors feel that
more careful study of the combination of solution space choices for the damage variable, error estimates,
and refinement strategies are necessary before any more general claims can be made about the viability
of using adaptive h-refinement for addressing mesh dependency of damage models prone to localization.
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Figure 10. Damage solutions on two very different meshes with the two proposed refinement algorithms.
In these simulations, the constant in (39) is c = 0.5, leading to the preemptive refinement of non-damaged
cells in Figures 10(c) and 10(d). In general, the solutions are all similar, thus we are encouraged that
adaptive mesh refinement may be able to help control mesh-dependency issues; however, it is clear that
the extent of localization is different between the two meshes and not yet to a point of mathematical
comparison.

(a) Damage based refinement. (b) Damage based refinement.

(c) Energy Release Rate based refinement. (d) Energy Release Rate based refinement.
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Figure 11. Zoom-in of the damage solutions in Figures 10(a) and 10(b), respectively, showing the
damage field solution produced by the damage-based refinement algorithm. The extent to which the
damage is localized is clearly visible, and, for this first attempt, is considered thus far to be sucessful.

(a) (b)

Figure 12. Damage field solutions using the energy release rate refinement algorithm, but with Gcr three
times larger than the value used to find the solutions in Figures 10(c)–10(d). Clearly, the ability of the
algorithm to mitigate the mesh dependence is diminished.
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6. Summary

In this paper, a first attempt at employing adaptive mesh refinement to dynamic damage evolution in
brittle materials is presented. In terms of effectively refining the mesh locally where damage is evolving,
the algorithm works very well. Two original simple adaptive mesh refinement algorithms were derived
and presented. Their ability to address the localization and mesh-dependency of the damage solution for
the simple case of a linear elastic body with scalar damage was investigated. Under some circumstances
the algorithms worked quite well; however, the proposed combination of a piecewise discontinuous
solution space for the damage solution and the refinement algorithms is not universally successful.

Future exploration of appropriate solution spaces for the damage variable is necessary. The authors
believe that discontinuous solution spaces should be employed, as they allow for a more flexible inter-
polation of damage fields with low regularity and tendency for localization. Additionally, the relation
between the refinement indicators used and limiting minimum mesh size, as well as the other constitutive
parameters controlling damage evolution needs to be studied more carefully to as to develop more robust
strategies for solving localization prone systems without modifying the equations of motion.
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