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Abstract: Specialized intelligent systems can be found everywhere: finger print, handwrit-
ing, speech, and face recognition, spam filtering, chess and other game programs, robots, et
al. This decade the first presumably complete mathematical theory of artificial intelligence
based on universal induction-prediction-decision-action has been proposed. This information-
theoretic approach solidifies the foundations of inductive inference and artificial intelligence.
Getting the foundations right usually marks a significant progress and maturing of a field.
The theory provides a gold standard and guidance for researchers working on intelligent al-
gorithms. The roots of universal induction have been laid exactly half-a-century ago and the
roots of universal intelligence exactly one decade ago. So it is timely to take stock of what
has been achieved and what remains to be done. Since there are already good recent surveys,
I describe the state-of-the-art only in passing and refer the reader to the literature. This ar-
ticle concentrates on the open problems in universal induction and its extension to universal
intelligence.

Keywords: Kolmogorov complexity; information theory; sequential decision theory; rein-
forcement learning; artificial intelligence; universal Solomonoff induction; rational agents

“The mathematician is by now accustomed to intractable equations, and even to unsolved
problems, in many parts of his discipline. However, it is still a matter of some fascina-
tion to realize that there are parts of mathematics where the very construction of a precise
mathematical statement of a verbal problem is itself a problem of major difficulty.”

— Richard Bellman, Adaptive Control Processes (1961) p.194
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1. Introduction

What is a good model of the weather changes? Are there useful models of the world economy? What
is the true regularity behind the number sequence 1,4,9,16,...? What is the correct relationship between
mass, force, and acceleration of a physical object? Is there a causal relation between interest rates and
inflation? Are models of the stock market purely descriptive or do they have any predictive power?

Induction. The questions above look like a set of unrelated inquires. What they have in common is that
they seem to be amenable to scientific investigation. They all ask about a model for or relation between
observations. The purpose seems to be to explain or understand the data. Generalizing from data to
general rules is called inductive inference, a core problem in philosophy [1–3] and a key task of science
[4–6].

But why do or should we care about modeling the world? Because this is what science is about
[7]? As indicated above, models should be good, useful, true, correct, causal, predictive, or descriptive
[8]. Digging deeper, we see that models are mostly used for prediction in related but new situations,
especially for predicting future events [9].

Predictions. Consider the apparently only slight variation of the questions above: What is the correct
answer in an IQ test asking to continue the sequence 1,4,9,16,...? Given historic stock-charts, can one
predict the quotes of tomorrow? Or questions like: Assuming the sun rose every day for 5000 years,
how likely is doomsday (that the sun will not rise) tomorrow? What is my risk of dying from cancer next
year?

These questions are instances of the important problem of time-series forecasting, also called se-
quence prediction [10, 11]. While inductive inference is about finding models or hypotheses that explain
the data (whatever explain actually shall mean), prediction is concerned about forecasting the future.
Finding models is interesting and useful, since they usually help us to (partially) answer such predictive
questions [12, 13]. While the usefulness of predictions is clearer to the layman than the purpose of the
scientific inquiry for models, one may again ask, why we do or should we care about making predictions?

Decisions. Consider the following questions: Shall I take my umbrella or wear sunglasses today? Shall
I invest my assets in stocks or bonds? Shall I skip work today because it might be my last day on
earth? Shall I irradiate or remove the tumor of my patient? These questions ask for decisions that have
some (minor to drastic) consequences. We usually want to make “good” decisions, where the quality is
measured in terms of some reward (money, life expectancy) or loss [14–16]. In order to compute this
reward as a function of our decision, we need to predict the environment: whether there will be rain or
sunshine today, whether the market will go up or down, whether doomsday is tomorrow, or which type
of cancer the patient has. Often forecasts are uncertain [17], but this is still better than no prediction.
Once we arrived at a (hopefully good) decision, what do we do next?

Actions. The obvious thing is to execute the decision, i.e. to perform some action consistent with the
decision arrived at. The action may not influence the environment, like taking umbrella versus sunglasses
does not influence the future weather (ignoring the butterfly effect) or small stock trades. These settings
are called passive [18], and the action part is of marginal importance and usually not discussed. On the
other hand, a patient might die from a wrong treatment, or a chess player loses a figure and possibly
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the whole game by making one mistake. These settings are called (re)active [19], and their analysis is
immensely more involved than the passive case [20].

And now? There are many theories and algorithms and whole research fields and communities dealing
with some aspects of induction, prediction, decision, or action. Some of them will be detailed below.
Finding solutions for every particular (new) problem is possible and useful for many specific applica-
tions. Trouble is that this approach is cumbersome and prone to disagreement or contradiction [21].
Some researchers feel that this is the nature of their discipline and one can do little about it [22]. But
in science (in particular math, physics, and computer science) previously separate approaches are con-
stantly being unified towards more and more powerful theories and algorithms [23, 24]. There is at
least one field, where we must put everything (induction+prediction+decision+action) together in a com-
pletely formal (preferably elegant) way, namely Artificial Intelligence [25]. Such a general and formal
theory of AI has been invented about a decade ago [26].

Contents. In Section 2. I will give a brief introduction into this universal theory of AI. It is based on
an unexpected unification of algorithmic information theory and sequential decision theory. The corre-
sponding AIXI agent is the first sound, complete, general, rational agent in any relevant but unknown
environment with reinforcement feedback [27, 28]. It is likely the best possible such agent in a sense to
be explained below.

Section 3. describes the historic origin of the AIXI model. One root is Solomonoff’s theory [29] of
universal induction, which is closely connected to algorithmic complexity. The other root is Bellman’s
adaptive control theory [30] for optimal sequential decision making. Both theories are now half-a-
century old. From an algorithmic information theory perspective, AIXI generalizes optimal passive
universal induction to the case of active agents. From a decision-theoretic perspective, AIXI is a universal
Bayes-optimal learning algorithm.

Sections 4.–7. constitute the core of this article describing the open problems around universal induc-
tion & intelligence. Most of them are taken from the book [27] and paper [31]. I focus on questions
whose solution has a realistic chance of advancing the field. I avoid technical open problems whose
global significance is questionable.

Solomonoff’s half-a-century-old theory of universal induction is already well developed. Naturally,
most remaining open problems are either philosophically or technically deep.

Its generalization to Universal Artificial Intelligence seems to be quite intricate. While the AIXI
model itself is very elegant, its analysis is much more cumbersome. Although AIXI has been shown to
be optimal in some senses, a convincing notion of optimality is still lacking. Convergence results also
exist, but are much weaker than in the passive case.

Its construction makes it plausible that AIXI is the optimal rational general learning agent, but unlike
the induction case, victory cannot be claimed yet. It would be natural, hence, to compare AIXI to
alternatives, if there were any. Since there are no competitors yet, one could try to create some. Finally,
AIXI is only “essentially” unique, which gives rise to some more open questions.

Given that AI is about designing intelligent systems, a serious attempt should be made to formally
define intelligence in the first place. Astonishingly there have been not too many attempts. There is one
definition that is closely related to AIXI, but its properties have yet to be explored.
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The final Section 8. briefly discusses the flavor, feasibility, difficulty, and interestingness of the raised
questions, and takes a step back and briefly compares the information-theoretic approach to AI discussed
in this article to others.

2. Universal Artificial Intelligence

Artificial Intelligence. The science of artificial intelligence (AI) may be defined as the construction of
intelligent systems (artificial agents) and their analysis [25]. A natural definition of a system is anything
that has an input and an output stream, or equivalently an agent that acts and observes. Intelligence is
more complicated. It can have many faces like creativity, solving problems, pattern recognition, classi-
fication, learning, induction, deduction, building analogies, optimization, surviving in an environment,
language processing, planning, and knowledge acquisition and processing. Informally, AI is concerned
with developing agents that perform well in a large range of environments [32]. A formal definition in-
corporating every aspect of intelligence, however, seems difficult. In order to solve this problem we need
to solve the induction, prediction, decision, and action problem, which seems like a daunting (some even
claim impossible) task: Intelligent actions are based on informed decisions. Attaining good decisions
requires predictions which are typically based on models of the environments. Models are constructed
or learned from past observations via induction. Fortunately, based on the deep philosophical insights
and powerful mathematical developments listed in Section 3., these problems have been overcome, at
least in theory.

Universal Artificial Intelligence (UAI). Most, if not all, known facets of intelligence can be formu-
lated as goal driven or, more precisely, as maximizing some reward or utility function. It is, therefore,
sufficient to study goal-driven AI; e.g. the (biological) goal of animals and humans is to survive and
spread. The goal of AI systems should be to be useful to humans. The problem is that, except for spe-
cial cases, we know neither the utility function nor the environment in which the agent will operate in
advance. What do we need (from a mathematical point of view) to construct a universal optimal learn-
ing agent interacting with an arbitrary unknown environment? The theory, coined AIXI, developed in
this decade and explained in [27] says: All you need is Occam [33], Epicurus [34], Turing [35], Bayes
[36], Solomonoff [37], Kolmogorov [38], and Bellman [30]: Sequential decision theory [20] (Bellman’s
equation) formally solves the problem of rational agents in uncertain worlds if the true environmental
probability distribution is known. If the environment is unknown, Bayesians [39] replace the true dis-
tribution by a weighted mixture of distributions from some (hypothesis) class. Using the large class of
all (semi)measures that are (semi)computable on a Turing machine bears in mind Epicurus, who teaches
not to discard any (consistent) hypothesis. In order not to ignore Occam, who would select the simplest
hypothesis, Solomonoff defined a universal prior that assigns high/low prior weight to simple/complex
environments, where Kolmogorov quantifies complexity [40, 41]. All other concepts and phenomena
attributed to intelligence are emergent. All together, this solves all conceptual problems [27], and “only”
computational problems remain.

Kolmogorov complexity. Kolmogorov [38] defined the complexity of a string x∈X ∗ over some finite
alphabet X as the length ` of a shortest description p∈{0,1}∗ on a universal Turing machine U :

Kolmogorov complexity: K(x) := min
p
{`(p) : U(p) = x} (1)
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A string is simple if it can be described by a short program, like “the string of one million ones”, and
is complex if there is no such short description, like for a random string whose shortest description is
specifying it bit-by-bit. For non-string objects o one defines K(o) :=K(〈o〉), where 〈o〉 ∈X ∗ is some
standard code for o. Kolmogorov complexity [38, 42] is a key concept in (algorithmic) information
theory [41]. An important property of K is that it is nearly independent of the choice of U , i.e. different
choices of U change K “only” by an additive constant (see Section 4.h). Furthermore it leads to shorter
codes than any other effective code. K shares many properties with Shannon’s entropy (information
measure) S [43, 44], but K is superior to S in many respects. Foremost, K measures the information of
individual outcomes, while S can only measure expected information of random variables. To be brief,
K is an excellent universal complexity measure, suitable for quantifying Occam’s razor. The major
drawback of K as complexity measure is its incomputability. So in practical applications it has always
to be approximated, e.g. by Lempel-Ziv compression [45, 46], or by CTW [47] compression, or by using
two-part codes like in MDL and MML, or by others.

Solomonoff induction. Solomonoff [37] defined (earlier) the closely related universal a priori proba-
bility M(x) as the probability that the output of a universal (monotone) Turing machine U starts with x
when provided with fair coin flips on the input tape [48]. Formally,

Solomonoff prior: M(x) :=
∑

p:U(p)=x∗
2−`(p), (2)

where the sum is over all (possibly non-halting) so-called minimal programs p which output a string
starting with x. Since the sum is dominated by short programs, we have M(x) ≈ 2−K(x) (formally
−logM(x) =K(x)+O(log`(x))), i.e. simple/complex strings are assigned a high/low a-priori proba-
bility. A different representation is as follows [49]: Let M= {ν} be a countable class of probability
measures ν (environments) on infinite sequences X∞, µ ∈M be the true sampling distribution, i.e.
µ(x) is the true probability that an infinite sequences starts with x, and ξM(x) :=

∑
ν∈Mwνν(x) be the

w-weighted average called Bayesian mixture distribution. One can show that M(x) = ξMU
(x), where

MU includes all computable probability measures and wν = 2−K(ν). More precisely,MU :={ν1,ν2,...}
consists of an effective enumeration of all so-called lower semi-computable semi-measures νi, and
K(νi) :=K(i) :=K(〈i〉) [41].
M can be used as a universal sequence predictor, which outperforms in a strong sense all other

predictors. Consider the classical online sequence prediction task: Given x<t≡x1:t−1 :=x1...xt−1, predict
xt; then observe the true xt; t; t+1; repeat. For x1:∞ generated by the unknown “true” distribution
µ∈MU , one can show [50] that the universal predictorM(xt|x<t):=M(x1:t)/M(x<t) rapidly converges
to the true probability µ(xt|x<t) = µ(x1:t)/µ(x<t) of the next observation xt ∈ X given history x<t.
That is, M serves as an excellent predictor of any sequence sampled from any computable probability
distribution.

The AIXI model. It is possible to write down the AIXI model explicitly in one line [19], although one
should not expect to be able to grasp the full meaning and power from this compact representation.

AIXI is an agent that interacts with an environment in cycles k= 1,2,...,m. In cycle k, AIXI takes
action ak (e.g. a limb movement) based on past perceptions o1r1..ok−1rk−1 as defined below. Thereafter,
the environment provides a (regular) observation ok (e.g. a camera image) to AIXI and a real-valued
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reward rk. The reward can be very scarce, e.g. just +1 (-1) for winning (losing) a chess game, and 0 at
all other times. Then the next cycle k+1 starts. Given the above, AIXI is defined by:

AIXI: ak := arg max
ak

∑
okrk

. . .max
am

∑
omrm

[rk + · · ·+ rm]
∑

q :U(q,a1..am)=o1r1..omrm

2−`(q) (3)

The expression shows that AIXI tries to maximize its total future reward rk+...+rm. If the environment
is modeled by a deterministic program q, then the future perceptions ...okrk..omrm=U(q,a1..am) can be
computed, where U is a universal (monotone Turing) machine executing q given a1..am. Since q is un-
known, AIXI has to maximize its expected reward, i.e. average rk+...+rm over all possible perceptions
created by all possible environments q. The simpler an environment, the higher is its a-priori contribution
2−`(q), where simplicity is measured by the length ` of program q. The inner sum

∑
q:...2

−`(q) generalizes
Solomonoff’s a-priori distribution M by including actions. Since noisy environments are just mixtures
of deterministic environments, they are automatically included. The sums in the formula constitute the
averaging process. Averaging and maximization have to be performed in chronological order, hence the
interleaving of max and Σ (similarly to minimax for games). The value V of AIXI (or any other agent)
is its expected reward sum.

One can fix any finite action and perception space, any reasonable U , and any large finite lifetime m.
This completely and uniquely defines AIXI’s actions ak, which are limit-computable via the expression
above (all quantities are known).

That’s it! Ok, not really. It takes a whole book and more to explain why AIXI likely is the most
intelligent general-purpose agent and incorporates all aspects of rational intelligence. In practice, AIXI
needs to be approximated. AIXI can also be regarded as the gold standard which other practical general
purpose AI programs should aim at (analogue to minimax approximations/heuristics).

The role of AIXI for AI. The AIXI model can be regarded as the first complete theory of AI. Most if
not all AI problems can easily be formulated within this theory, which reduces the conceptual problems
to pure computational questions. Solving the conceptual part of a problem often causes a quantum leap
forward in a field. Two analogies may help: QED is a complete theory of all chemical processes. ZFC
solved the conceptual problems of sets (e.g. Russell’s paradox).

From an algorithmic information theory (AIT) perspective, the AIXI model generalizes optimal pas-
sive universal induction to the case of active agents. From a decision-theoretic perspective, AIXI is a
suggestion of a new (implicit) “learning” algorithm, which may overcome all (except computational)
problems of previous reinforcement learning algorithms. If the optimality theorems of universal induc-
tion and decision theory generalize to the unified AIXI model, we would have, for the first time, a uni-
versal (parameterless) model of an optimal rational agent in any computable but unknown environment
with reinforcement feedback.

Although deeply rooted in algorithm theory, AIT mainly neglects computation time and so does AIXI.
It is important to note that this does not make the AI problem trivial. Playing chess optimally or solving
NP-complete problems become trivial, but driving a car or surviving in nature do not. This is because it
is a challenge itself to well-define the latter problems, not to mention presenting an algorithm. In other
words: The AI problem has not yet been well defined (cf. the quote after the abstract). One may view
AIXI as a suggestion of such a mathematical definition.
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Although Kolmogorov complexity is incomputable in general, Solomonoff’s theory triggered an en-
tire field of research on computable approximations. This led to numerous practical applications [51].
If the AIXI model should lead to a universal “active” decision maker with properties analogous to those
of universal “passive” predictors, then we could expect a similar stimulation of research on resource-
bounded, practically feasible variants. First attempt have been made to test the power and limitations
of AIXI and downscaled versions like AIXItl and AIξ [52, 53], as well as related models derived from
basic concepts of algorithmic information theory.

So far, some remarkable and surprising results have already been obtained (see Section 3.). A 2, 12,
60, 300 page introduction to the AIXI model can be found in [19, 27, 54, 55], respectively, and a gentle
introduction to UAI in [56].

3. History and State-of-the-Art

The theory of UAI and AIXI build on the theories of universal induction, universal prediction, uni-
versal decision making, and universal agents. From a historical and research-field perspective, the AIXI
model is based on two otherwise unconnected fundamental theories:

(1) The major basis is Algorithmic information theory [41], initiated by [37, 38, 57], which builds
the foundation of complexity and randomness of individual objects. It can be used to quantify
Occam’s razor principle (use the simplest theory consistent with the data). This in turn allowed
Solomonoff to come up with a universal theory of induction [37, 50].

(2) The other basis is the theory of optimal sequential decisions, initiated by Von Neumann [58] and
Bellman [30]. This theory builds the basis of modern reinforcement learning [59].

This section outlines the history and state-of-the-art of the theories and research fields involved in the
AIXI model.

Algorithmic information theory (AIT). In the 1960’s [37, 38, 57] introduced a new machine indepen-
dent complexity measure for arbitrary computable data. The Kolmogorov complexity K(x) is defined
as the length of the shortest program on a universal Turing machine that computes x. It is closely related
to Solomonoff’s universal a-priori probability M(x)≈ 2−K(x) (see above), Martin-Löf randomness of
individual sequences [60], time-bounded complexity [61], universal optimal search [62], the speed prior
[63], the halting probability Ω [64], strong mathematical undecidability [65], generalized probability and
complexity [66], algorithmic statistics [67–69], and others.

Despite its incomputability, AIT found many applications in philosophy, practice, and science: The
minimum message/description length (MML/MDL) principles [70–72] can be regarded as a practical ap-
proximation of Kolmogorov complexity. MML&MDL are widely used in machine learning applications
[6, 73–77]. The latest, most direct and impressive applications are via the universal similarity metric
[46, 78]. Schmidhuber produced another range of impressive applications to neural networks [79, 80], in
search problems [81], and even in the fine arts [82]. By carefully approximating Kolmogorov complex-
ity, AIT sometimes lead to results unmatched by other approaches. Besides these practical applications,
AIT is used to simplify proofs via the incompressibility method, improves Shannon information, is used
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in reversible computing, physical entropy and Maxwell daemon issues, artificial intelligence, and the
asymptotically fastest algorithm for all well-defined problems [27, 40, 41, 83, 84].

Universal Solomonoff induction. How and in which sense induction is possible at all has been subject to
long philosophical controversies [1, 27, 85]. Highlights are Epicurus’ principle of multiple explanations
[34], Occam’s razor (simplicity) principle [33], and Bayes’ rule for conditional probabilities [5, 36].
Solomonoff [37] elegantly unified these aspects with the concept of universal Turing machines [35] to
one formal theory of inductive inference based on a universal probability distributionM , which is closely
related to Kolmogorov complexity K (M(x) ≈ 2−K(x)). The theory allows for optimally predicting
sequences without knowing their true generating distribution µ [50], and presumably solves the induction
problem. The theory remained for more than 20 years at this stage, till the work on AIXI started, which
resulted in a beautiful elaboration and extension of Solomonoff’s theory.

Meanwhile, the (non)existence of universal priors for several generalized computability concepts [66,
86, 87] has been classified, rapid convergence of M to the unknown true environmental distribution µ
[88] and tight error [89] and loss bounds for arbitrary bounded loss functions and finite alphabet [90, 91]
have been proven, and (Pareto) optimality of M [18, 86] has been shown, exemplified on games of
chance and compared to predictions with expert advice [18, 92]. The bounds have been further improved
by introducting a version of Kolmogorov complexity that is monotone in the condition [93, 94]. Similar
but necessarily weaker non-asymptotic bounds for universal deterministic/one-part MDL [95, 96] and
discrete two-part MDL [97–100] have also been proven. Quite unexpectedly [101] M does not converge
on all Martin-Löf random sequences [102], but there is a sophisticated remedy [103].

All together this shows that Solomonoff’s induction scheme represents a universal (formal, but in-
computable) solution to all passive prediction problems. The most recent studies [104] suggest that this
theory could solve the induction problem at whole, or at least constitute a significant progress in this
fundamental problem [31].

Sequential decision theory. Sequential decision theory provides a framework for finding optimal
reward-maximizing strategies in reactive environments (e.g. chess playing as opposed to weather fore-
casting), assuming the environmental probability distribution µ is known. The Bellman equations [30]
are at the heart of sequential decision theory [25, 58, 105]. The book [20] summarizes open problems
and progress in infinite horizon problems. Sequential decision theory can deal with actions and obser-
vations depending on arbitrary past events. This general setup has been called AIµ model in [19, 27].
Optimality of AIµ is obvious by construction. This model reduces in special cases to a range of known
models.

Reinforcement learning. If the true environmental probability distribution µ or the reward function
are unknown, they need to be learned [59]. This dramatically complicates the problem due to the
exploration↔exploitation dilemma [27, 106–108]. In order to attack this intrinsically difficult problem,
control theorists typically confine themselves to linear systems with quadratic loss function, relevant in
the control of (simple) machines, but irrelevant for AI. There are notable exceptions to this confinement,
e.g. the book [109] on stochastic adaptive control and [110, 111], and an increasing number of more
recent work. Reinforcement learning (RL) (sometimes associated with temporal difference learning or
neural nets) is the instantiation of stochastic adaptive control theory [109] in the machine learning com-
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munity. Current research on RL is vast; the most important conferences are ICML, COLT, ECML, ALT,
and NIPS; the most important journals are JMLR and MLJ. Some highlights and surveys are [108, 112–
130] and [20, 59, 131–133] respectively. RL has been applied to a variety of real-world problems, occa-
sionally with stunning success: Backgammon and Checkers [59, Chp.11], helicopter control [134], and
others. Nevertheless, existing learning algorithms are very limited (typically to Markov domains), and
non-optimal — from the very outset they are approximate or asymptotic only. Indeed, AIXI is currently
the only general and rigorous mathematical formulation of the addressed problems.

The universal algorithmic agent AIXI. Reinforcement learning algorithms [59, 131, 135] are usually
used in the case of unknown µ. They can succeed if the state space is either small or has effectively
been made small by generalization techniques. The algorithms work only in restricted, (e.g. Markov)
domains, have problems with optimally trading off exploration versus exploitation, have non-optimal
learning rate, are prone to diverge, or are otherwise ad hoc.

The formal solution proposed in [27, 55] is to generalize the universal probabilityM to include actions
as conditions and replace µ by M in the AIµ model, resulting in the AIXI model, which is presumably
universally optimal. It is quite non-trivial what can be expected from a universally optimal agent and to
properly interpret or define universal, optimal, etc [19]. It is known that M converges to µ also in case
of multi-step lookahead as occurs in the AIXI model [136], and that a variant of AIXI is asymptotically
self-optimizing and Pareto optimal [137, 138].

The book [27] gives a comprehensive introduction and discussion of previous achievements on or
related to AIXI, including a critical review, more open problems, comparison to other approaches to AI,
and philosophical issues.

Important environmental classes. In practice, one is often interested in specific classes of problems
rather than the fully universal setting; for example we might be interested in evaluating the perfor-
mance of an algorithm designed solely for function maximization. A taxonomy of abstract environmen-
tal classes from the mathematical perspective of interacting chronological systems [56, 139] has been
established. The relationships between Bandit problems, MDP problems, ergodic MDPs, higher order
MDPs, sequence prediction problems, function optimization problems, strategic games, classification,
and many others are formally defined and explored therein. The work also suggests new abstract en-
vironmental classes that could be useful from an analytic perspective. In [27], each problem class is
formulated in its natural way for known µ, and then a formulation within the AIµ model is constructed
and their equivalence is shown. Then, the consequences of replacing µ by M are considered, and in
which sense the problems are formally solved by AIXI.

Computational aspects. The major drawback of AIXI is that it is incomputable, or more precisely, only
asymptotically computable, which makes a direct implementation impossible. To overcome this prob-
lem, the AIXI model can be scaled down to a model coined AIXItl, which is still superior to any other
time t and length l bounded agent [27, 55]. The computation time of AIXItl is of the order t·2l. A way
of overcoming the large multiplicative constant 2l is possible at the expense of an (unfortunately even
larger) additive constant. The constructed algorithm builds upon Levin search [62, 140]. The algorithm
is capable of solving all well-defined problems p as quickly as the fastest algorithm computing a solution
to p, save for a factor of 1+ε and lower-order additive terms [84]. The solution requires an implementa-



Algorithms 2009, 2 888

tion of first-order logic, the definition of a universal Turing machine within it and a proof theory system.
The algorithm as it is, is only of theoretical interest, but there are more practical variations [81, 141]. A
different, more limited but more practical scaled-down version (coined AIξ) has been implemented and
applied successfully to 2×2 matrix games like the notoriously difficult repeated prisoner problem and
generalized variants thereof [52].

4. Open Problems in Universal Induction

The induction problem is a fundamental problem in philosophy [1, 5] and science [142]. Solomonoff’s
model is a promising universal solution of the induction problem. In [31], an attempt has been made to
collect the most important fundamental philosophical and statistical problems, regarded as open, and
to present arguments and proofs that Solomonoff’s theory overcomes them. Despite the force of the
arguments, they are likely not yet sufficient to convince the (scientific) world that the induction problem
is solved. The discussion needs to be rolled out much further, say, at least one generally accessible article
per one allegedly open problem. Indeed, this endeavor might even discover some catch in Solomonoff’s
theory. Some problems identified and outlined in [31] worth to investigate in more detail are:

a) The zero prior problem. The problem is how to confirm universal hypotheses like H :=“all
balls in some urn (or all ravens) are black”. A natural model is to assume that balls (or ravens)
are drawn randomly from an infinite population with fraction θ of black balls (or ravens) and to
assume some prior density over θ∈ [0;1] (a uniform density gives the Bayes-Laplace model). Now
we draw n objects and observe that they are all black. The problem is that the posterior proability
P [H|black1...blackn]≡0, since the prior probability P [H]=P [θ=1]≡0. Maher’s [143] approach
does not solve the problem [31].

b) The black raven paradox by Carl Gustav Hempel goes as follows [144, Ch.11.4]: Observing
Black Ravens confirms the hypothesis H that all ravens are black. In general, (i) hypothesis
R→B is confirmed by R-instances with property B. Formally substituting R;¬B and B;¬R
leads to (ii) hypothesis ¬B→¬R is confirmed by ¬B-instances with property ¬R. But (iii) since
R→B and ¬B→¬R are logically equivalent,R→B must also be confirmed by ¬B-instance with
property¬R. Hence by (i), observing Black Ravens confirms HypothesisH , so by (iii), observing
White Socks also confirms that all Ravens are Black, since White Socks are non-Ravens which are
non-Black. But this conclusion is absurd. Again, neither Maher’s nor any other approach solves
this problem.

c) The Grue problem [145]. Consider the following two hypotheses: H1 :=“All emeralds are
green”, and H2 :=“All emeralds found till year 2020 are green, thereafter all emeralds are blue”.
Both hypotheses are equally well supported by empirical evidence. Occam’s razor seems to favor
the more plausible hypothesis H1, but by using new predicates grue:=“green till y2020 and blue
thereafter” and bleen:=“blue till y2020 and green thereafter”, H2 gets simpler than H1.

d) Reparametrization invariance [146]. The question is how to extend the symmetry principle
from finite hypothesis classes (all hypotheses are equally likely) to infinite hypothesis classes. For
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“compact” classes, Jeffrey’s prior [147] is a solution, but for non-compact spaces like IN or IR,
classical statistical principles lead to improper distributions, which are often not acceptable.

e) Old-evidence/updating problem and ad-hoc hypotheses [148]. How shall a Bayesian treat the
case when some evidence E=̂x (e.g. Mercury’s perihelion advance) is known well-before the
correct hypothesis/theory/model H=̂µ (Einstein’s general relativity theory) is found? How shall
H be added to the Bayesian machinery a posteriori? What is the prior of H? Should it be the
belief in H in a hypothetical counterfactual world in which E is not known? Can old evidence
E confirm H? After all, H could simply be constructed/biased/fitted towards “explaining” E.
Strictly speaking, a Bayesian needs to choose the hypothesis/model class before seeing the data,
which seldom reflects scientific practice [5].

f) Other issues/problems. Comparison to Carnap’s confirmation theory [149] and Laplace rule
[150], allowing for continuous model classes, how to incorporate prior knowledge [151, 152], and
others.

Solomonoff’s theory has already been intensively studied in the predictive setting [18, 50, 89, 91, 94]
mostly confirming its power, with the occasional unexpected exception [103]. Important open questions
are:

g) Prediction of selected bits. Consider a very simple and special case of problem 5.i, a binary
sequence that coincides at even times with the preceding (odd) bit, but is otherwise incomputable.
Every child will quickly realize that the even bits coincide with the preceding odd bit, and after
a while perfectly predict the even bits, given the past bits. The incomputability of the sequence
is no hindrance. It is unknown whether Solomonoff works or fails in this situation. I expect that
a solution of this special case will lead to general useful insights and advance this theory (cf.
problem 5.i).

h) Identification of “natural” Turing machines. In order to pin down the additive/multiplicative
constants that plague most results in AIT, it would be highly desirable to identify a class of “nat-
ural” UTMs/USMs which have a variety of favorable properties. A more moderate approach may
be to consider classes Ci of universal Turing machines (UTM) or universal semimeasures (USM)
satisfying certain properties Pi and showing that the intersection ∩iCi is not empty. Indeed, very
occasionally results in AIT only hold for particular (subclasses of) UTMs [153]. A grander vision
is to find the single “best” UTM or USM [154] (a remarkable approach).

i) Martin-Löf convergence. Quite unexpectedly, a loophole in the proof of Martin-Löf (M.L.) con-
vergence ofM to µ in the literature has been found [101]. In [102] it has been shown that this loop-
hole cannot be fixed, since M.L.-convergence actually can fail. The construction of non-universal
(semi)measures D and W that M.L. converge to µ [103] partially rescued the situation. The major
problem left open is the convergence rate for W M.L.−→µ. The current bound for DM.L.−→µ is double
exponentially worse than for M w.p.1−→µ. It is also unknown whether convergence in ratio holds. Fi-
nally, there could still exist universal semimeasuresM (dominating all enumerable semimeasures)
for which M.L.-convergence holds. In case they exist, they probably have particularly interesting
additional structure and properties.



Algorithms 2009, 2 890

j) Generalized mixtures and convergence concepts. Another interesting and potentially fruitful
approach to the above convergence problem is to consider other classes of semimeasuresM [63,
66, 86], define mixtures ξ overM, and (possibly) generalized randomness concepts by using this
ξ to define a generalized notion of randomness. Using this approach, in [87] it has been shown
that convergence holds for a subclass of Bernoulli distributions if the class is dense, but fails if the
class is gappy, showing that a denseness characterization ofM could be promising in general. See
also [155, 156].

k) Lower convergence bounds and defect of M . One can show that M(x̄t|x<t) ≥ 2−K(t), i.e.
the probability of making a wrong prediction x̄t converges to zero slower than any computable
summable function. This shows that, although M converges rapidly to µ in a cumulative sense,
occasionally, namely for simply describable t, the prediction quality is poor. An easy way to show
the lower bound is to exploit the semimeasure defect of M . Do similar lower bounds hold for a
proper (Solomonoff) normalized measure Mnorm? I conjecture the answer is yes, i.e. the lower
bound is not a semimeasure artifact, but “real”.

l) Using AIXI for prediction. Since AIXI is a unification of sequential decision theory with the
idea of universal probability one may think that the AIXI model for a sequence prediction problem
exactly reduces to Solomonoff’s universal sequence prediction scheme. Unfortunately this is not
the case. For one reason, M is only a probability distribution on the inputs but not on the outputs.
This is also one of the origins of the difficulty of proving general value bounds for AIXI. The
questions is whether, nevertheless, AIXI predicts sequences as well as Solomonoff’s scheme. A
first weak bound in a very restricted setting has been proven in [27, Sec.6.2], showing that progress
in this question is possible.

The most important open, but unfortunately likely also the hardest, problem is the formal identification
of natural universal (Turing) machines (h). A proper solution would eliminate one of the two most
important critiques of the whole field of AIT. Item (l) is an important question for universal AI.

5. Open Problems regarding Optimality of AIXI

AIXI has been shown to be Pareto-optimal and a variant of AIXI to be self-optimizing [137]. These
are important results supporting the claim that AIXI is universally optimal. More results can be found in
[27]. Unlike the induction case, the results are not strong enough to alley all doubts. Indeed, the major
problem is not to prove optimality but to come up with a sufficiently strong but still satisfiable optimality
notion in the reinforcement learning case. The following items list four potential approaches towards a
solution:

a) What is meant by universal optimality? A “learner” (like AIXI) may converge to the optimal
informed decision maker (like AIµ) in several senses. Possibly relevant concepts from statistics
are, consistency, self-tuningness, self-optimizingness, efficiency, unbiasedness, asymptotically or
finite convergence [109], Pareto-optimality, and some more defined in [27]. Some concepts are
stronger than necessary, others are weaker than desirable but suitable to start with. It is necessary
to investigate in more breadth which properties the AIXI model satisfies.



Algorithms 2009, 2 891

b) Limited environmental classes. The problem of defining and proving general value bounds be-
comes more feasible by considering, in a first step, restricted concept classes. One could analyze
AIXI for known classes (like Markov or factorizable environments) and especially for the new
classes (forgetful, relevant, asymptotically learnable, farsighted, uniform, and (pseudo-)passive)
defined in [27].

c) Generaliztion of AIXI to general Bayes mixtures. Alternatively one can generalize AIXI to
AIξ, where ξ(·)=

∑
ν∈Mwνν(·) is a general Bayes-mixture of distributions ν in some classM and

prior wν . IfM is the multi-set of all enumerable semi-measures, then AIξ coincides with AIXI. If
M is the (multi)set of passive semi-computable environments, then AIXI reduces to Solomonoff’s
optimal predictor [18]. The key is not to prove absolute results for specific problem classes, but
to prove relative results of the form “if there exists a policy with certain desirable properties, then
AIξ also possesses these desirable properties”. If there are tasks which cannot be solved by any
policy, AIξ should not be blamed for failing.

d) Intelligence Aspects of AIXI. Intelligence can have many faces. As argued in [27], it is plausible
that AIXI possesses all or at least most properties an intelligent rational agent should posses. Some
of the following properties could and should be investigated mathematically: creativity, problem
solving, pattern recognition, classification, learning, induction, deduction, building analogies,
optimization, surviving in an environment, language processing, planning.

Sources of inspiration can be previously proven loss bounds for Solomonoff sequence prediction gener-
alized to unbounded horizon, optimality results from the adaptive control literature, and the asymptotic
self-optimizingness results for the related AIξ model. Value bounds for AIXI are expected to be, in a
sense, weaker than the loss bounds for Solomonoff induction because the problem class covered by AIXI
is much larger than the class of sequence prediction problems.

In the same sense as Gittins’ solution to the bandit problem and Laplace’ rule for Bernoulli sequences,
AIXI may simply be regarded as (Bayes-)optimal by construction. Even when accepting this “easy
way out”, the above questions remain significant: Theorems relating AIXI to AIµ would no longer be
regarded as optimality proofs of AIXI, but just as how much harder it becomes to operate when µ is
unknown, i.e. progress on the items above is simply reinterpreted.

A weaker goal than to prove optimality of AIXI is to ask for reasonable convergence properties:

f) Posterior convergence for unbounded horizon. Convergence ofM to µ holds somewhat surpris-
ingly even for unbounded horizon, which is good news for AIXI. Unfortunately convergence can
be slow, but I expect that convergence is “reasonably” fast for “slowly” growing horizon, which is
important in AIXI. It would be useful to quantify and prove such a result.

g) Reinforcement learning. Although there is no explicit learning algorithm built into the AIXI
model, AIXI is a reinforcement learning system capable of receiving and exploiting rewards. The
system learns by eliminating Turing machines q in the definition of M once they become incon-
sistent with the progressing history. This is similar to Gold-style learning [157]. For Markov envi-
ronments (but not for partially observable environments) there are efficient general reinforcement
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learning algorithms, like TD(λ) and Q learning. One could compare the performance (learning
speed and quality) of AIξ to e.g. TD(λ) and Q learning, extending [52].

h) Posterization. Many properties of Kolmogorov complexity, Solomonoff’s prior, and reinforce-
ment learning algorithms remain valid after “posterization”. With posterization I mean replacing
the total value V1m, the weights wν , the complexity K(ν), the environment ν(or1:m|a1:m), etc.
by their “posteriors” Vkm, wν(aor<k), K(ν|aor<k), ν(ork:m|or<ka1:m), etc, where k is the cur-
rent cycle and m the lifespan of AIXI. Strangely enough for wν chosen as 2−K(ν) it is not true
that wν(aor<k)∼ 2−K(ν|aor<k). If this property were true, weak bounds as the one proven in [27,
Sec.6.2] (which is too weak to be of practical importance) could be boosted to practical bounds
of order 1. Hence, it is highly import to rescue the posterization property in some way. It may be
valid when grouping together essentially equal distributions ν.

i) Relevant and non-computable environments µ. Assume that the observations of AIXI con-
tain irrelevant information, like noise. Irrelevance can formally be defined as being statistically
independent of future observations and rewards, i.e. neither affecting rewards, nor containing in-
formation about future observations. It is easy to see that Solomonoff prediction does not decline
under such noise if it is sampled from a computable distribution. This likely transfers to AIXI.
More interesting is the case, where the irrelevant input is complex. If it is easily separable from
the useful input it should not affect AIXI. One the other hand, even in prediction this problem is
non-trivial, see problem 4.g. How robustly does AIXI deal with complex but irrelevant inputs? A
model that explicitly deals with this situation has been developed in [129, 130].

j) Grain of truth problem [158]. Assume AIXI is used in a multi-agent setup [159] interacting
with other agents. For simplicity I only discuss the case of a single other agent in a competitive
setup, i.e. a two-person zero-sum game situation. We can entangle agents A and B by letting
A observe B’s actions and vice versa. The rewards are provided externally by the rules of the
game. The situation where A is AIXI and B is a perfect minimax player was analyzed in [27,
Sec.6.3]. In multi-agent systems one is mostly interested in a symmetric setup, i.e. B is also an
AIXI. Whereas both AIXIs may be able to learn the game and improve their strategies (to optimal
minimax or more generally Nash equilibrium), this setup violates one of the basic assumptions.
Since AIXI is incomputable, AIXI(B) does not constitute a computable environment for AIXI(A).
More generally, starting with any class of environments M, then µ=̂AIξM seems not to belong
to classM for most (all?) choices ofM. Various results can no longer be applied, since µ 6∈M
when coupling two AIξs. Many questions arise: Are there interesting environmental classes for
which AIξM ∈M or AIξtlM ∈M? Do AIXI(A/B) converge to optimal minimax players? Do
AIXIs perform well in general multi-agent setups?

From the optimality questions above, the first one (a) is the most important, least defined, and likely
hardest one: In which sense can a rational agent in general and AIXI in particular be optimal? The
multi-agent setting adds another layer of difficulty: The grain of truth problem (j) is in my opinion the
most important fundamental problem in game theory and multi-agent systems. Its satisfactory solution
should be worth a Nobel prize or Turing award.
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6. Open Problems regarding Uniqueness of AIXI

As a unification of two optimal theories, it is plausible that AIXI is optimal in the “union” of their
domains, which has been affirmed but not finally settled by the positive results derived so far. In the
absence of a definite answer, one should be open to alternative models, but no convincing competitor
exists to date. Most of the following items describe ideas which, if worked out, might result in alternative
models:

a) Action with expert advice. Expected performance bounds for predictions based on Solomonoff’s
prior exist. Inspired by Solomonoff induction, a dual, currently very popular approach, is “predic-
tion with expert advice” (PEA) [11, 160, 161]. Whereas PEA performs well in any environment,
but only relative to a given set of experts, Solomonoff’s predictor competes with any other pre-
dictor, but only in expectation for environments with computable distribution. It seems philosoph-
ically less compromising to make assumptions on prediction strategies than on the environment,
however weak. PEA has been generalized to active learning [11, 162], but the full reinforcement
learning case is still open [52]. If successful, it could result in a model dual to AIXI, but I expect
the answer to be negative, which on the positive side would show the distinguishedness of AIXI.
Other ad-hoc approaches like [126, 163] are also unlikely to be competitive.

b) Actions as random variables. There may be more than one way for the choice of the generalized
M in the AIXI model. For instance, instead of defining M as in [27] one could treat the agent’s
actions a also as universally distributed random variables and then conditionalize M on a.

c) Structure of AIXI. The algebraic properties and the structure of AIXI has barely been investi-
gated. It is known that the value of AIµ is a linear function in µ and the value of AIXI is a convex
function in µ, but this is neither very deep nor very specific to AIXI. It should be possible to ex-
tract all essentials from AIXI which finally should lead to an axiomatic characterization of AIXI.
The benefit is as in any axiomatic approach: It would clearly exhibit the assumptions, separate
the essentials from technicalities, simplify understanding and, most importantly, guide in finding
proofs.

d) Parameter dependence. The AIXI model depends on a few parameters: the choice of observation
and action spaces O and A, the horizon m, and the universal machine U . So strictly speaking,
AIXI is only (essentially) unique, if it is (essentially) independent of the parameters. I expect this
to be true, but it has not been proven yet. The U -dependence has been discussed in problem 4.h.
Countably infiniteO andAwould provide a rich enough interface for all problems, but even binary
O and A are sufficient by sequentializing complex observations and actions. For special classes
one could choosem→∞ [20]; unfortunately, the universal environmentM does not belong to any
of these special classes. See [27, 32, 164] for some preliminary considerations.

7. Open Problems in Defining Intelligence

A fundamental and long standing difficultly in the field of artificial intelligence is that (generic) intel-
ligence itself is not well defined. It is an anomaly that nowadays most AI researchers avoid discussing
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intelligence, which is caused by several factors: It is a difficult old subject, it is politically charged, it
is not necessary for narrow AI which focusses on specific applications, AI research is done mainly by
computer scientists who mainly care about algorithms rather than philosophical foundations, and the
popular belief that general intelligence is principally unamenable to a mathematical definition. These
reasons explain but only partially justify the low effort in trying to define intelligence.

Assume we had a definition, ideally a formal, objective, non-anthropocentric, and direct method of
measuring intelligence, or at least a very general intelligence-like performance measure that could serve
as an adequate substitute. This would bring the higher goals of the field into tight focus and allow
us to objectively compare different approaches and judge the overall progress. Indeed, formalizing
and rigorously defining a previously vague concept usually constitutes a quantum leap forward in the
field: Cf. set theory, logical reasoning, infinitesimal calculus, energy, temperature, etc. Of course there
is (some) work on defining [165] and testing [166] intelligence (see [32] for a comprehensive list of
references):

The famous Turing test [167–169] involves human interaction, so is unfortunately informal and an-
thropocentric, others are large “messy” collections of existing intelligence tests [170, 171] (“shotgun”
approaches), which are subjective and lack a clear theoretical grounding, and are potentially too narrow.

There are some more elegant solutions based on classical [172] and algorithmic [173] information
theory (“C-Test” [174–176]), the latter closely related to Solomonoff’s [37] “perfect” inductive inference
model. The simple program in [177] reached good IQ scores on some of the more mathematical tests.

One limitation of the C-Test however is that it only deals with compression and (passive) sequence
prediction, while humans or machines face reactive environments where they are able to change the state
of the environment through their actions. AIXI generalizes Solomonoff to reactive environments, which
suggested an extremely general, objective, fundamental, and formal performance measure [56, 178].
This so-called Intelligence Order Relation (IOR) [27] even attracted the popular scientific press [179,
180], but the theory surrounding it has not yet been adequately explored. Here I only describe three
non-technical open problems in defining intelligence.

a) General and specific performance measures. Currently it is only partially understood how the
IOR theoretically compares to the myriad of other tests of intelligence such as conventional IQ
tests or even other performance tests proposed by AI other researchers. Another open question is
whether the IOR might in some sense be too general. One may narrow the IOR to specific classes
of problems [139] and compare how the resulting IOR measures compare to standard performance
measures for each problem class. This could shed light on aspects of the IOR and possibly also
establish connections between seemingly unrelated performance metrics for different classes of
problems.

b) Practical performance measures. A more practically orientated line of investigation would be to
produce a resource bounded version of the IOR like the one in [27, Sec.7], or perhaps some of its
special cases. This would allow one to define a practically implementable performance test, similar
to the way in which the C-Test has been derived from incomputable definitions of compression
using Kt complexity [175]. As there are many subtle kinds of resource bounded complexity [41],
the advantages and disadvantages of each in this context would need to be carefully examined.
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Another possibility is the recent Speed Prior [63] or variants of this approach.

c) Experimental evaluation. Once a computable version of the IOR had been defined, one could
write a computer program that implements it. One could then experimentally explore its character-
istics in a range of different problem spaces. For example, it might be possible to find correlations
with IQ test scores when applied to humans, like has been done with the C-Test [174]. Another
possibility would be to consider more limited domains like classification problems or sequence
prediction problems and to see whether the relative performance of algorithms according to the
IOR agrees with standard performance measures and real world performance.

A comprehensive collection, discussion and comparison of verbal and formal intelligence tests, defini-
tions, and measures can be found in [32].

8. Conclusions

The flavor of the open questions. While most of the key questions about universal sequence prediction
have been solved, many key questions about universal AI remain open to date. The questions in Sec-
tions 4.-7. are centered around the AIT approach to induction and AI, but many require interdisciplinary
working. A more detailed account with technical details can be found in the book [27] and paper [31].
Most questions are amenable to a rigorous mathematical treatment, including the more philosophically
or vaguely sounding ones. Progress on the latter can achieved in the usual way by cycling through (i)

craft or improve mathematical definitions that resemble the intuitive concepts to be studied (e.g. “nat-
ural”, “generalization”, “optimal”), (ii) formulate or adapt a mathematical conjecture resembling the
informal question, (iii) (dis)prove the conjecture. Some questions are about approximating, implement-
ing, and testing various ideas and concepts. Technically, many questions are on (the interface between)
and exploit techniques used in (algorithmic) information theory, machine learning, Bayesian statistics,
(adaptive) control theory, and reinforcement learning.

Feasibility, difficulty, and interestingness of the open questions. I concentrated on questions whose
answers probably help to develop the foundations of universal induction and UAI. Some problems are
very hard, and their satisfactory solution worth a Nobel prize or Turing award, e.g. problem 5.j. I included
those questions that looked promising and interesting at the time of writing this article. In the following
I try to estimate their relative feasibility, difficulty, and interestingness:

• Problems roughly sorted from most important or interesting to least:
5.j,4.h,7.b,5.a,7.c,4.b,4.f,4.l,5.d,5.f,5.i,4.a,4.c,4.d,4.e,4.g,5.c,6.a,6.b,5.g,5.h,4.j,5.b,6.c,7.a,4.i,4.k,6.d.

• Problems roughly sorted from most to least time consuming:
4.b,4.h,5.d,5.j,7.c,4.c,5.b,5.c,6.c,6.a,5.g,5.i,7.b,4.i,4.j,4.l,5.a,6.d,6.b,5.f,5.h,4.d,4.f,4.g,4.k,7.a,4.a,4.e.

• Problems roughly sorted from hard to easy:
4.h,6.c,5.j,4.b,4.i,4.l,5.b,6.a,7.b,4.c,4.g,5.a,5.c,6.b,5.f,5.i,4.j,5.h,7.a,4.d,4.f,4.k,5.d,6.d,7.c,4.a,4.e,5.g.

These rankings hopefully do not mislead but give the interested reader some guidance where (not) to
start. The final paragraphs of this article are devoted to the role UAI plays in the grand goal of AI.
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Other approaches to AI. There are many fields that try to understand the phenomenon of intelligence
and whose insights help in creating intelligent systems: Cognitive psychology and behaviorism [181],
philosophy of mind [182, 183], neuroscience [184], linguistics [185, 186], anthropology [187], machine
learning [59, 188], logic [189, 190], computer science [25, 191], biological evolution [192], and others.
In computer science, most AI research is bottom-up; extending and improving existing or developing
new algorithms and increasing their range of applicability; an interplay between experimentation on
toy problems and theory, with occasional real-world applications. The agent perspective of AI [25]
brings some order and unification in the large variety of problems the fields wants to address, but it
is only a framework rather than a complete theory. In the absence of a perfect (stochastic) model of
the environment, machine learning techniques are needed and employed. Apart from AIXI, there is no
general theory for learning agents. This resulted in an ever increasing number of limited models and
algorithms in the past.

The information-theoretic approach to AI. Solomonoff induction and AIXI are mathematical top-
down approaches. The price for this generality is that the full models are computationally intractable, and
investigations have to be mostly theoretical at this stage. From a different perspective, UAI strictly sep-
arates the conceptual and algorithmic AI questions. Two analogies may help: Von Neumann’s optimal
minimax strategy [58] is a conceptual solution of zero-sum games, but is infeasible for most interesting
zero-sum games. Nevertheless most algorithms are based on approximations of this ideal. In physics,
the quest for a “theory of everything” (TOE) lead to extremely successful unified theories, despite their
computational intractability [23, 24]. The role of UAI in AI should be understood as analogous to the
role of minimax in zero-sum games or of the TOE in physics.

Epilogue. As we have seen, algorithmic information theory offers answers to the following two key
scientific questions: (1) The problem of induction, which is what science itself is mostly about: Induction
≈ finding regularities in data ≈ understanding the world ≈ science. (2) Understanding intelligence, the
key property that distinguishes humans from animals and inanimate things.

This modern mathematical approach to both questions (1) and (2) is quite different to the more tra-
ditional philosophical, logic-based, engineering, psychological, or neurological approaches. Among the
few other mathematical approaches, none captures rational intelligence as completely as the AIXI model
does. Still, a lot of questions remain open. Raising and discussing them was the primary focus of this
article.

Imagine a complete practical solution of the AI problem (by the next generation or so), i.e. systems
that surpass human intelligence. This would transform society more than the industrial revolution two
centuries ago, the computer last century, and the internet this century. Although individually, some
questions I raised seem quite technical and narrow, they derive their significance from their role in a
truly outstanding scientific endeavor. As with most innovations, the social benefit of course depends on
its benevolent use.
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69. Vitányi, P.M.B. Meaningful information. Proc. 13th International Symposium on Algorithms and
Computation (ISAAC’02) 2002, 2518, 588–599.

70. Wallace, C.S.; Boulton, D.M. An information measure for classification. Computer Journal 1968,
11, 185–194.

71. Rissanen, J.J. Modeling by shortest data description. Automatica 1978, 14, 465–471.
72. Rissanen, J.J. Stochastic Complexity in Statistical Inquiry; World Scientific: Singapore, Singapore,

1989.
73. Quinlan, J.R.; Rivest, R.L. Inferring decision trees using the minimum description length principle.

Information and Computation 1989, 80, 227–248.
74. Gao, Q.; Li, M. The minimum description length principle and its application to online learning of

handprinted characters. In Proc. 11th International Joint Conf. on Artificial Intelligence. Detroit,
MI, USA, 1989; pp. 843–848.

75. Milosavljevic̀, A.; Jurka, J. Discovery by minimal length encoding: A case study in molecular
evolution. Machine Learning 1993, 12, 96–87.

76. Pednault, E.P.D. Some experiments in applying inductive inference principles to surface recon-
struction. In Proc. 11th International Joint Conf. on Artificial Intelligence. San Mateo, CA, USA,
1989; Morgan Kaufmann: San Francisco, CA, USA; pp. 1603–1609.

77. Grünwald, P.D. The Minimum Description Length Principle; The MIT Press: Cambridge, MA,
USA 2007.
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