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Abstract: A cascade correlation learning architecture has been devised for the first time for 

radial basis function processing units. The proposed algorithm was evaluated with two 

synthetic data sets and two chemical data sets by comparison with six other standard 

classifiers. The ability to detect a novel class and an imbalanced class were demonstrated 

with synthetic data.  In the chemical data sets, the growth regions of Italian olive oils were 

identified by their fatty acid profiles; mass spectra of polychlorobiphenyl compounds were 

classified by chlorine number. The prediction results by bootstrap Latin partition indicate 

that the proposed neural network is useful for pattern recognition. 

Keywords: cascade correlation; radial basis function; artificial neural networks; bootstrap 

Latin partition 

 

1. Introduction 

Artificial neural networks (ANNs) are widely used pattern recognition tools in chemometrics. The 

most commonly used neural network for chemists is the back-propagation neural network (BNN). The 

BNN is a feed forward neural network, usually trained by error back-propagation [1, 2]. BNNs have 

been applied to a broad range of chemical applications. Recent analytical applications of BNNs in 

fields such as differential mobility spectrometry [3] and near infrared spectroscopy [4] have been 

reported in the literature.   

BNNs have been proven a useful type of ANNs in chemometrics. However, BNNs converge slowly 

during training especially when the network contains many hidden neurons. This slow and chaotic 
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convergence is partially caused by the simultaneous adjustments of weights of all hidden neurons 

during the training of BNNs, which is referred to as the “moving target problem”. To avoid this 

problem, a network architecture named cascade correlation network (CCN) was proposed by Fahlman 

and Lebiere [5]. A CCN begins its training with a minimal network, which only has an input layer and 

an output layer. During training, the CCN determines its topology by adding and training one hidden 

neuron at a time, resulting in a multilayer structure. In this training strategy, the moving target problem 

is avoided because only weights of single hidden neuron in the network are allowed to change at any 

time. CCNs have been applied to the prediction of the protein secondary structure [6] and estimation of 

various ion concentrations in river water for water quality monitoring [7]. 

A temperature constrained cascade correlation network (TCCCN) [8], which combines the 

advantages of cascade correlation and computational temperature constraints was devised to provide 

reproducible models. By modifying the sigmoid transfer function, a temperature term is added to 

constrain the length of the weight vector in the hidden transfer function. The temperature is adjusted so 

that the magnitude of the first derivative of the covariance between the output and the residual error is 

maximized. As a result, fast training can be achieved because of the large weight gradient. TCCCNs 

have been successfully applied to many areas in analytical chemistry, such as identification of toxic 

industrial chemicals by their ion mobility spectra [9], classification of official and unofficial rhubarb 

samples based on their infrared reflectance spectrometry [10], and prediction of substructure and 

toxicity of pesticides from low-resolution mass spectra [11], etc. 

Besides BNNs and CCNs, the radial basis function network (RBFN) is another important type of 

neural network. A RBFN is a three-layered feed forward network, which applies a radial basis function 

(RBF) as its hidden layer transfer function. The most commonly applied RBF is the Gaussian function.  

The determination of the number, centroids and radii of hidden units of RBFN can be achieved by 

different ways, such as random generation, clustering, and genetic algorithms. The RBFN can also be 

trained by back-propagation. Wan and Harrington developed a type of RBFN that is a self-configuring 

radial basis function network (SCRBFN) [12]. In a SCRBFN, a linear averaging (LA) clustering 

algorithm is applied to determine the parameters of the hidden units. Class memberships of the training 

objects are used during clustering in the LA algorithm.   

Recently, many novel supervised learning methods have gained increasing popularity, such as the 

support vector machine (SVM) and Random Forest (RF). The SVM was introduced by Vapnik [13]. 

The SVM first maps the training data into high dimension feature space by using kernel functions. An 

optimal linear decision hyperplane is determined by maximizing the margin between the objects of two 

classes. The RF method was developed by Breiman [14]. It is derived from the decision trees 

algorithm. During the RF training, many decision trees were trained by the ensemble learning 

techniques.  The classification result is then calculated by voting from all the trees built. 

A radial basis function cascade correlation network (RBFCCN) that combines the advantages of 

CCNs and RBFNs was devised in the present work. The RBFCCN benefits from the RBF as the 

hidden transfer function instead of the commonly used sigmoid logistic function.  The RBFCCN also 

has a cascade-correlation structure. The network performance was tested using both synthetic and 

actual chemical data sets. The partial least squares-discriminant analysis (PLS-DA) was also tested as 

the standard reference method. The theory of the PLS-DA can be found in the literature [15, 16].  

Comparisons were made with the BNN, RBFN, SCRBFN, PLS-DA, SVM, and RF method. Two 
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synthetic data sets, which are detection of a novel class data set and imbalanced data set, and two 

chemical data sets, which are Italian olive oil data set and polychlorobiphenyl (PCB) data set were 

evaluated.  The bootstrap Latin partitions (BLPs) [17] validation method was used in this study. 

2. Theory 

The network architectures of a RBFN and a RBFCCN are given in Figures 1 and 2, respectively. By 

applying the cascade correlation algorithm, the RBFCCN has a different network topology compared 

with conventional RBFNs. In RBFCCNs, the transfer function applied in the hidden neuron is the 

Gaussian function. Unlike a RBFN that usually has only one hidden layer, the RBFCCN has a multi-

layered structure. Each hidden layer contains only one neuron. In RBFCCNs, the kth hidden neuron is 

connected with k + l - 1 inputs, where l denotes the number of input neurons. The output of the ith 

object from the kth hidden neuron oik is given by: 
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for which gk is the notation of the Gaussian function; xik is the input vector; xikp is the corresponding 

pth element of xik. The µkp term denotes the pth element of centroid µk, and σk denotes the kth radius. 

The oik term will depend on two factors: the Euclidean distance between the sample and the centroid 

and the radius. In the cascade-correlation training architecture, the hidden units are added and trained 

sequentially during training.  

Figure 1. Network architecture of a RBFN. This network has three input neurons, two 

hidden neurons, and two output neurons. 
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Figure 2. Network architecture of a RBFCCN. This network has three input neurons, two 

hidden neurons, and two output neurons. 

 
The training process of a RBFCCN includes the following steps: 

1. Initialize the network. 

2. Add a hidden neuron to the network.  Initialize this hidden neuron by setting initial values of µk 

and σk of the Gaussian function. 

3. Train the hidden neuron.  Determine the values of µk and σk. 

4. Train the weights Wk in the output layer. 

5. Repeat step 2 to step 4 until a given error threshold is achieved or a given number of hidden 

units were added. 

2.1. Initialize the RBFCCN 

The RBFCCN initialization is given in Figure 3. RBFCCN begins its training with a minimal 

network, which only has an input layer and an output layer. The number of input neurons l is equal to 

the number of variables of the data set. The number of output neurons n is equal to the number of 

classes in the training set.  The neurons in the output layer are linear.   

In this work, binary coding is used to determine the training target value. Each class has a 

corresponding binary sequence of unity or zero in which an element of unity indicates the identity of 

the object’s class membership. For example, the output vector for objects belonging to the second class 

in a training set of four classes will be encoded (0, 1, 0, 0) as the training target value, i.e., the desired 

output vector of the trained network model is (0, 1, 0, 0). 
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Figure 3. Network initialization of a RBFCCN. This network has three input neurons and 

two output neurons. 

 
 

2.2. Add and initialize a hidden neuron  

Figures 4 and 5 demonstrate adding the first and second hidden neurons to the RBFCCN, 

respectively. Unlike the CCN that adds and trains a pool of candidate neurons, the RBFCCN adds and 

trains only one hidden neuron at a time because the initialization method applied in the RBFCCN is 

deterministic.  

The trained neuron of the RBFCCN is unique. Once the kth hidden neuron is added to the 

RBFCCN, the centroid µk is initialized with the mean vector of the target objects, and the initial radius 

σk is given by the mean of the standard deviations of the target objects.  The target objects of the kth 

hidden neuron are training objects from tkth training class. When k ≤ n, for which n denotes the number 

of training classes, tk = k. When k > n, tk is the class that contains the maximum total residual error 

among all training classes. According to the central limit theorem, it is assumed that all the objects 

from the same class tend to be normally distributed in the input space. The Gaussian function will 

represent a class of objects in the input space in this case. The initial hidden units represent clusters of 

the training data just as LA clustering does. This initialization method has advantages over the random 

initialization method in that the value is fixed so it will converge faster. 
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Figure 4. Adding first hidden neurons into a RBFCCN. This network has three input 

neurons, one hidden neuron and two output neurons. The neurons and connections being 

trained are marked in red. µ1, σ1 and W1 are parameters to be trained.   

  
 

Figure 5. Adding second hidden neurons into a RBFCCN. This network has three input 

neurons, two hidden neurons and two output neurons. The neurons and connections being 

trained are marked in red.  µ2, σ2 and W2 are parameters to be trained.   
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2.3. Train the hidden neuron  

The training strategy of the hidden neuron is adopted from that of the CCN.  After initialization, the 

centroids µk and radii σk are trained by maximizing the covariance between the output and the target 

value of a hidden unit by appropriate optimization algorithms.  The covariance Ck from the kth hidden 

unit is given by: 

  ik

m

i
kikk yooC 




1

   (2) 

for which oik is the output of the ith observation and the kth hidden neuron; yik is the corresponding 

target value; m is the total number of training objects. Once a hidden neuron is trained, the centroid 

and radius of it will remain unchanged for the rest of the network training process. 

Instead of using all training objects as target values, only objects in the tkth training class are 

selected as the target value for the training of the hidden neurons, for which tk is the target class 

membership used in initializing kth hidden neuron. As a result, the target value yik of the ith object and 

the kth hidden neuron is given by: 
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where ci is the class membership of the ith training object.   

2.4. Train the weights in the output layer 

The weights in the output layer are recalculated and stored after each hidden neuron is added and 

trained. As the case in TCCCNs, the input units do not connect to the output units directly. The 

predicted value k̂  of the network with kth hidden neurons is calculated by the product of the output 

matrix Ok and the weight matrix Wk, which is given by 

kkk Wˆ          (4)

for which Ok is the output matrix for the hidden neurons. The matrix is augmented with a column of 

unity, which allows a bias value to be calculated. Therefore, the output matrix Ok has m rows and k + 1 

columns, for which m denotes the total number of training objects.  The weight matrix Wk stores the 

weight vector of the output layer. The Wk matrix has k + 1 rows and n columns, for which n denotes 

the number of classes of the training object. Singular value decomposition (SVD) is applied to 

determine the values of the weight vectors. The SVD of Ok is given by: 
 kkkk VSU  (5) 

in which Uk and Vk are eigenvectors that respectively span the column and row spaces for the Oj 

matrix, and Sk is the singular value matrix. By using SVD, the pseudoinverse of Ok can be computed 

with 
kkk USV -1 . According to Eq. 4, Wk is given by: 

 kkkk USVW 1       (6) 

for which Y is the target value matrix of the whole training set. 
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2.5. Evaluate the stopping condition of RBFCCN 

The RBFCCN can be trained until a given number of hidden units were added and trained, or a 

given error threshold is achieved. The relative root mean square error of calibration (RRMSEC) was 

used in this work. The RRMSEC is given by: 
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for which m is the total number of training objects, n is the number of classes, yij is the target value for 
the ith object and class j, ijŷ  is the network model output for object i and class j, and jy  is the average 

target value for class j. To have a relative metric, the standard error of calibration is corrected by the 

standard deviation. By applying the RRMSEC thresholds, the experimental results only depend on 

different network topologies. Different training algorithms such as QuickProp, Rprop, and Bayesian 

approach affect the convergence time and achieve equivalent classification accuracies for the training 

sets. 

Figure 6. The RRMSEC with respect to hidden unit number trained by the RBFCCN using 

one training data set from the bootstrapped Latin partition. Magenta line with cross sign 

marker: novel class data set; black line with box marker: imbalanced data set; red line with 

plus sign marker: Italian olive oil data set; blue line with circle marker: PCB data set.  
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Figure 6 shows the RRMSEC with respect to hidden unit number trained by the RBFCCN. The 

RRMSEC thresholds were determined by training a RBFCCN model using one training data set from 

the bootstrapped Latin partition until the RRMSEC is not significantly improved. Once the RRMSEC 

threshold is determined, it is applied to train all the other neural networks. Of course, this method is 

biased in favor of the RBFCCN but it is required so that all the other reference classifiers have the 

same performance. However, the primary goal of this research is to compare the prediction accuracies 
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and the ability of the different classifiers to generalize when trained to similar target values of 

classification accuracies. Because the training methods of the diverse set of classifiers that are used for 

comparison are inherently different, it is important to address that the RRMSEC threshold is only 

applied to train the network models to the same classification accuracy for the training sets.   

2.6. Identify the class membership 

The class membership of an object is determined by its corresponding output vector from the 

network model using the following strategies. When all the outputs are below a given threshold, the 

object is labeled as unknown. The threshold is 0.5 in this study. Otherwise, the class is determined by 

the winner-take-all method, in which the unknown is classified by the index of the maximum element 

in the output vector. The SVM and RF have their own novel class evaluation procedure, which is not 

discussed in this paper. Therefore, the SVM and RF methods were excluded from the novel class 

evaluation. 

2.7. Advantages of RBFCCN 

The RBFCCN offers several advantages. The cascade-correlation architecture has the ability of 

incremental learning. The term incremental learning means that the network builds its topology during 

training by adding and training one hidden unit at a time. The first advantage is that the incremental 

learning ability avoids the moving target problem in the BNN and the network converges rapidly.  

Second, by training to a threshold of residual error, the cascade-correlation architecture does not 

require to determine the amount of hidden units in the network before training. Third, multiple 

networks can be obtained by training only once. These trained networks are networks with hidden 

units ranging from one to the total number of hidden units added to the cascade-correlation network.  

Fourth, by using RBF transfer functions, RBFCCNs are suitable for performing novel class evaluation, 

i.e., the ability to identify unknown data or outliers in a data set. 

3. Experimental section 

3.1. General information 

All calculations were performed on an AMD Athlon XP 3000+ personal computer running 

Microsoft Windows XP SP3 operating system. The programs were in-house scripts written in 

MATLAB version 7.5, except for the analysis of variance (ANOVA), SVM, and RF. ANOVA was 

performed in Microsoft Excel version 12.0. The SVM calculations were performed by the LIBSVM 

software version 2.89 with MATLAB interface [18]. The RF program was obtained from reference 

[19]. The training of RBFCCN was implemented through fminbnd and fminunc functions by their 

default parameters from the optimization toolbox version 3.1.2 of MATLAB. The fminunc function 

uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method with a cubic line search 

procedure. The fminbnd function is based on golden section search and parabolic interpolation 

algorithm. In the RBFCCN, RBFN, and SCRBFN, the weights of the output neurons were updated by 

the SVD algorithm.  The SVD algorithm was implemented by the MATLAB function pinv. All ANNs 

and PLS-DA applied binary coding for determine the classes from the outputs. 
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Instead of training neural networks to achieve the minimum error of an external validation set, all 

the neural networks (the BNNs, SCRBFNs, RBFNs, and RBFCCNs) compared in this work were 

trained to a given RRMSEC in each data set. All the neural networks and PLS-DA applied the binary 

coding method to set the training target value, and the method to identify the class membership stated 

above. The BNNs used in this work consists of three layers:  one input layer, one hidden layer and one 

output layer. The sigmoid neuron was used in the hidden layer, and the output layer was linear. The 

two-stage training method of RBFN was applied. The centroids and radii of RBFN were initialized by 

the K-means clustering, and optimized by back-propagation. The centroid of the kth hidden neuron µk 

was initialized by the mean of the objects in the kth cluster, and the radius of the kth hidden neuron σk 

was initialized by:  

3μμ
3

1

2









 

q
qkk  (8) 

for which µq is the three nearest neighbors of µk. The details of this method are described in reference 

[20]. In the SCRBFNs, the parameter λ in the linear averaging clustering algorithm was adjusted 

gradually to achieve the RRMSEC.   

For the RBFN model, the number of hidden neurons h equals to the number of training classes. For 

the BNN model, h is empirically proposed by: 

 

h =    (9) 

 

for which l denotes the number of variables of the data set, n denotes the number of classes of the 

training object, and round denotes round to the closest integer. Because two synthetic data sets were 

relatively simple in data size that have less variables and classes, h was fixed without further 

evaluations. To demonstrate the numbers of hidden neurons was appropriate, independent tests were 

performed by evaluating BNNs on two chemical data sets with 0.5h and 2h hidden neurons so that the 

network performances can be observed by significantly decreasing or increasing the hidden layer size. 

Table 1 gives the average prediction accuracies of the BNN models of Italian olive oil and the training 

set of the PCB data set. For the Italian olive oil data set, the BNN models with 7 and 14 hidden 

neurons did not significantly differ with respect to prediction accuracy. The BNN models with four 

hidden neurons had too few hidden units to model the data sufficiently. For the PCB dataset, the effect 

of the three different numbers of hidden neurons on the prediction results was not significant. The 

BNNs with extra hidden neurons will not overfit the data if trained to the same RRMSEC. As a result, 

the heuristic equation of h was appropriate. 

n                        (l ≤ n) 

round((l + n)/2) (l > n) 
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Table 1. Average prediction accuracies of the BNN models with 95% confidence intervals 

of Italian olive oil and the training set of the PCB data set. The BNN was trained by 

different number of hidden neurons with 30 BLPs. 

Data set Number of hidden neurons Prediction accuracy 

Olive oil 7 95.5 ± 0.3 

 14 95.9 ± 0.4 

 4 87.7 ± 0.2 

PCB 13 99.9 ± 0.1 

 26 99.9 ± 0.1 

 7 99.9 ± 0.1 

 

To determine the learning rates and momenta of the BNNs and RBFNs, these networks were trained 

by three different sets of learning rates and momenta with BLPs. The number of bootstraps was 30 and 

the number of partitions was two. Table 2 gives the prediction results by the Italian olive oil data set 

and the training set of the PCB data set. The training parameters of the back-propagation networks did 

not significantly affect the comparison of the modeling methods. These sets of learning parameters 

were also trained by the two synthetic data sets and same results were obtained. For each data set, there 

was no statistical difference of the BNN and RBFN prediction results at a 95% confidence interval by 

two-way ANOVA with interaction. Therefore, the learning rates and momenta were fixed respectively 

at 0.001 and 0.5 for all further evaluations.   

Table 2. Average prediction accuracies of the BNN and RBFN models with 95% 

confidence intervals of Italian olive oil and the PCB data sets. The BNN and RBFN were 

trained by three different sets of learning rates and momenta with 30 BLPs. 

Data set Learning rate Momentum BNN RBFN 

Olive oil 0.001 0.5 95.5 ± 0.3 92.0 ± 0.7 

 1 × 10-4 0.5 95.4 ± 0.3 91.9 ± 0.7 

 0.001 0 95.6 ± 0.3 91.5 ± 0.6 

PCB 0.001 0.5 99.9 ± 0.1 92.4 ± 5.5 

 1 × 10-4 0.5 99.5 ± 0.2 90.8 ± 6.3 

 0.001 0 99.9 ± 0.1 94.1 ± 4.8 

 

The PLS-DA was implemented by the non-linear iterative partial least squares (NIPALS) algorithm.  

The number of latent variables was determined by minimizing the root mean squared prediction error 

in each test.  As a result, the PLS-DA was a biased reference method. The numbers of latent variables 

in the PLS-DA models may vary between runs.  

All the SVMs used the Gaussian RBF as their kernel functions. Two SVM parameters:  the cost c 

and the RBF kernel parameter γ must be adjusted before each prediction.  The grid search of parameter 

pairs (c, γ), in which c = 2i, i = -2, -1, 0, …, 20; γ = 2j, j = -10, -9, -8, …, 10, was performed to 

determine their value by achieving the best training accuracies. The defaults of the remaining 



Algorithms 2009, 2                            

 

 

1056

parameters were used. Because the result of the RF algorithm is not sensitive to the parameter selected, 

1,000 trees with the default setting of the number of variables to split on at each node is used in all 

evaluations. 

The BLPs generates precision measures of the classification. Bootstrapping is a method that re-

samples the data. Latin partition is a modified cross-validation method, in which the class distributions 

are maintained at constant proportions among the entire data set and the randomized splits into training 

and prediction sets. After the data set was partitioned during each bootstrap, it was evaluated by all the 

modeling methods in the study. Because bootstrapping runs the evaluation repeatedly, the confidence 

interval of the prediction errors can also be obtained. The number of bootstraps was 30 and the number 

of partitions was two for evaluating all the data sets in this study. The results are reported as prediction 

accuracy, which is the percentage of correctly predicted objects. To determine the classification ability 

of RBFCCN, four data sets were tested, including the novel class data set, imbalanced data set, Italian 

olive oil data set, and the PCB data set. The numbers of variables, objects, and classes of data sets are 

given in Table 3. The modeling parameters of the ANNs, PLS-DA, SVM, and RF method are given in 

Table 4. Similar to the latent variables used in the PLS-DA models, the numbers of hidden neurons 

used to train SCRBFN and RBFCCN models may vary between different runs. Therefore, only typical 

latent variables and numbers of hidden neurons are reported.  

Table 3. The numbers of variables, objects, and classes of the data sets evaluated. 

 Novel class Imbalanced Olive oil PCB 

 Training Test Training Test
BLP 

validation

BLP 

validation 

External 

validation

Variables 2 2 2 2 8 18a 18a 

Objects 400 100 610 10 478 131 154 

Classes 4 1 3 1 6 7 8b 
aThis number is the number of variables after the modulo method of preprocessing. 
bThe PCB congeners that contain 0, 1, 9 and 10 chlorine atoms were considered as one class.  

 

Table 4. The modeling parameters of the ANNs, PLS-DA, SVM, and RF method. Hidden 

units are the number of hidden units in the trained network model. Latent variables are the 

number of latent variables used in the PLS-DA models. The RBF kernel parameter is 

denoted by γ in the SVM method. Mtry is the number of variables to split on at each node 

in the RF method. 

 Modeling parameters Novel class Imbalanced Olive oil PCB 

 RRMSEC threshold 0.02 0.2 0.4 0.1 

BNN Learning rate 0.001 0.001 0.001 0.001 

 Momentum 0.5 0.5 0.5 0.5 

 Hidden units 4 3 7 13 
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Table 4. Cont. 

 Modeling parameters Novel class Imbalanced Olive oil PCB 

RBFN Learning rate 0.001 0.001 0.001 0.001 

 Momentum 0.5 0.5 0.5 0.5 

 Hidden units 4 3 6 7 

SCRBFN Hidden units - 17 ~6 ~20-30

RBFCCN Hidden units 4 3 ~6 ~8 

PLS-DA Latent variables - 2 ~8 ~16-18

SVM Cost - 210 210 213 

 γ - 2-1 1 2-5 

RF Number of trees - 1000 1000 1000 

 Mtry - 1 2 4 

 

3.2. Detection of a novel class using a synthetic data set 

This synthetic data set was designed to test the BNN, RBFN, and RBFCCN abilities to respond to a 

novel class during prediction. The training set comprised two variables and four classes. Each training 

class and the test objects had 100 objects. Each class was normally distributed with means of (0.0, 0.0), 

(40.0, 0.0), (0.0, 40.0), and (40.0, 40.0), respectively, with a standard deviation of 1.5. The test objects 

were distributed about a mean of (20.0, 20.0) with a standard deviation of 1.5. Both networks were 

trained repeatedly 30 times on this data set to obtain statistically reliable results.   

3.3. Synthetic imbalanced data set 

An imbalanced data set is a data set that the numbers of objects are not equal in each class. This 

data set was designed to compare the performances when the data set is highly imbalanced.  This data 

set had two variables.  The training set comprised three normally distributed classes.  Two classes were 

majority classes, which have 300 objects respectively distributed with means of (3.0, 0.0), (-3.0, 0.0) 

and with standard deviations of unity. The other training class was the minority class that has only 10 

objects distributed about a mean of (0.0, 0.0) with a standard deviation of 0.1. The test class had the 

same distribution with the minority training class. The ANNs were trained to the RRMSEC thresholds 

of 0.2. The network performances were evaluated by predicting the minority class in the training set.  

All modeling methods were reconstructed 30 times to obtain statistically reliable results.   

3.4. Italian olive oil data set 

Italian olive oil data were obtained from references [21, 22].  This data set is a well-studied standard 

reference data set. Different source regions of Italian olive oil were classified by the profile of eight 

different fatty acids. To minimize the effect of class imbalance and obtain fair comparison results, 

objects from smaller classes that have less than 50 objects were removed from the evaluation data.  

The number of classes was six. Each variable in the training sets was scaled between 0 and 1. The 
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variables of the test sets in each Latin partition were scaled using the range acquired from the training 

set to obtain unbiased results. The training RRMSEC thresholds were 0.4.   

3.5. PCB data set 

In the PCB data set, PCB congeners with different numbers of chlorine atoms were classified by 

their electron ionization mass spectra. The data set was used previously [8, 12]. The mass spectra were 

obtained from reference [23]. These spectra were split into the training set and the external validation 

set. The PCB congeners in the training set contained 2 to 8 chlorine atoms. Most of the PCB congeners 

have duplicate spectra with variable quality. Among these duplicate spectra, the one with the lowest 

record number was selected as training spectra, because it was the spectrum of highest quality. The 

PCB congeners in the external validation set contained 0 to 10 chlorine atoms. The external validation 

set was built from the remaining duplicate spectra, PCB congeners that have less than 10 objects, and 

27 non-PCB compounds. The congeners that contain 0, 1, 9 and 10 chlorine atoms were uniquely 

different from any of the training classes. The external validation set contained 45 unique spectra.   

Each spectrum was centered by its mean and normalized to unit vector length. The spectra were 

transformed to a unit mass-to-charge ratio scale that ranged from 50 to 550 Th and any peaks outside 

this range were excluded. Because the raw data were underdetermined, i.e., there were more variables 

than objects, the dimensions of PCB data set were further reduced by using the modulo method of 

preprocessing [24, 25]. This compression method is especially effective for mass spectral data. Based 

on the previous study [8] by the principal component analysis (PCA), the divisor value of 18 was 

chosen. The compressed spectra were centered about their mean and normalized to unit vector length.  

The training RRMSEC thresholds were 0.1.   

4. Results and Discussion 

4.1. Detection of a novel class using a synthetic data set 

The bivariate plot of the synthetic data set is given in Figure 7. The response surface of the BNN is 

given in Figure 8.  

RBFN and RBFCCN networks have similar response surfaces that are given in Figure 9. For each 

sampling point, the maximum of the output neurons is plotted. Because of the different shapes and 

properties of the sigmoid function and the Gaussian function, these networks have unique response 

surfaces. The BNN model gave an open, sigmoidal shaped response surface that divides the output 

space into regions that correspond to the four classes. When the BNN model extrapolates outside the 

region defined by the data objects, the response can be larger than unity, which occurs when the output 

units are linear. Alternatively, the RBFCCN and RBFN had a Gaussian shaped response surface that 

has a finite span of the output space, which is closed and compact. The maximum response of 

RBFCCN is unity.  
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Figure 7. Two-variable plot of the synthetic novel class data set. A, B, C, and D denote the 

training sets, and E denotes the test set. The 95% confidence intervals were calculated 

around each training class. 
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Figure 8. The BNN response surface of the synthetic novel class data set. For each 

sampling point, the maximum of the output neurons is plotted.   
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Figure 9. The RBFN and RBFCCN response surface of the synthetic novel class data set. 

For each sampling point, the maximum of the output neurons is plotted. 

 
 

The test set was designed to be uniquely different from the data in the training set. The ideal 

prediction results of these test objects should be no excitation from any of the output neurons, i.e., the 

outputs are (0, 0, 0, 0). 

Figure 10. Average prediction outputs from the test set. BNN, RBFCCN and RBFN 

models were obtained by training each network 30 times. The 95% confidence intervals are 

indicated as the thin lines around the BNN outputs. Different colors represent excitations 

from different output neurons. 
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Figure 10 gives different outputs of the test set with respect to the different models. The outputs of 

RBFCCN and RBFN were the same for all repeats. The trained BNN models have different weights 

between different times of training. Because in most cases one output element was larger than 0.5, the 

BNN models misclassified most of the test objects as one of the training classes. The RBFCCN and 

RBFN models correctly identified all test objects as unknown. Compared to the RBFN models, the 

prediction results of RBFCCN models were closer to the ideal solution, because the outputs from the 

RBFN models spread more widely than the RBFCCN models.  

4.2. Synthetic imbalanced data set  

The bivariate plot of the synthetic imbalanced data set is given in Figure 11. It can be observed that 

objects in two majority classes have larger spans than the minority classes in the input space. The 

predictions of small classes by different ANNs are given in Table 5. The prediction results of the 

SCRBFN and RBFCCN models are better than the prediction results of the BNN and PLS-DA models.  

The RBFCCN, SVM, and RF methods have better predictions among all seven methods. The RBFN 

models have slightly worse prediction result than the three methods above. The trained models of the 

ANNs will have a relatively loose fit to the training set by setting the training error threshold to 0.2. 

The BNN and PLS-DA models trend to first model the majority classes in the prediction class. As a 

result, predictions of minority classes are poor. 

Figure 11. Two-variable plot of the synthetic imbalanced data set.  A (red), B, and C 

denote the training classes. D (green) denotes test class. The 95% confidence intervals 

were calculated around each training class. 
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Table 5. Average numbers of correctly predicted objects with 95% confidence intervals 

from class D in an imbalanced data set by different models. All modeling methods were 

reconstructed 30 times. 

 Total BNN SCRBFN RBFN RBFCCN PLS-DA SVM RF

Correctly 

predicted 
10 0 7 9.1 ± 0.1 10 0 10 10 
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4.3. Italian olive oil data set 

The principal component scores of the Italian olive oil data set are given in Figure 12. From this 

plot, it can be seen that objects in the same classes form clusters, but the confidence intervals are 

overlapped with each other. The prediction accuracies of different ANN models are given in Table 6.  

SVM and RF models have the highest prediction accuracy of 97.9%. The results calculated by the 

BNN and RBFCCN models are better than the results calculated by the SCRBFN and RBFN models.  

The PLS-DA models yield a lower average prediction accuracy of 89.8%.  A two-way ANOVA with 

interaction at a significance level of 0.05 was performed to analyze the sources of variation and 

prediction accuracies. The results of ANOVA are given in Table 7. Different modeling methods, 

different source regions and the interaction between the classifiers show significant differences in 

prediction. The ANOVA results indicate that the methods evaluated have different performances. The 

SVM and RF perform best among the methods evaluated. The RBFCCN and BNN have statistically 

better performance in predicting this data set compared to PLS-DA, RBFN and SCRBFN.  

Figure 12. A principal component score plot for the olive oil data set. Each axis is labeled 

with the percent total variance and the absolute eigenvalue. Each observation of the data 

set was scaled to [0, 1]. The 95% confidence intervals appear as an ellipse around each 

class. The sources regions are:  (A) Calabria; (B) South Apulia; (C) Inland Sardinia; (D) 

East Liguria; (E) West Liguria; (F) Umbria. 
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Table 6. Average numbers of correctly predicted objects with 95% confidence intervals of 

Italian olive oil data set by different modeling methods with 30 BLPs.   

Source regions Total BNN SCRBFN RBFN RBFCCN 

Calabria 56 50.9 ± 0.6 50.3 ± 0.5 52.5 ± 0.6 52.7 ± 0.2 

South Apulia 206 203.8 ± 0.5 199.5 ± 0.6 203.5 ± 0.4 200.1 ± 0.3

Inland Sardin 65 65 58.3 ± 0.3 63.4 ± 0.4 64.2 ± 0.2 

East Liguria 50 38.0 ± 1.0 37.4 ± 0.7 24.4 ± 3.6 35.4 ± 0.7 

West Liguria 50 48.2 ± 0.3 43.3 ± 0.5 47.6 ± 0.8 48.5 ± 0.3 

Umbria 51 50.4 ± 0.4 40.4 ± 0.4 48.7 ± 0.8 50.9 ± 0.1 

Prediction accuracy (%)  95.5 ± 0.3 89.8 ± 0.3 92.0 ± 0.7 94.5 ± 0.2 

Source regions Total PLS-DA SVM RF 

Calabria 56 40.9 ± 0.5 53.6 ± 0.4 53.2 ± 0.4 

South Apulia 206 202.4 ± 0.4 202.5 ± 0.6 203.5 ± 0.7 

Inland Sardin 65 63.7 ± 0.4 65 65 

East Liguria 50 26.7 ± 1.0 47.3 ± 0.4 46.4 ± 0.4 

West Liguria 50 48.4 ± 0.3 48.9 ± 0.4 49.0 ± 0.2 

Umbria 51 47.2 ± 0.6 50.9 ± 0.1 50.9 ± 0.1 

Prediction accuracy (%)  89.8 ± 0.3 97.9 ± 0.2 97.9 ± 0.2 

 

Table 7. ANOVA table of the Italian olive oil data set by different source regions and 

modeling methods. Fcrit is the critical value. 

Source of variation 
Sum of 

squares 

Degrees of 

freedom 
Mean square F Fcrit 

Source regions 4.44 5 0.89 1919.9 2.22 

Modeling methods 0.53 6 8.79 × 10-2 189.8 2.11 

Interaction 2.03 30 6.78 × 10-2 146.5 1.47 

Within 0.56 1218 4.63 × 10-4 

Total 1.49 1259 

 

4.4. PCB data set 

The principal component scores of the PCB data are given in Figure 13. The principal components 

and mean were calculated only from the training set. The training set was labeled with upper case 

letters.  
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Figure 13. A principal component score plot for the PCB data set. The letters with upper 

case represents the training set. The underlined letters with lower case represents the 

external validation set. The external validation set was projected onto the first two 

principal components from the training set. Each axis is labeled with the percent total 

variance and the absolute eigenvalue from the training set. The 95% confidence intervals 

were calculated and given as an ellipse around each class from the training set. The PCB 

congeners are: (A) 2; (B) 3; (C) 4; (D) 5; (E) 6; (F) 7; (G) 8; (H) 9; (i) 10; (j) 1; (k) 0, the 

numbers denotes the number of chlorine atoms in the PCB congeners. 

 
 

The external validation set was projected onto the first two principal components, labeled with 

underlined lower case letters. The external validation scores were more dispersed than the training set.  

A part of the external validation scores were outside of the 95% confidence interval of their class 

because of their low quality. The principal component scores of PCB congeners that contain 0, 1, 9 

and 10 chlorine atoms were uniquely different from the training set. The BLP internal validation for 

the training set alone was first performed. The prediction accuracies of internal validations are given in 

Table 8. The average prediction accuracies of the SVM, RF, RBFCCN, and BNN models were better 

than the average prediction accuracy of the SCRBFN, RBFN, and PLS-DA model. 
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Table 8. Average numbers of correctly predicted spectra with 95% confidence intervals of 

PCB data set by different modeling methods with 30 BLPs.  

Cl number Total BNN SCRBFN RBFN RBFCCN 

2 10 10 8.3 ± 0.5 8.0 ± 0.8 10 

3 12 12 11.1 ± 0.8 11.0 ± 0.7 12 

4 28 28 26.3 ± 1.5 26.1 ± 1.6 28 

5 29 28.9 ± 0.1 27.1 ± 1.5 26.6 ± 1.6 28 

6 24 24 23.3 ± 0.9 22.8 ± 1.4 24 

7 18 18 17.0 ± 1.0 17.1 ± 1.0 18 

8 10 10 9.0 ± 0.7 9.4 ± 0.6 10 

Prediction 

accuracy (%) 
 99.9 ± 0.1 93.2 ± 4.6 92.4 ± 5.5 99.2 

Cl number Total PLS-DA SVM RF 

2 10 9.9 ± 0.1 10 10 

3 12 11.9 ± 0.1 12 11.9 ± 0.1 

4 28 27.5 ± 0.3 28 28 

5 29 26.2 ± 0.5 29 29 

6 24 22.0 ± 0.4 24 24 

7 18 14.8 ± 0.6 18 18 

8 10 10.0 ± 0.1 10 10 

Prediction accuracy (%)  93.3 ± 0.6 100 99.9 ± 0.1 

 

After internal validation, the entire training set was trained and the external validation set was 

predicted repeatedly 30 times. The prediction accuracies of external validation set are given in Table 9. 

The prediction accuracy without unknown is the prediction accuracy calculated by the external 

validation set excluding the congeners that contain 0, 1, 9 and 10 chlorine atoms. The total prediction 

accuracy is the prediction accuracy calculated by the complete external validation set. Because the 

prediction set contained low quality spectra that make the data set more difficult to classify, the result 

is generally worse than BLP validation. The SVM, BNN, and RF method obtained better results than 

other methods. The RBFCCN models yielded average prediction accuracy of 81.7% without unknown, 

which was ranked fifth among all the seven methods. Both the RBFCCN and SCRBFN models 

correctly indentified most of the unknown objects. The BNN and RBFN models were capable of 

classifying the test objects, but they can hardly identify the unknown objects. This result is consistent 

with the result from the synthetic novel class data set. As a result, the BNN and PLS models yielded 

total prediction accuracies lower than 65%. 
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Table 9. Average numbers of correctly predicted spectra with 95% confidence intervals of 

PCB external validation data set. All modeling methods were reconstructed 30 times. The 

prediction accuracy without unknown is the prediction accuracy calculated by the external 

validation set excluding the congeners that contain 0, 1, 9 and 10 chlorine atoms. The total 

prediction accuracy is the prediction accuracy calculated by the complete external 

validation set. 

Cl number Total BNN SCRBFN RBFN RBFCCN

2 13 13 11 12.1 ± 0.1 12 

3 20 17.5 ± 0.4 17 16.6 ± 0.2 16 

4 28 26.8 ± 0.4 19 24.9 ± 0.2 27 

5 21 17.2 ± 0.4 20 15.5 ± 0.4 16 

6 13 11.3 ± 0.3 10 11.0 ± 0.5 7 

7 7 6.7 ± 0.2 5 5.0 ± 0.1 6 

8 7 6 3 4.8 ± 0.4 5 

0,1,9,10 45 0.3 ± 0.4 45 23.5 ± 8.3 43 

Prediction accuracy without unknown (%)  90.4 ± 0.6 78.0 82.4 ± 0.5 81.7 

Total prediction accuracy (%)  64.0 ± 0.5 84.4 73.6 ± 6 85.7 

Cl number Total PLS-DA SVM RF 

2 13 10 13 13 

3 20 14 19 18.6 ± 0.2 

4 28 28 28 26.3 ± 0.2 

5 21 11 17 15.0 ± 0.1 

6 13 8 11 11.1 ± 0.2 

7 7 7 7 5 

8 7 6 6 6 

0,1,9,10 45 0 - - 

Prediction accuracy without unknown (%)  77.1 92.7 87.2 ± 0.4 

Total prediction accuracy (%)  54.5 - - 

 

5. Conclusions 

The proposed RBFCCN network combines the concepts of RBFN and CCN. During the training of 

RBF hidden units, a RBFCCN applies both the initialization technique similar to that of the SCRBFN 

and the optimization technique of CCNs. The cascade correlation algorithm furnishes the incremental 

learning ability of the RBFCCN. The incremental learning ability ensures the RBFCCN automatically 

builds its network topology during training. Before training RBFCCNs, no prior information about 

network topology is required. As a result, training RBFCCNs are more convenient than training BNNs. 

Another advantage of cascade-correlated structure is that it avoids the moving target problem and 

converges more rapidly than the BNNs.   
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RBFCCNs, BNNs, RBFNs, SCRBFNs, PLS-DAs, SVMs and RFs were tested with four data sets. 

The test results were obtained with statistical measurements of confidence intervals. The SVM and RF 

methods proved their excellence over the neural network approaches on these classification problems. 

All three neural networks were generally yielded better performance than PLS-DA in prediction. 

Compared with the RBFN and SCRBFN models in four test data sets, the RBFCCN models generally 

yielded better prediction accuracies. The RBF transfer function applied in RBFCCNs makes 

RBFCCNs a reliable approach for novel class evaluation. RBFCCNs generally yielded better novel 

class evaluation ability compared with RBFNs, BNNs and PLS-DA by setting an output threshold 0.5. 

The RBFCCN is also capable of modeling imbalanced data set. The RBFCCN was statistically shown 

to be a robust and effective classification algorithm for chemometrics, especially in novel class 

evaluation and outlier detection.   

Future work will involve in developing novel training methods to train the networks more rapidly.  

Investigations of different optimization algorithms such as the genetic algorithms and particle swarm 

optimizations to train RBFCCNs are necessary. In addition, it is important to compare RBFCCNs with 

other methods for outlier or novel class evaluation, such as one-class SVM in chemical data sets. 
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