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Abstract: Considerable importance in molecular biophysics is attached to influencing by mu-
tagenesis the specific properties of a protein family. The working hypothesis is that mutating
residues at few selected positions can affect specificity. Statistical analysis of homologue se-
quences can identify putative specificity determining positions (SDPs) and help to shed some
light on the peculiarities underlying their functional role. In this work, we present an ap-
proach to identify such positions inspired by state of the art mutual information-based SDP
prediction methods. The algorithm based on this approach provides a systematic procedure to
point at the relevant physical characteristics of putative SPDs and can investigate the effects
of correlated mutations. The method is tested on two standard benchmarks in the field and
further validated in the context of a biologically interesting problem: the multimerization of
the Intrinsically Fluorescent Proteins (IFP).

Keywords: specificity determining positions; intrinsically fluorescent proteins; mutual infor-
mation.
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1. Introduction

Considerable efforts in current biophysical research are devoted to identifying viable procedures to
engineer mutations in a protein so as to manipulate its properties in desired directions. Most available
methods rely on the assumption that the functional, or structural, specificities among homologs depend
on relatively few crucial residues that are conserved among proteins sharing the same feature. The
problem thus becomes recognizing such residues. The combinatorial number of possible mutations even
in relatively small proteins often makes purely experimental approaches, such as random mutagenesis,
not affordable and it compels to create reliable and efficient computational tools to assist experiments by
predicting which residues are more likely to affect the desired property.

Several in silico approaches for predicting sites with some functional importance in proteins are avail-
able [1]. Some need the sequence and some need the knowledge of both sequence and structure. Of
particular relevance in this context is a family of methods based on information theory, that build upon
the Maximum Likelihood Estimator scheme [2]. These techniques exploit the growing amount of protein
sequence data available for a wide variety of organisms. The general strategy consists in performing a
statistical analysis of a multiple sequence alignment of proteins of a certain family and in relying on the
assumption that since mutations at SDPs change the function of the protein, they are generally conserved
between proteins with the same function, but tend to be distinct for proteins with different functions [3].
The correlation between the presence of a residue at a given position in the alignment and the inclusion
of the protein in a class, identified by a specific function or quaternary structure, is evaluated through the
joint probability Pp(α, i) for the event “amino acid α occurs at position p and the protein belongs to the
ith class”. The figure of merit in the analysis is provided by the average mutual information:

Ip =
N∑

i=1

20∑
α=1

Pp(α, i)ln
Pp(α, i)

Pp(α)P (i)
(1)

The sum over i spans the number of specificity classes and α covers the amino acid set. Pp(α) is the
probability to find residue α at position p and P (i) the probability that a sequence belongs to the ith class.
The definition above establishes a measure of the specificity content of a position in the alignment:
larger values of Ip are expected to indicate more relevant positions in identifying a given subfamily.
Unfortunately, actual values of the probabilities in eq. (1) are not known. They can only be estimated and
the main difference among mutual information-based methods, lies in the choice of the most appropriate
estimator for the joint probability.

In this work, we describe a protocol, called SDPhound, to identify SDPs and analyze the physical
characteristics that may be responsible for their role. The core of the procedure is a prescription for
constructing an estimator of Pp(α, i) that is rather general and rigorous in its probabilistic interpretation.
Once this estimator is available, the specificity content of the different positions can be ranked via the
mutual information. Although the formal structure of the estimator is fixed, variations on the specific
functions used in it make it possible to implement a set of steps that, appropriately combined, allow
to first screen and then characterize putative SDPs. The steps will be described in detail in sections 2.
and 3., a preliminary summary is as follows. The estimator of Pp(α, i) is based on the frequency of
appearance of a residue at a given position in a given alignment. We combine this basic ingredient with
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different smoothing functions that can dress the estimated probability to account for non relevant statis-
tical fluctuations. A reasonable stability of positions ranking with respect to the choice of the smoothing
functions is a good indicator of the robustness of the predictions with respect to, for example, bias due
to the finite size of the aligned set. The structure of the estimator can also be exploited, together with the
concept of substitution classes, to investigate the physical and/or chemical factors responsible for speci-
ficity both by an a priori classification according to some predefined properties and by an automatically
generated partitioning that preserves the mutual information content. The procedure can also be gener-
alized to describe possible pairwise correlation effects among SDPs. The performance of SDPhound is
assessed in three applications, as illustrated in sections 4. and 5. We begin by validating the approach
by comparing its performance to that of a popular alternative scheme due to Kalinina et al. [2] in the
applications they chose as benchmarks [2]. In particular, we investigate positions responsible for specific
features of the Major Intrinsic Protein (MIP) and the bacterial transcription factor LacI families. In both
cases, after verifying that SDPhound performs as well as the more established method in ranking puta-
tive SDPs, we shall refine the analysis by examining the physical characteristics of the positions. This
second step is, to the best of our knowledge, an original feature of SDPhound. We shall further apply the
method to identify a set of mutations able to affect the multimeric state of the Intrinsically Fluorescent
Protein (IFP) family. This is a problem of considerable interest since IFP are extremely important in
molecular biology and biotechnology where they are used in a variety of in vivo visualization techniques
[4–6]. The first discovered member of the family was the Green Fluorescent Protein (GFP) from the
jellyfish Æquorea Victoria (avGFP) [7]. It has been proved that IFP are almost ideal tags for confocal
microscopy and that they can be genetically fused to other proteins and expressed in living cells or or-
ganisms without disturbing their physiology [5]. For this reason, in the last 15 years keen attention was
devoted to the GFP technology, leading to several dozens avGFP mutants with improved photostability
and different optical properties [6]. Moreover, it was recently recognized that homologs of this protein
exist in a variety of different sea animals belonging to Cnidaria and to Bilatera [8, 9]. Although the
average identity within the family is only 40%, all of them share the same tertiary fold. The IFP quater-
nary structure is particularly interesting: the wild-type (WT) proteins exist in nature as tetramers, dimers
or, rarely, monomers. A clear characterization of the biological role of multimerization for the IFP is
lacking. In Molecular Biology applications, however, the monomeric form is desirable in order to pro-
duce small fluorescent probes that can easily be transfected into a cell. More than a hundred fluorescent
proteins (WT, homologs and mutants) are known and their structural properties are intensively studied
and relatively well understood. These proteins therefore are very well suited to be studied with statistical
techniques for the design of mutants with specific properties. In this work, we specialize our method to
analyze the positions responsible for transforming a multimeric fluorescent protein in a monomeric one.
We also look for mutations able to split a tetramer in two dimers. The predicted mutations compare well
with those already recognized as effective by random mutagenesis. Furthermore, a new position, de-
serving experimental verification, is indicated and independently validated via the MMPBSA technique
[10]. After the discussion of the results for the IFP family, conclusions and acknowledgements close the
paper.
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2. Approach

In the following, we summarize the sequence of steps performed in a typical application of SDPhound,
while the precise definition of the various theoretical quantities associated with these steps is postponed
to the next section. As stated in the introduction, the ultimate goal of the algorithm we propose is to rank
putative specificity determining positions based on their mutual information score. To that end, prior
to the application of the SDPhound protocol, a set of homologous proteins selected from the literature
or public databases is divided into classes whose members share similar specificity. These homologs
undergo multiple alignment and the alignment is then used as an external input in the software imple-
mentation of SDPhound to determine the mutual information content of each position. Calculating the
mutual information requires to define an estimator for the joint probability in eq. (1). We introduce dif-
ferent realizations of a general prescription for the structure of such probability. This prescription, which
contains no tunable parameters, can refer to single positions of the alignment, or consider pairwise cor-
relation among them. The probability estimator can weigh the frequencies of occurrence of amino-acids
at given positions in any class by using a scheme that employs BLOSUM substitution matrices [11] (see
next section for details). This accounts for the presence of “similar” amino acids and it mitigates the
effects of finite size of the available statistical sample and of background similarity of homologs on the
frequency-based probability estimation. To further refine the assessment of the statistical significance
of ranking, a well known problem for any mutual-information method [12], we use a Z-score criterion
described at the end of next section.

Once the most interesting positions are selected, the focus is shifted on identifying the relevant phys-
ical characteristics associated with them. To this aim, the concept of residue substitution classes [13]
is introduced by grouping the various amino acids in sets, “pigeonholes”, identified on the basis of
some predetermined properties (e. g. hydrophobicity, charge, size). High ranking positions in these
“observable”-based runs are expected to be sensitive to the corresponding property, rather than to residue
identity. Furthermore, to explore new properties that were not considered by the manual assignment to
the pigeonholes, an automated procedure that maximizes the mutual information content of the high
ranking positions with respect to pigeonhole content is outlined. As it is shown in the Supplementary
Information (SI), the software implementation of our method, SDPhound, automatically provides a pic-
torial representation of the results, which are reported in the form of Microsoft Excel worksheets and
html pages. The MATLAB code for SDPhound is available at http://homepage.sns.it/∼rocchia/

3. Methods

3.1. The estimator for the probability

The key step in setting up the mutual information for a given problem is the definition of the joint
probability for the events whose correlation one is trying to establish. In this section, we introduce one
such probability so as to make more rigorous the prescription given by Kalinina and co-workers [2]
while retaining the single amino acid substitution scheme they advocate. Moreover, we generalize the
joint probability in two ways: (1) by considering concerted substitutions of more than one amino acid at
a time; (2) by introducing substitution classes (“pigeonholes”) that correspond to specific properties of
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the amino acids and inferring from the presence of a residue belonging to a given pigeonhole at a given
position the physical properties conferring specificity.

3.2. Probability estimator for ranking of individual positions

The estimator of the the joint probability in eq. (1) is defined as

Pp(α, i) ≈ P̃p(α, i) ,
24∑

β=1

fp(β, i)m(β → α), α = 1..20 (2)

The equation above can be read as follows: the total probability to find amino acid α at position p is
given by the probability, approximated by fp(β, i), to find an amino acid β at that position times the
probability, m(β → α), that α substitutes β. Such a function thus describes the event “a given amino
acid, α, or a similar one, β, occurs at position p and the protein belongs to class i”. The sum extends to
24 due to the possible presence in the alignment of non standard symbols such as B, Z, X, and of the gap
symbol “−”. In our applications, the symbols B, Z, and X are included in the definition of the probability
above but they are left out of the space of the events since they bring in redundant information (i.e. we
are only including mutually exclusive events).

In actual calculations, fp(β, i) is the relative frequency of occurrence of β in position p of a protein
belonging to class i. Bias of the overall alignment can be treated via a weighing procedure as suggested
in [15]. The substitution probability m(β → α) is introduced with the intent to smooth the bare relative
frequency of occurrence of amino acid α at position p by taking into account residue substitutions oc-
curring at that position weighted according to their similarity. This quantity can be defined in different
ways. A natural choice, given its interpretation, is

m(β → α) =
qβ,α∑
λ qβ,λ

(3)

qβ,α is closely related, in a sense that will be clear shortly, to the Clustered Target Frequencies matrix
provided by the Blocks WWW Server, created by S. Henikoff. It represents the probability of occurrence
of two amino acids α and β in the same column of a prototypical block alignment [11]. The importance
of a smoothing scheme has been recognized and used in the past, most notably in SDPpred, the approach
that we choose to benchmark the performance of our method. In this previous work, however, the
substitution matrix is used in the log odds form and contains an ad hoc parameter [2]. Our suggestion is
parameter free and enables the right hand side of eq. 3 to be interpreted as an actual probability. Gaps,
“amino acid” number 24 in the sum above, are treated according to the following prescriptions: a column
in the alignment is neglected if more than 30% of its constituents are gaps. In the remaining cases, gaps
are considered as an additional amino acid with substitution probabilities obtained by suitably enlarging
and rescaling qβ,α. Namely, one row and column are added to this matrix, in such a way that the,
fictitious, substitution probabilities toward gaps are proportional to the overall percentage of gaps in the
alignment. Values of the substitution probability are determined accounting for the individual propensity
(or resistance) of each amino acid to mutate, which is represented by the diagonal elements of the qβ,α

matrix. Finally, the extended matrix thus obtained is suitably normalized. We preferred this approach
to alternatives in the literature, where, for instance, m(gap → gap) = 1 and m(gap → α) = m(α →

http://blocks.fhcrc.org/
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gap) = 0 ∀α, since in this latter case the “gapped” positions present spuriously high levels of mutual
information. Note that the above prescriptions ensure that:

∑
i

20,24∑
α=1

P̃p(α, i) = 1 (4)

(i.e. the probability to find any amino acid, or a gap, at a given position is one, as it should). Note also
that, if we assume:

m(α → β) = δαβ (5)

the unsmoothened probability estimation P̃p(α, i) = fp(α, i) is recovered. In section 5. we will show
the effects of different choices for m(α → β) on our system by employing the identity matrix and the
BLOSUM45, BLOSUM62 matrices. These last two matrices are often used in the literature. In addition
to these choices, we also introduced a ”local” BLOSUM matrix, called Bloc, whose elements are the qα,β

relative to the specific alignment that is being examined. In the presence of an alignment constructed
from a sufficiently numerous family, this matrix may keep into account the family’s peculiarities better
than the non specialized BLOSUMs.

3.3. Probability estimator for ranking of correlated positions

Considering correlated mutations of pairs of residues at different positions involves a straightforward
generalization of the scheme described above. It is in fact sufficient to replace the event “amino acid α

occurs at position p” with “amino acid α occurs at position p and amino acid β occurs at position q”.
Eq. (2) then becomes

Ppq(α, β, i) ≈ P̃pq(α, β, i) ,
∑

γ,δ

fpq(γ, δ, i)m(2)[(γ, δ) → (α, β)] (6)

and the mutual information related to the pair position {p, q} can be calculated as

I(2)
pq =

N∑
i=1

20,24∑
α=1

20,24∑

β=1

P̃pq(α, β, i)ln
P̃pq(α, β, i)

P̃pq(α, β)f(i)
(7)

To reduce the impact of marginal mutual information contributions to the pair position score, we
maximize the following expression:

I(2)
pq − Ip − Iq. (8)

This definition is very closely related to the one of the “triple mutual information” [16] or “mutual
interaction” [17].

We then define the “pair substitution probability” as:

m(2)[(γ, δ) → (α, β)] = m(γ → α)m(δ → β) (9)

This choice, beside being the simplest, can be justified as follows: the joint probability of finding residue
α at position p and residue β at position q in group i can be written as

Ppq(α, β, i) = Pp(α)Pq((β, i)|αp) (10)
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As shown in Table 5, different choices of the substitution matrix lead to similar performances, pointing
to a good stability of the scheme. We believe that the (slightly) better performance of the Identity
matrix is due to the presence in the set of several point mutants at some promising positions. This
enrichment of local amino acid distribution brings a level of detail that can be better seized by a sharper
discrimination between the different amino acids. Position 147 is assigned a star since it has been
identified in experiments, but it can lead to non-fluorescent proteins [27, 30] and so it deserves a special
classification. In Table 5 we also compared SDPhound results with those obtained by the SDPpred Web
Server [2] using the same alignment and under the same conditions of shuffle number and of percentage
of gaps exclusion. SDPpred returns a slightly lower number of hits and predicts only 9 of its positions
to be statistically significant. Differences could arise from the different probability smoothing procedure
and from the removal of background correlation, which does not seem to improve the results when
performed on our set (see Sect. 4. of SI). The last row in the table reports how many of the 33 positions
that are known to affect the aggregation state ranked higher than 33 in the various runs. As it can be seen
from the Table, all runs succeed in pointing out the majority of the relevant positions with only minor
fluctuations in the quality of the results.

Table 6. Substitution class based runs over SPDs relevant for multimerization in IFPs family.
Ranking and colors as in Table 2.

Pos. 117 83 194 164 192 156 223 175 153 5
hyd 4 − 1 8 2 3 22 7 15 −
crg 3 − 5 1 8 − 4 − 2 7
size 1 − 2 3 5 4 19 11 − 21

Pos. 177 224 124 162 147 4 174 72 8 44
hyd − 11 − − 34 − − − − 6
crg − − − 19 37 − 6 12 − −
size 9 7 18 − 13 12 16 − − 15

Looking for primary physical features

Having established a preliminary ranking of the putative SDPs, we address the question of identify-
ing the relevant physical property/ies at each position, by means of the pigeonholing procedure devised
above. Based on the results of the previous runs, and in order to give a more clear-cut meaning to
the pigeonholes, we again chose the Identity matrix in the definition of the substitution probability, see
eq. (14). In Table 6 we traced the 20 best ranking positions found in the Id column of Table 5 to investi-
gate whether they were high ranked in one or more of those “per physical observable” based runs. Let us
review the most significant results. Overall, pigeonholing in the IFP case once again picks many SPDs
experimentally known to be relevant for the monomerization of IFPs; moreover, as will be clear in the
following, such procedure once again offers valuable insight into the physical properties underlying the

http://math.belozersky.msu.ru/
http://math.belozersky.msu.ru/


Algorithms 2009, 2 783

role of SDPs, with no other input but the sequence alignment. Hydrophobicity is important for positions
194, 192 and 156. It is apparent that nonpolar residues located at an interface can favor multimerization
by decreasing the desolvation penalty of the external surface of the protein; this is the case for F194K
or Y194K mutations. Charge is relevant for positions 164, 153, 117, and 223; in particular, mutations
such as A164R or Y164R can introduce an electrostatic repulsion between monomers that prevents their
aggregation. Steric hindrance can be a third cause for the decrease of the rate of binding between single
units and the pigeonholing procedure spots positions 117, 194 and 164. It is worth noting that different
physical features can be relevant for the same SDP, as is the case with positions 117, 194 and 164, thus
restricting the possible identities of the corresponding residues. A164R mutation can, for instance, dis-
rupt the hydrophobic packing of residues on the surfaces of monomers within a tetramer. In some cases,
such as 83 and 8, none of the selected physical properties exhibits a significant score. This suggests that
none of the partitionings is able to capture the peculiarity relevant in those last cases and it prompts to
find alternatives to an a priori definition of the characteristics of the pigeonholes. With that in mind,
the “optimal automatic pigeonholing” described in section 3.4. was used to generate new substitution
classes. We applied it to the set of 92 sequences analyzed in subsection 5.2., setting the number of bins
to 5, aiming to maximize the average mutual information of the 10 best ranking positions, regardless of
which they are. The method provided a clear-cut partitioning only for some amino acids, as shown in
Figure 3, more information on the run can be found in the caption. The obtained partitioning corresponds
partially to the traditional amino acid groupings, such as the Taylor’s Venn Diagrams [31]. In particular,
ARG and LYS residues are grouped together and the individuality of CYS is revealed. Differences in
partitionings, however, would not be new and have already been discussed [13]. Since we maximized
the average information content of the 10 best ranking positions, the classes we sketch represent the
intermingling of individual amino acid peculiarities that are relevant to the monomerization propensity
of IFP; our procedure can also be utilized to focus on the properties of one single position at a time.

Figure 3. Results of the “automatic pigeonholing” procedure. The process reduces the al-
phabet from 20, ignoring the gaps, to 5 symbols (the rows in the table) while maximizing the
average mutual information of the 10 best ranking positions. Interestingly, the corresponding
reduction in the average information content is remarkably small: from 0.421 to 0.407. The
space of possible partitionings was explored with 2.0 106 iterations. The table summarizes
the results of the best 5% of amino acid partitionings: for each the percentage frequency of
occupation for each class is shown. Colored residues have been unambiguously assigned,
whereas the remaining ones show a more complex pattern of correlation.
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Table 7. SDPs inferred from 66 Di- and Tetrameric DsRed homologs. The Table shows the
24 best ranking SDPs. Scores discriminate experimentally validated positions(∗) from those
responsible for generic multimerization(†) and those beneficial or even specific to the dimer-
to-tetramer step(‡), according to [27]. Positions with different scores are colored differently
to facilitate reading.

B45 S B62 S Id S Bloc S SDPpred S
24 16 22 20 221

1 124 * 124 * 127 ‡ 124 * 127 ‡
2 127 ‡ 127 ‡ 153 * 172 124 *
3 156 * 172 125 ‡ 127 ‡ 172
4 172 158 172 156 * 153 *
5 21 † 156 * 124 * 21 † 114
6 158 21 † 114 114 217 †
7 114 6 † 6 † 180 † 125 ‡
8 6 † 114 158 6 † 154
9 44 † 181 156 * 160 † 156 *

10 225 * 211 154 158 76
11 181 64 225 * 62 118
12 146 87 176 170 167
13 211 225 * 217 † 4 158
14 64 44 † 209 211 21 †
15 87 146 39 36 87
16 160 168 168 94 45
17 192 * 180 † 45 202 39
18 47 47 21 † 154 82
19 170 192 * 208 175 * 155
20 45 39 162 * 168 181
21 107 4 163 † 192 * 62
22 117 † 170 118 64 209
23 147 160 180 † 209 163 †
24 4 202 167 225 * 176

Pairwise correlation

As a final step in the analysis of the SDPs responsible for IFP monomerization, we investigated
possible cooperative effects among different positions. This was done as described in 3.2. and using the
Identity substitution matrix. The time required to perform runs for correlated effects with any BLOSUM-
based similarity matrix is one order of magnitude larger than that needed when using the Identity. A
pictorial representation of the symmetric correlation matrix is provided in the SI, a detailed listing of
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relevant pairs of positions id given in Figure 2 of SI; it is worth mentioning that an already known
position, namely 177, as well as two “new” ones, 135 and 81, appear to consistently correlate with many
other positions.

5.3. From tetrameric to dimeric form

We now consider putative SDPs of the tetrameric vs. dimeric form of IFP and analyze some new
mutations. To that end, two groups of 13 dimers and 53 tetramers, again sharing the same interface as
in DsRed, (44.2% and 52.9% average identity, respectively) were selected from the alignment and un-
derwent our procedure. Comparison between experiments and our results, reported in Table 7, is limited
by the fact that the literature focuses on the generic distinction between monomers and multimers and
that tetramer-to-monomer and tetramer-to-dimer roles very likely overlap. Out of the first 20 most sig-
nificant positions predicted by the various flavours of the method implemented in SDPhound, including
the BLOSUM based ones due to their potentially innovative character, we selected those not yet tried
in experiments. Then, we investigated with the pigeonholing procedure (Table 8) the physical features
influencing their specificity. We focused on position 158 since it ranks as the best non experimentally
validated position in Table 7 that also belongs to the tetramerization interface in DsRed homologs. The
results concerning SDP 158 in Table 8 indicate that dimerization is favoured by changes in size and, to
a lesser extent, in charge. In particular, inspection of the sequences revealed that aspartic acid appears
only in the dimeric class at position 158 (DTRKCI vs. TRKIV), leading us to select the K158D mutation
as a promising candidate to further weaken dimer-dimer binding. We decided to obtain a further assess-
ment of this mutation, validating it independently with the MMPBSA technique [10], a well-established
and quite powerful tool to estimate binding free energies such as those involved in oligomerization pro-
cesses. In this context, free energy is evaluated as an average over molecular dynamics trajectories of
G = EMM + GPB,polar + GSA,nonpolar − TSsolute.

Details concerning the meaning of the individual terms, the implementation and the actual calcula-
tion can be found in the SI. Here, we only point out that binding free energy ∆Gi can be estimated for
each mutant as the free energy difference between tetramers and dimers, so that ∆∆Gi,WT is the bind-
ing free energy difference of the ith mutant with respect to WT DsRed. To benchmark MMPBSA, we
created, in silico, three mutants, namely I125R/V127T, dimer2* and mRFP1* (see caption of Figure 4
for details), for which the tetrameric character can be confidently excluded (∆∆Gi,WT > 0). Despite
the rather short length (400 ps) of the dynamics (hence the relatively large error bars), the calculations,
shown in Figure 4 together with the details about exact mutations, reproduce the expected trends and
support the ability of the I125R mutation to disrupt the tetramer (∆∆GI125R/V 127T,WT =40.79 kcal/mol),
consistently with what described in [27]. For dimer2* and mRFP1* we report slightly lower values
(∆∆Gdimer2∗,WT =26.69 kcal/mol and ∆∆GmRFP1∗,WT =23.23 kcal/mol) than for the I125R/V127T mu-
tant; this is reasonable since in those cases mutagenesis introduced many mutations that, in addition to
providing control over oligomerization tendency, preserved other essential properties, such as correct
and fast protein folding, chromophore maturation and detectable fluorescence. More interesting is the
study of the tetramerization free energies of K158D mutant as well as the physical insights that emerge.
∆∆GK158D,WT =26.67 kcal/mol actually indicates a very promising mutation, not likely to affect the
fluorescence due to the location of the residue far from the chromophore. Moreover, from the tetramer
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crystal one can see that there is a H-bond between the basic K158 of one monomer and the carbonyl
group of N128 of the associating partner; such interaction only seems possible if position 158 hosts a
large and positive residue, such as K or R, consistent with what indicated by Table 8.

Table 8. Substitution class based runs over SDPs relevant to tetramer to dimer transforma-
tion. Ranking and color coding as in Table 2. We chose to study the positions that had not
been validated experimentally, since these are the new possibilities for putative mutations.
For each position, its ranking in any specific run is shown. “−” means that in that run, the
position ranked below 40th.

Pos. 172 158 114 181 211 154 64 62 146 87
hyd 1 − − 16 − − 32 6 14 −
crg 19 17 30 24 2 27 − 6 − −
size 30 9 2 20 − − 28 − 25 21

Pos. 176 170 4 209 39 36 160 168 94 45
hyd 29 − 31 25 − 21 − − − −
crg − − 29 10 8 − 15 − 34 21
size − 34 33 − − 15 31 − 23 24

Figure 4. MMPBSA-estimated ∆∆Gs with respect to WT DsRed. Structures for all mutants
were generated from crystal structure of this latter (1GGX PDB code). For dimer2* (T21S,
H41T, C117T, I125R, V127T and S131P) and mRFP1*(T21S, H41T, C117E, I125R, V127T,
R153E, V156A, H162K, A164R, L174D, I180T, Y192A, Y194K, H222S, L223T, F224G,
L225A), only experimentally validated mutations according to [27] corresponding to solvent
exposed residues were considered.
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6. Conclusions

SDPhound, an articulate and flexible protocol for SDP identification and analysis within homologue
proteins, is presented. Results of this work are twofold: i) a methodological improvement over pre-
existing techniques that use the mutual information to reveal SDPs, and ii) the characterization of the
role of known and unknown residues responsible for specificity. The procedure makes it possible to
obtain useful insights from the data and to make sense of the results both in probabilistic and physical
terms. It can be generalized to investigate correlations among position pairs. When applied to the stan-
dard test cases of the MPI and LacI families and to the original analysis of the multimerization tendency
within the IFP family, SDPhound correctly identifies mutations that are recognized to be relevant and/or
experimentally known to influence specificity. It further succeeds in pointing to the physical character-
istics of several relevant residues in all the applications considered in this work. In the case of IFP it
also suggests several previously uninvestigated positions as determinant for the multimerization state of
these proteins, both in the case of the multimer to monomer transition and in that of the tetramer to dimer
change. The hierarchy of operations described in sections 3. and 5. allows to draw a reliable and rather
stringent profile of the set of residues that are responsible for the specific function, or structure, within a
set of homologs, making SDPhound a useful tool to complement both experimental techniques and other
computational biology approaches.
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