
Algorithms 2009, 2, 498-517; doi:10.3390/a2010498

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Novel Algorithm for Macromolecular Epitope Matching
Stanislav Jakuschev and Daniel Hoffmann ?

Department of Bioinformatics, Centre for Medical Biotechnology, University of Duisburg-Essen,
Universitätsstrasse, 45117 Essen, Germany

E-mails: Stanislav.Jakuschev@uni-due.de; Daniel.Hoffmann@uni-due.de

? Author to whom correspondence should be addressed.

Received: 27 October 2008; in revised form: 11 January 2009 / Accepted: 25 February 2009 /
Published: 11 March 2009

Abstract: Many macromolecules, namely proteins, show functional substructures or epi-
topes defined by characteristic spatial arrangements of groups of specific atoms or residues.
The identification of such substructures in a set of macromolecular 3D-structures solves an
important problem in molecular biology as it allows the assignment of functions to molecular
moieties and thus opens the possibility of a mechanistic understanding of molecular func-
tion. We have devised an algorithm that models a functional epitope formed by a group of
atoms or residues as set of points in cartesian space with associated functional properties.
The algorithm searches for similar epitopes in a database of structures by an efficient multi-
stage comparison of distance sets in the epitope and in the structures from the database. The
search results in a list of optimal matches and corresponding optimal superpositions of query
epitope and matching epitopes from the database. The algorithm is discussed against the
background of related approaches, and it is successfully tested in three application scenarios:
global match of two homologous proteins, search for an epitope on a homologous protein, and
finding matching epitopes in a protein database.

Keywords: molecular similarity; matching algorithms; epitopes; molecular sub-structures;
maximum common subgraph.

Algorithms 2009, 2 499

1. Introduction

Biological macromolecules usually have specific three-dimensional sub-structures that allow them to
exert their special functions (henceforth we will call these three-dimensional sub-structures “epitopes”,
a term that originally had been used for sub-structures recognized by antibodies). For instance, enzymes
have binding pockets that fit the three-dimensional structures of their substrates or co-factors, proteins in
signal transduction have characteristic surface patches fitting those of binding partners along the respec-
tive signal cascade, strands of DNA hybridize with structurally complementary strands, etc. Evolution
has re-used many of these functions, and, consequently, we find the same or similar epitopes packed
into different molecules. This fact can be exploited to address central problems in molecular biology;
e.g. it is possible to use structurally characterized epitopes of known function on a certain molecular
three-dimensional structure to search for similar epitopes on other molecules and in this way elucidate
the function of the latter molecules. The quickly growing number of structures in the Protein Data Bank
[1] and other molecular databases opens the possibility for this type of studies, but it also necessitates
efficient search algorithms for finding similar epitopes. Another application that is of particular interest
to us lies in protein engineering where the goal is to mutate proteins in such a way that they carry a
particular functional epitope; in this case an algorithm for epitope matching and comparison can be used
in a procedure for optimizing proteins by finding the best mutants [2].

These algorithms should solve a matching problem that can be described as finding sets of atoms
in the database that, after optimal superposition, closely match the coordinates of atoms in the epitope,
with each matching pair of atoms being of the same type. For instance, we may search for an epi-
tope given by four atoms, namely three oxygen atoms in carboxylate groups with Cartesian coordinates
o1,o2,o3, respectively, and a calcium ion with Cartesian coordinates ca. In this case we have solved the
matching problem if we identify in a database of molecular three-dimensional structures one or several
sub-structures of three carboxylate-oxygens and a calcium ion with Cartesian coordinates O1,O2,O3

and Ca, respectively, so that the root-mean-square-deviation (RMSD) R between the groups is minimal,

i.e. R =
√

1
4

(
(Ca− ca)2 +

∑3
i=1 (Oi − oi)

2) !
= min. It is noteworthy that there are three atoms of

the same type (oxygen) in both sets. This means that the matching problem has two aspects: one has
to find not only a matching set of atoms but also the permutation that leads to the minimal R. Further,
it should be noted that we imply a simple model that is frequently used in which molecules are sets of
point-like atoms, or pseudo-atoms representing building-blocks such as amino-acids in proteins; each
atom or pseudo-atom is given by its Cartesian coordinates and a nominal type descriptor.

Several approaches have been applied to the solution of this and related 3D-matching problems (for
reviews see e.g. Ref. [3, 4]). For the important macromolecular class of proteins, several efficient
matching algorithms such as DALI [5] or SSAP [6] have been devised that make explicit use of special
properties of proteins as the sequential and spatial arrangement of their secondary structures and that
therefore are very fast. More generally applicable is the geometric hashing approach: one first prepares
a large hash table encoding all structures in the database, then the query is very efficiently compared
to the entries of the table [7]. The matching problem can be formulated elegantly in terms of graph
theory with vertices corresponding to (pseudo-)atoms and edges corresponding to Cartesian distances or
chemical bonds. Consequently, many algorithms have been invented to solve the matching problem in

Algorithms 2009, 2 500

the form of a search for isomorphic subgraphs, especially maximum common subgraphs (MCS) of two
graphs (for review see [8]); a well-known member of this family is the algorithm by Ullmann [15] that
has been adapted for molecular matching problems in ASSAM [9]. The Ullmann algorithm represents the
graphs to be matched by adjacency matrices with elements 1 symbolizing neighborhood and 0 otherwise.
The matching could then be carried out by brute-force comparison; however, Ullmann reduces the search
space by a refinement procedure that early on eliminates 1-elements that violate conditions that have to
be fulfilled by isomorphic graphs.

We propose an approach for the solution of the matching problem that does not take into account the
sequential nature or secondary structures of proteins. Instead, our EPITOPEMATCH algorithm identifies
epitopes that are similar to a query epitope comprising an arbitrary set of atoms given by their types and
Cartesian coordinates. The algorithm thus is applicable to general macromolecules without adaptation.
Further, the proposed algorithm is a one-pass method that operates directly on the macromolecular struc-
ture sets, e.g. in the form of the widely used files from the Protein Data Bank without preparatory steps.
This feature is important for us since we apply the method also in the process of protein engineering
for on-the-fly comparisons of many novel structures generated in silico. In terms of graph theory our
method is a heuristic to identify common, connected, approximately maximal subgraphs of two graphs.
Unlike the Ullmann algorithm EPITOPEMATCH does not operate on adjacency matrices but first tries
to find small and accurately matching subgraphs and then iteratively extends and joins these matches to
larger and less accurately matching subgraphs. The iterative nature makes EPITOPEMATCH superficially
similar to the MAXSUB algorithm [10], though the latter algorithm has been formulated for chemical 2D-
graphs. Although EPITOPEMATCH makes use of cliques, it does not aim at finding all cliques as e.g. the
Bron-Kerbosch algorithm [11]. Two of the features of EPITOPEMATCH that we have not seen in other
algorithms is, firstly, a probability-like score for each pair of matching atoms indicating the certainty of
this match, and, secondly, the generation of a Pareto-optimal set of matches in terms of the objective di-
mensions number of matching pairs and RMSD. In the following we will characterize the problem to be
solved more quantitatively, describe the EPITOPEMATCH algorithm, and present non-trivial applications
on proteins.

2. Results and Discussion

2.1. Description of problem and assessment of problem size

We are looking for matches between the query set of atomic Cartesian coordinates xi , i = 1, . . . ,m

and atom types si, with corresponding structures in a database of three-dimensional molecular structures
numbered j = 1, . . . , N , where the jth molecular structure in the database has atomic Cartesian coor-
dinates yjk , k = 1, . . . , nj and atom types tjk. The number τ of atom types is limited, e.g. “atoms”
may be centers of amino-acid residues of 20 types, or real atoms with types corresponding to chemical
elements, or atoms with certain property types (charged, polar, neutral, etc.).

A full match, or, for brevity, a match of the query in molecule j is defined as an assignment of all m
coordinates xi of the query to m coordinates yji of molecule j so that ∀i ∈ {1, . . . ,m} : si = tji (if
needed the ti are renumbered). It is possible that several matches exist in the same molecule and it is
likely that many matches can be found in the database. An optimal match is defined as a match for which

Algorithms 2009, 2 501

the RMSD R =
√

1
m

∑m
i=1 (xi − yji)

2 is minimal. We are interested mainly in optimal or near-optimal
matches because in these cases the physico-chemical properties of the query and the matching epitope
promise to be similar.

For the estimation of the problem complexity it is realistic to assume that the number of atoms qi of
any type i = 1, . . . , τ in the query is smaller than the number of atoms Mi of the corresponding types
i = 1, . . . , τ , since epitopes typically contain much less atoms than the molecules in the database. The
theoretical number Θ of matches of a query in a database of N molecules is then

Θ =
N∑
j=1

τ∏
i=1

Mji!

(Mji − qi)!
. (1)

To assess a realistic size of Θ we take the medium sized protein molecule human hemoglobin as
a database representative. As atoms we use Cα atoms, and atoms may have one type out of τ = 4,
namely hydrophobic, polar, positive, or negative, depending on electric charge and solubility in water.
As an example for a query epitope we use the heme binding pocket, also in human hemoglobin, formed
by 16 residues, including q1 = 12 hydrophobic, q2 = 3 polar, q3 = 1 positive, and q4 = 0 negative
residues. Since it is known that there are four similar heme binding pockets in hemoglobin, the search for
optimal and near-optimal matches with the query pocket should result in four matches. The whole human
hemoglobin molecule contains 574 amino acid residues, including M1 = 276 hydrophobic, M2 = 188

polar, M3 = 56 positive, and M4 = 54 negative residues. The product in Equation 1 then amounts to
about 1038, which means that taking into account the structure of human hemoglobin alone, the four
optimal and near-optimal matches form a minute fraction of all theoretical matches. Moreover, with the
number N of relevant molecules in the Protein Data Bank being of the order of 104, we have Θ ≈ 1042.
This number makes it clear that a complete enumeration of all possible matches in search for optimal
matches is not feasible. We therefore have devised the following EPITOPEMATCH algorithm.

2.2. Algorithm

Rationale

The core of the problem is to find a match of a query atom set A in a larger atom set B, where A =

{a1, . . . , am} with each atom ai = (xi, si) given by its Cartesian co-ordinates xi and atom type si, and
analogously B = {b1, . . . , bn} with bj = (yj, tj). In the language of graph theory, the distance matrix
DA ofA defines a complete graph onAwith nodes standing for atoms and being attributed by atom types
si and edges standing for distances |xi − xj| between atoms. The distance matrix DB defines a complete
graph on B in an analogous way with nodes attributed by types ti and edges by distances |yi − yj|. In
the following we use the terms “atom”, “node”, and “vertex” synonymously. To keep the presentation
simple, we assume that all atoms are of the same type, i.e. si = tj ∀i, j : i ∈ {1, . . . ,m} , j ∈ {1, . . . , n};
the actual implementation of the algorithm does not have this restriction, as shown in the applications
section.

The essential assumption underlying EPITOPEMATCH is that the query epitope and its cognate op-
timal matches differ not too much, i.e. if ai is matched with bk and aj with bl, then the distance dif-
ference dijkl = ||xi − xj| − |yk − yl|| should be small. The assumption is justified by the purpose for

Algorithms 2009, 2 502

which EPITOPEMATCH has been developed, namely to identify patterns that as a whole have similar
physico-chemical properties. This similarity crucially relies on the similar geometric arrangement of the
corresponding functional groups in the matched sets. The exploitation of the assumption has two conse-
quences: firstly, most of the potentially existing matches are not taken into account because they are too
different and thus the search space is drastically reduced, and, secondly, the RMSD values R between
the corresponding sets of coordinates in optimal matches are small, typically up to a few Å.

The assumption is exploited in the following way. EPITOPEMATCH starts by identifying small and
accurate (low dijkl) subgraph matches by explicitly considering only dijkl < δ with a low threshold δ of
typically δ ≈ 0.1 Å. Then the algorithm iteratively increases δ and extends previously found subgraph
matches, and, if possible, joins them to larger subgraph matches. The iteration is stopped when δ exceeds
a preset limit, or when a full match with the query set A has been achieved. This central part of the
algorithm – the finding of an optimal structural alignment with the query – is shown as pseudo-code in
Algorithm 1 (see Appendix).

After the iteration in Algorithm 1 with increasing δ1, the best matching sets are optimally superim-
posed in Cartesian space and the respective R values are computed. Finally, if the algorithm scans a
whole database of structures Bi, it generates a Pareto-optimal set with respect to the objective dimen-
sions RMSD R and number of matching pairs Np.

The algorithm is organized in the five steps described below.

Step 1: Finding seed matches with small distance tolerance

We set the initial distance tolerance δ1 to a small value that roughly corresponds to the accuracy of the
experimental method used for determination of the macromolecular structure, e.g. δ1 =0.1 Å. As seeds
of possible matches we try to identify pairs of atoms ai and bk from A and B, respectively, for which
there are at least ν other atoms aj and bl, respectively, with distances |xi − xj| and |yk − yl| differing
by at most δ1. To this end we compare DA with DB element by element:

dijkl = |DA,ij −DB,kl| ≤ δ1. (2)

The parameter ν is set by the user. We have obtained good results with ν = 4. The resulting pairs of
atoms ab define pairs of star graphs of at least ν edges, as shown schematically in Figure 1.

The time complexity in this step is O (m2n2), since it is dominated by the number of distance differ-
ence computations given by 1

4
m · (m − 1) · n · (n − 1), i.e. the number of pairs of matrix elements in

the upper diagonal parts of the symmetric distance matrices DA and DB (see Algorithm 2 in Appendix).
This step determines the overall time complexity of EPITOPEMATCH. In the current implementation
of the algorithm we reduce time complexity by several means, e.g. by avoiding to investigate distance
differences with distances in B beyond the largest distance in the query epitope A.

In general some seed matches can be consolidated after investigation of further distance differences
between nodes in the stars, whereas many other seed matches turn out to be dead ends – a kind of noise
of accidental false positive matches. Step 2 is intended to reduce this noise.

Algorithms 2009, 2 503

Figure 1. Schematic of situation after Step 1 of algorithm. The two sets A and B of atoms
to be matched are shown as circles and squares, respectively. For clarity, all atoms are of
the same type, and the minimum degree of the central node in each star is ν = 2. We find
two pairs of atoms from A and B with ν = 2 or more distance differences smaller than δ1:
atom pair a1b3 (solid lines) and atom pair a6b7 (dotted lines). For instance a1b3 has three dis-
tance differences smaller than δ1, namely ||x1 − x2| − |y3 − y4||, ||x1 − x3| − |y3 − y5||,
||x1 − x4| − |y3 − y2||.

1

2
3

5

6
7

A

6

7

B
1

3

5

4

8

9

2
4

Step 2: Consolidation of matching stars to cliques

The aim of this step is to identify amongst the matching stars obtained from Step 1 those matches that
are guaranteed to have between all corresponding nodes a maximum distance difference below a second
distance tolerance δ2 ≥ δ1. This is achieved by testing all distance differences between corresponding
nodes in the graphs from Step 1 that have not been investigated in the previous steps for fulfillment of
Inequality 3 (see also Figure 2):

|DA,ij −DB,kl| ≤ δ2. (3)

The exact relation between δ1 and δ2 is defined by the user and determines how sensitive and specific the
algorithm finally is. We have found δ2 = 4 · δ1 to give reasonable results for various protein matching
problems.

In this way, the nodes in the stars from Step 1 are supplemented with new edges. The aim is now to
consolidate these graphs to complete graphs (cliques) with all edges fulfilling Inequality 3. To this end,
every pair of nodes aibk is attributed with its degree, i.e. the number of edge pairs that fulfill Inequality
3. Then the node pair with the smallest degree is removed from the graph and the degrees in the graph
are recomputed; this is repeated until all remaining nodes have the same degree. (We have found that
the removal of weak nodes is more specific if we use as criterion the sum of degrees of the node and
of its neighbors, instead of using the degree of the node alone.) If the number of nodes drops below ν

the graph is abandoned. The remaining graphs then form cliques of at least ν members (Figure 2, and
pseudo-code in Algorithm 3 in Appendix).

Algorithms 2009, 2 504

Figure 2. Schematic of situation in Step 2 after identification of matching cliques. The
distance differences not yet investigated in the previous step are tested for fulfillment of
inequality 3. Here, these are |DA,23 −DB,45|, |DA,34 −DB,52|, |DA,24 −DB,42|, the differ-
ences of the lengths of the corresponding bold edges. After having passed this test it is
guaranteed that all corresponding edges of the two complete graphs (cliques) have distance
differences of δ2 or less. The stars around a6 and b7 in Figure 1 have not passed the test and
have been dropped.

1

2
3

A B
3

5

4

2
4

Step 3: Test for full match and loop back to Step 1 with increased distance tolerance

If two cliques from Step 2 have at least one common node, they are joined to a single graph (Figure 3).
This is done for all clique pairs so that it may happen that all cliques are merged into a single graph. If
this graph comprises all nodes of the query A, then we have found a maximum common graph, or in the
terminology introduced above, a full match. The algorithm then continues with Step 4.

If a full match has not yet been achieved after merging, the cliques can possibly be extended towards
a full match by relaxing the distance tolerances δ in Inequalities 2 and 3. Therefore, we loop back to
Step 1, and increment the distance tolerance δ1, e.g. by 0.1 Å.

It may be that even after several iterations over Steps 1, 2, and 3 no full match can be found. In this
case the iteration is stopped after δ1 or δ2 have reached a threshold preset by the user. The output to Step
4 is then the largest common subgraph found so far.

A nice feature of the iterative approach is that it is possible to define an intuitive measure for the
certainty with which a node pair aibj is matched. To this end we store for each matched node pair the
sum S (aibj) of the number of all cliques in all iterations in which the respective node pair participates.
The probability-like score P (aibj) =

S(aibj)

Smax
(with Smax the maximum of all S (aibj)) then indicates how

certain this pair of nodes is matched. If a match aibj occurs already at low distance tolerance δ2 and is
member in many cliques, then P (aibj) will be higher (up to 1), whereas matches aibj that turn out only
at high distance tolerances or in few cliques will haver lower P -scores (down to 1

Smax
).

The score P is also used to eliminate ambiguous or incompatible matches. E.g. if an atom ai is
matched with two different atoms bj and bk in two different largest common subgraphs, then the two
P -scores P (aibj) and P (aibk) are compared, and the pair with the lowest P -score is dropped. If several
ambiguities occur, then all relevant P -scores are compared in an analogous way.

Algorithms 2009, 2 505

Figure 3. Schematic of situation in Step 3. Two cliques have been identified at the distance
tolerance of Step 2, the first given by node pairs a1b3, a2b4, a3b5, a4b2, and the second by
a4b2, a7b9, a5b1. The two cliques have node pair a4b2 in common and are therefore merged
into the single graphs shown here.

1

2
3

5

A

7

B
1

3

5

4

9

2
4

Step 4: Superposition

After completion of the above iteration we superimpose the resulting matching sets from A and B
in Cartesian space so that the RMSD is minimal using established methods [12]. This step has two
purposes. Firstly, the property of forming a maximum common subgraph is not sufficient for having a
spatial arrangement with similar physico-chemical properties. For instance in the Figure 3 it is possible
to rotate atom groups corresponding to the subgraph pair a4b2, a7b9, and a5b1 around atoms a4b2 so that
the spatial arrangement of all atoms is changed while the overall graph property is untouched. In contrast,
low RMSD means similar spatial arrangement and thus similar physico-chemical properties. Secondly,
it is possible that the two matched subgraphs have opposite chiralities; such unwanted matches usually
can be removed easily since they will usually give high RMSD-values after optimal superposition.

Step 4 results in the maximum common subgraphs that have the lowest RMSD-values after optimal
superposition with the query epitope. In the simplest case this is one match, but we frequently encounter
cases with several matches of equal size and comparable RMSD-values, e.g. in multimeric complexes.

Step 5: Selection of Pareto-optimal matches

Steps 1 to 4 are carried out for all pairings of query epitope A with the 3D-structures Bi in a database.
Sizes of maximum common subgraphs (i.e. numbers of matched node pairs) and corresponding RMSD-
values are collected for all these pairings. The set of matches that are not surpassed both in terms of low
RMSD and high number of pairs constitute the set of Pareto-optimal matches or Pareto-front (Figure 4).
Based on the structure of the Pareto-front, the user can then decide which matches are considered for
further work. E.g. if there is a large gap in the Pareto-front between a low and a high RMSD-population
but otherwise similar sizes of matched graphs, the user will prefer the matches with low RMSD. The
plane shown in Figure 4 can be supplemented by accumulated P -scores from Step 3 as third dimension,
resulting in a two-dimensional Pareto-front. In that case it is sensible to re-calibrate the P -scores with

Algorithms 2009, 2 506

Figure 4. Pareto-front of optimal matches found in database search. The circles connected
by broken line are the set of Pareto-optimal matches. All other matches are (unconnected
circles) are dominated by one of the members of the Pareto-optimal set as they have both
lower RMSD and higher number of matched pairs.

RMSD

pairs

the maximum Smax encountered in the database search.

2.3. Applications

In the following three subsections we demonstrate that EPITOPEMATCH can be successfully applied
to different classes of problems. Protein structures used are taken from the Protein Data Bank (PDB) [1].
These tests have been carried out on a Intel Core 2 Duo processor running at 2.4 GHz with 4 GB RAM.
For a benchmark with Assam see Section 2.4.

Matching two protein structures

The matching of two complete large molecular structures is a worst case scenario for EPITOPEMATCH

since then Step 1, which dominates time complexity, becomes very large. Here we try to match the α-
chain (141 amino-acids) and β-chains (146 amino-acids) of human hemoglobin, available as chains A
and B under PDB-code 2DN2.

We have tested two different modes of matching. In the first (“unspecific”) we have matched protein
backbone atoms N , Cα, C ′ of all amino-acids irrespective of the type of amino-acids. In the second
(“specific”) we have tried to match Cα- and Cβ-atoms with amino-acid types as attributes (for Gly Cβ is
not considered). The plot in the left part of Figure 5 shows the unspecific and specific results as points
colored in cyan and magenta, respectively. The plot does not only show RMSD and number of matched
pairs of amino-acids for the largest common subgraph, but also for graphs that are obtained if node by
node is removed from the largest common down to graphs of ν = 4 nodes, with each removed node
having the lowest P -score in the respective graph. Thus the envelopes of the points in the plot towards
low RMSD and high number of matches pairs also mark a kind of Pareto-front with a trade-off between
low RMSD and low number of matched pairs up to high RMSD and high number of matched pairs.

In the unspecific mode, a maximum of 138 amino-acid pairs could be matched with a RMSD of 1.41
Å after a run of 173 s. Apart from matches of the full polypeptide chain, EPITOPEMATCH finds also

Algorithms 2009, 2 507

Figure 5. Matching α- and β-chains of human hemoglobin. Left: matched pairs of amino-
acids vs. RMSD after optimal superposition for two matching modes. Right bottom: optimal
superposition of the match of β-chain (green) with α-chain matched using the amino-acid
specific mode (magenta), and the unspecific mode (cyan). Right top: sequence alignment
(α-chain in top row, β-chain in bottom row) derived from the structural alignment. Matching
pairs of amino-acids are marked with asterisks.

0 20 40 60 80 100

0
2

4
6

8
10

pairs

R
M

S
D

 (
0.

1
nm

)

matched atoms
specific Cαα −− Cββ
nonspec. N −− Cαα −− C'

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDL
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDL
 * * * * * **** * * *** * * * * * 0*

SHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRV
STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHV
0 * ** ***** * ** * ** ** ** *

DPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
DPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
** ** ** * ** * **** * * * * * * **

matches of helices at different positions in the protein fold. These partial matches with low number of
matched pairs and higher RMSD are displayed in the left part of Figure 5 as cloud of magenta points
above the almost straight line of low-RMSD matches of the global fold.

The run in the specific mode took 52.46 s. Remarkably, the plot shows a kink at 61 matched pairs of
amino-acids. At this point the RMSD is 1.26 Å. Below 61, the matched pairs are true positive matches
in the helices of the two proteins. Above 61, the algorithm starts to match parts of the structurally and
sequentially more divergent loop regions, including also false positives, i.e. amino-acids that of are
of corresponding types but non-equivalent positions in the fold. We have from the matches up to the
61th pair derived a sequence alignment (top right of Figure 5). This alignment is almost identical to
a pure sequence alignment with the Needleman-Wunsch algorithm with the Gonnet scoring matrix as
implemented in ClustalW [13]. ClustalW finds as identities the 61 pairs found by EPITOPEMATCH, and
additionally the two pairs marked with “0”.

The superimposed structures of both runs are shown in the lower right part of Figure 5. The the two
chains are matched well in both modes.

Algorithms 2009, 2 508

Figure 6. Results of amino-acid specific (left) and unspecific (right) searches for a match of
the OAR binding epitope of yeast Hst2 on human Sir2 with various sets of atoms per residue.

5 10 15 20

0
2

4
6

8
10

12
14

pairs

R
M

S
D

 (
0.

1
nm

)

●

●

●

●

●●●●●●●
●

●

specific

Cαα
Cαα −− Cββ
N −− Cαα −− Cββ
N −− Cαα −− C −− Cββ
N −− Cαα −− C −− O −− Cββ

5 10 15 20

0
5

10
15

20

pairs

R
M

S
D

 (
0.

1
nm

)

●●

●

●
●

●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

nonspecific

Cαα
Cαα −− Cββ
N −− Cαα −− Cββ
N −− Cαα −− C −− Cββ
N −− Cαα −− C −− O −− Cββ

Recognition of a binding site in a homolog

This example is a typical small scale application of EPITOPEMATCH. The protein Hst2 from yeast
(PDB-code 1Q1A) and the human Sir2 protein (PDB-code 1MA3) are homologous and their 3D-structures
have been determined experimentally. Both proteins bind the co-substrate ADP ribose and transfer an
acetyl-group from a peptide-substrate to an ADP ribose to form 2’-O-acetyl-ADP-ribose (OAR). The
structure of the complex of Hst2 with OAR is known, whereas the structure of the OAR complex with
Sir2 is not known. Here we try to locate the OAR-binding pocket on Sir2 in the following way: We
first define the OAR-binding epitope as the 20 amino-acid residues identified by Zhao et al. [14] in the
structure of Hst2. Then, by using this epitope as query, we search for a match on the structure of Sir2.

In this application we test the effectivity of a number of specific and unspecific search modes, each
with five different sets of atoms per amino-acid. The results are shown in Figure 6). Run times per search
were in the range of 2.3 min to 5.2 min, memory usage between 8 MB and 50 MB.

The amino-acid specific search identifies 11 of the 20 residues of the Hst2-epitope also in Sir2 if Cβ-

Algorithms 2009, 2 509

Figure 7. The part of the human Sir2 protein structure (PDB-code 1MA3) matched with the
OAR binding pocket of yeast Hst2. All 17 residues shown as molecular surface have been
found as “unspecific” match. A subset of these (magenta) has been matched with the amino-
acid specific mode. The molecule in sticks-representation in the center is OAR transformed
into the empty binding pocket of Sir2 from the structure of the original complex with Hst2
using the co-ordinate transformation derived from the match (there are two very close OAR
positions, derived from the specific and unspecific match, respectively). The grey sticks in
the right half are an acetylated Lys residue of a substrate-peptide complexed with Sir2.

atoms are included (left part of Figure 6) at a RMSD of 1 Å. The unspecific search finds at an RMSD of
less than 2 Å even 17 residue matches (right part of Figure 6). The 6 residues not found in the specific
search are replaced in Sir2 by residues that are not too different (T37(Hst2) → A28(Sir2), F67→A51,
T224→S192, L249→A218, Y269→K234, S270→A235). Both search modes show a distinct gap at 11
and 17 matched residues, respectively, giving a natural cutoff for the number of true matches. The non-
specific search finds a noise of many false positive matches, while the true positive matches are separated
from this noise by distinctly lower RMSD values.

Figure 7 shows the parts of Sir2 that have been matched with the OAR binding epitope of Hst2.
The residues matched in the unspecific mode (cyan and magenta) delineate the whole binding pocket of
OAR, whereas the residues matched in the amino-acid specific mode (magenta) concentrate around the
actual enzymatic site where the acetyl-group is transferred from a peptide to the OAR precursor. If the
transformation that optimally superimposes the Hst2 epitope with the putative epitope in Sir2 (Step 4 of
algorithm) is also applied to the OAR of Hst2, the transformed OAR fits well into the putative epitope
pocket of Sir2. It is particularly remarkable that the position of the acetyl-group of OAR is very close
to the position of an acetylated Lys residue of a substrate-peptide complexed with Sir2, supporting the
correctness of the match.

Algorithms 2009, 2 510

Identification of a ligand binding site in a database

This is an example of a typical medium-to-large scale application of EPITOPEMATCH. We have
taken a set of structures of pairs of apo-enzymes and the corresponding holo-enzymes compiled by Gu-
nasekaran & Nussinov [16], excluding structures of more than 1000 amino-acids for reasons of memory
restriction (see section 2.5.). The resulting set contains 86 pairs of proteins. The pair of holo- (PDB-
code 1AKE) and apo-adenylate-kinase (PDB-code 4AKE) of E. Coli is part of the set. The protein is a
dimer with two similar binding sites that experience a large induced fit on formation of a complex with
inhibitor AP5.

Using the holo-structure, we define the query epitope by all 45 amino-acids with a distance of up
to 5 Å to any atom of the inhibitor molecule. We are trying to find matches with this epitope in all
86 apo-proteins, including the holo-structure 1AKE as positive control. For the search we are using all
N -,Cα-,C ′-, and Cβ-atoms and attribute them with the amino-acid types (“specific” search).

Figure 8 shows the accumulated results of the search in the same way as in Figure 5. The run needed
a total of 49 min of CPU time, of which the investigation of 4AKE alone took 23 s (and 20 MB RAM).
As expected, we find the two chains of the holo-structure 1AKE (“holo (control)”) as matches with
vanishing RMSD for all graph sizes. The two chains of the correct apo-structure 4AKE (“apo” in figure)
are found as by far the best matches in the set of 86 different apo-enzyme structures with a large gap in
RMSD to the next best matches. It is notable that there is a clear match although the induced fit leads to
a RMSD between the epitopes in 1AKE and 4AKE of more than 6 Å.

2.4. Comparative test

In terms of input and nature of results, the closest available relative of EPITOPEMATCH that we could
find is ASSAM, though there are also clear differences, as e.g. ASSAM uses preprocessed data, whereas
our code generates matches on the fly, which makes comparison of run-times misleading. Moreover,
ASSAM uses the subgraph-isomorphism algorithm of Ullmann [15] whereas EPITOPEMATCH uses a
heuristic that iteratively builds up larger and larger matches. Nevertheless, both methods promise to
identify discontinuous epitopes similar to a given query epitope in a database of structures. Hence, we
have tested the performance of both algorithms by means of the same benchmark application.

The test case is the search for epitopes that are similar to the maltose binding motif of the structure
with PDB code 1ANF in all structures of the PDB (55534 molecular structures as of February 3, 2009).
We assume that ASSAM did operate on essentially the same version of the database, which is plausible
given many matches found by both methods (see Supplementary Material). In the PDB there are several
other maltose binding proteins with similar binding pockets that should be found by the queries. The
search pattern was formulated as set of Cα atoms and one atom representing each amino-acid side-chain
(except for Glycine) of residues in the 5 Å-neighborhood of the maltose ligand in 1ANF. The full epitope
comprised 17 atoms.

We have submitted the epitope of 1ANF to ASSAM via its web-service at http://grafss.imfr.net/assam/
(the program used was actually called ASPREG as of February 2, 2009, 18:17), and to EPITOPEMATCH.
The latter was run on 16 cores of a Linux cluster (AMD Opteron 2218 2,6 GHz CPUs, each core with
4 GB RAM). Although the run times cannot be compared we give them here for completeness: ASSAM

Algorithms 2009, 2 511

Figure 8. Search for an epitope in a database [16]. 86 structures of different apo-enzymes
are searched for a match with a ligand binding pocket of 45 amino-acids. The source of the
query epitope (1AKE) is included as control. The method identifies amongst the structures
the one correct apo-structure (4AKE) as match with lowest RMSD (“apo”).

●●●●●●●

●

●
●●

●●●
●

●
●●

●
●

●

●

●

●

●

●

●●
●●

●●●●

●

●

●

●

●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●●
●●●

●●
●●●

●●
●●●

●●
●●●

●●
●●●●●

●●●
●●
●●●●

●●
●●●●●

●●
●●●
●●

●●
●●●

●●
●●●

●●
●●●●●

●●●●
●●

●●
●●●●●●●●●●●

●●
●●

●

●
●

●
●●●

●●●
●●

●

●

●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●
●

●●●
●●●●

●●
●

●●
●●
●

●●●
●
●

●●●
●
●

●●●●

●

●●●●●●●●●●
●●●
●●●●

●●
●

●
●●

●

●
●●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●
●●●●●

●●
●●●
●●

●●●
●●

●●●
●●●●●

●●●●●
●●

●●●
●●

●●
●●

●●
●●●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●

●●
●●●●

●●

●●
●●

●
●●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●

●●
●●●

●●
●●●

●●
●●
●

●●
●●
●

●●
●●●

●●

●●●

●●●●●●●●●●

●
●●

●●
●

●
●●

●
●
●

●
●

●
●●

●

●

●

●

●

●●

●

●●

●●

●

●

● ●●

●●
●●●●

●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●

●●

●

●

●
●●

●

●

●●●

●
●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●
●
●

●●●
●
●

●●

●●
●

●●●●

●●
●●

●●
●●

●
●
●
●

●●●●●
●●●●●●●●●●

●
●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●

●

●
●●

●

●

●●
●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●●●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●

●●●
●●●●

●

●

●●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●

●●

●

●

●●

●●

●

●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●
●

●●●●
●

●●●●
●

●●●●
●

●●●
●●

●●●
●●●●●

●●●●●
●●●●●

●●
●●●
●●

●●●
●●●●●

●●●●●
●●●●●

●●
●●●●
●

●●●●
●

●●●
●
●

●●●
●
●

●●●
●
●

●●●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●●

●
●

●

●

●

●●●●
●●●●●

●
●●●●
●●●

●●●●
●●

●
●

●●

●
●

●●

●●
●●

●
●●
●

●●
●●

●
●

●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●●●●
●●●●
●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●
●

●●

●

●●●
●●●●●●●

●
●●●
●

●
●

●●

●
●

●●

●●
●●

●

●

●●

●●●●●●

●●●●●

●
●

●
●

●
●

●
●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●

●●●●●●●●●●●

●●

●●●

●

●●●●
●●●●●

●●●●●●●●●

●

●●

●●

●●●●

●●●●

●●●

●

●●
●●

●●

●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●
●●

●●
●●

●●

●●
●●

●
●

●●●●
●●

●●●

●
●

●

●
●
●
●
●

●
●

●●
●

●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●●

●●●●
●

●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●
●

●●●
●

●●
●●●●●●●●●●●●●●

●●
●●

●

●
●

●●
●

●●

●●

●

●
●

●

●●●

●●

●

●

●

●●

●●
●●●●

●●

●●

●

●●●●●●●●●●●●●
●●●
●●●●●●●●●

●●●●●●

●●●●

●●

●●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●●

●

●

●●
●●

●

●●●
●●●●●

●●

●●●●
●

●●
●●●

●●●
●●●●

●●

●●
●●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●●
●

●●

●●
●

●●

●

●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●●●
●

●

●

●

●●●

●

●

●●●
●●●●
●

●●●
●●●●●

●●●●●
●●

●●●●
●

●●●
●●

●●
●●●

●
●●●●●

●●●●●
●●●
●

●
●●●
●

●
●●●
●

●
●●●
●

●
●●
●●

●

●●
●
●

●

●●
●●

●
●
●
●●

●
●
●●
●

●
●
●●
●

●
●
●●
●

●
●
●●
●

●

●●

●●●

●●
●●

●●

●●●

●

●

●●
●●

●
●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●●
●●● ●●●

●

●●

●●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●●●
●●●

●●
●

●
●

●
●

●●●●●
●

●
●

●
●

●

●
●

●
●

●
●●

● ●●

●
●
●

●

●

●

●●●
●

●●
●●●●●●●●

●●●●
●

●●●●
●

●●
●●

●●
●●

●

●

●

●

●

●●●●●

●

●●
●●

●

●

●

●●●

●

●●
●

●
●●

●
●●

●●
●●

●●●

●●
●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●
●

●●

●

●
●

●

●●

●
●●

●
●●●

●
●●●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●
●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●
●●●

●
●
●

●
●●●●

●

●●
●●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●●

●●
●

●●

●●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●

●●
●●

●
●

●

●

●
●●

●●
●●●●●

●●
●

●●

●●●

●

●

●

●●
●

●

●●●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●●
●
●●

●

●

●

●

●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●●●●●●●●●●●

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●

●●●

●●
●●●

●●
●●●

●●
●●●

●●
●●
●

●●
●●●●●

●
●
●

●●●
●

●

●●●
●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●●●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●●●

●

●●

●

●●
●

●●●●●●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●
●●

●●●●

●

●

●●●

●

●
●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●

●●
●●

●

●●
●●

●

●●
●●

●

●
●

●●●

●
●

●●●

●
●
●●●

●
●●
●●

●●●●
●

●●
●

●●
●

●●
●

●●

●

●●
●

●●
●

●●
●

●●●●●

●●
●

●●
●

●

●●

●

●●

●

●
●

●

●●●

●

●
●

●

●

●●

●
●●●

●

●●
●

●●●●
●
●●

●
●
●

●
●

●●

●●
●●●●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●
●●

●●●
●●●●●

●●●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●●●●

●●●

●●●

●●●●●●
●●
●●

●●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●●
●●

●

●●
●●

●●●●
●●

●●
●
●●

●

●

●

●
●

●

●

●

●

●●

●●●
●

●●●
●●●

●

●●●
●

●

●
●

●●
●●

●

●●
●

●
●

●

●

●
●

●

●●
●●

●●
●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●

●●●●
●●

●●●
●●●●●●●●●

●

●
●●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●

●●●●●●●●●●
●●●●
●

●●●●
●

●●●●
●●●●●

●●●●
●●●●

●●●
●●
●●●●●

●●●●
●

●
●

●
●●

●
●●

●●●●●
●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

● ●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●●●●●●

●●●●●●

●

●●

●

●●

●

●●

●●

●

●

●
●●●●

●

●

● ●

●
●

●

●

●

●●●●●
●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●
●

●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●●
●●●●

●●

●
●●
●

●
●●
●

●
●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●
●

●●●●
●

●●●●
●●●●●

●●●
●●●●

●●●
●

●
●●●
●

●
●●●●●

●●●●●
●●●●

●
●●
●
●

●●
●●
●

●
●
●
●
●

●

●●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●
●●

●●

●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●

●●●●●●●
●●●

●●●●●

●●
●●●●●

●●

●

●
●●
●

●

●
●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●
●●●

●●
●●●

●●
●●
●

●
●
●
●

●

●●
●●
●

●●
●●
●

●
●●
●●

●
●●
●●

●
●
●●

●

●

●
●

●
●
●●

●
●

●●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●
●●●●●

●
●

●

●

●

●

●●
●●

●

●●

●
●●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●●●●

●

●
●

●

●●●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●●

●
●

●

●
●●

●
●●

●●
●

●●●
●

●
●●●

●
●●

●
●●

●
●●

●
●●

●
●●●

●●
●

●
●

●

●

●●

●●●●●●●
●●

●

●●●
●●

●●●
●●

●●●●
●

●●●
●●

●●●●
●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●●●●●

●●
●●
●

●●
●●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●

●
●
●
●●

●●
●●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●●●●
●●

●●
●●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●●

●●

●●●
●

●
●

●
●●●●

●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●
●●

●

●●●

●

●●●

●

●

●

●●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●●●●

●
●

●

●
●●●

●●●
●●

●●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●
●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●●●●
●

●

●

●●
●●

●
●●

●
●

●

●
●

●

●●●
●

●

●●

●

●
●

●●●●●
●●

●●●●
●●●●●●●

●
●

●●●●
●●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●
●●

●

●●

●●
●

●●●●

●●

●●●

●

●●●●

●

●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●

●

●

●●

●

●

●

●

●●●

●
●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●●
●●●●●

●●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●
●●

●●
●●●

●●
●●●●●

●●●
●●
●●●

●●
●●●

●●
●●●

●●
●●●●●

●●
●●
●●

●●
●●

●●
●●●●

●●
●
●

●●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●●●

●●
●●

●●
●●●●

●●●●
●●

●
●●
●

●
●●
●

●●
●●

●●
●●

●●●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●
●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●

●●●

●●●●
●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●

●

●

●

●

●●●
●●●

●

●●

●●●
●

●●
●●●●●●●●

●●●

●
●

●

●●

●●

●●

●●
●
●

●

●

●

●●●
●●

●●
●

●●●●●●●●●●
●●

●●●●●●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●

●

●●
●

●

●
●

●

●

●

●
●

●●●

●●●●

●
●

●

●
●

●

●
●●

●

●
●●

●

●
●●

●

●
●●●●●

●
●

●

●
●

● ●
●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●

●●
●

●●●

●●
●

●●

●

●

●● ●

●

●

●●

●
●

●●

●
●

●

●●

●●●●

●

●●
●

●
●

●●

●●

●

●
●●●●●●

●●●

●

●●●●

●●

●
●

●

●

●
●
●

●●●

●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●
●

●
●

●●●

●

●●●●●●●

●●●

●

●●
●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●●●

●

●

● ●
●●

●
●

●

●●
●
●●

●

●

●

●
●

●

●●

● ●● ●

●

●
●●

●
●●
●

●

●

●

●

●●
●●●●●●●●

●●●
●

●●
●

●
●

●
●●

●●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●

●●
●●

●●
●●

●●●
●●

●

●●

●
●

●
●●●

●

●

●

●●
●

●
●●●●

●●

●●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●
●

●●●

●●

●

●

●●
●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●●

●
●●●●●●●●

●●●●●●●
●

●●●●
●

●●●●
●●

●

●●●

●

●

●●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●●●
●●

●●●●
●

●●●●
●●●

●●●
●●
●●●●●●●●●●

●●●

●●●●●●●●●●
●●
●●●

●
●
●●
●

●
●
●●
●

●●
●●●

●●
●●●

●
●
●●
●

●
●
●●
●

●●

●●●

●●
●
●●

●●
●●
●

●●
●●
●

●●
●●

●

●●

●●

●●

●●

●●

●●

●
●

●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●●●

●
●

●
●

●●
●●●●

●●
●

●
●

●

●●●

●

●

●

●●●●

●

●
●●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●●●
●

●

●
●

●

●●

●

●●
●

●

●●●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●●

●
●●

●

●●●

●
●
●●●

●
●●●
●

●●
●●●

●
●
●●●

●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●●●

●●●●●●

●●
●

●●●
●●●

●

●

●●●●

●●●

●●

●●

●
●

●
●

●
●

●●●●●●
●

●

●●

●

●

●

●●●●
●●●●●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●●

●●
●●

●
●

●
●

●

●

●
●●●●●●●●

●

●
●

●

●●
●●

● ●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●●●
●

●●
●●

●●●●
●●

●
● ●
●

●

●

●●●●●●●●●
●●

●●●●●

●●●●

●
●

●●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●●●●●

●
●●●●
●

●●●●
●

●●●●
●●●

●●●●●
●●●

●●
●●●

●●
●●
●

●●

●●
●●
●●

●●●
●

●●●●

●●

●●

●●
●●●●

●●●●

●
●

●●

●
●

●
●

●
●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●●
●

●●
●

●●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●● ●
●

●

●

●
●

●
●●

●●

●
●

●

●

●

●●●
●●

●●
●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●

●●●●●●●●●●
●●

●●
●●●

●●

●●●●
●●●●

●●

●●●●

●

●
●

●
●●

●
●●

●

●●●

●

●

●●●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●

●●●●
●

●●●●●●●●●●●●●●

●●

●●

●●●●
●●●●

●
●●●

●●●●

●●●

●●●●●

●●
●●●

●

●
●

●●
●●●●●●

●●●●
● ●

●
●

●

●●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●●●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●
●●●

●●●
●●

●●●
●●

●●●
●●

●●
●●●

●●●●
●

●●
●●●

●●●●
●

●●●
●

●●●●

●●●●●●●
●●●●

●

●●●●
●●●●●●●

●

●●●
●

●
●●
●

●
●
●
●

●
●●
●

●
●

●
●

●
●

●
●

●
●

●●●●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●●

●

●●
●

●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●●●

●●

●●●●
●●●●●●●●●

●
●

●●●
●
●

●●
●
●

●●
●●●●●

●

●●●●
●

●●●

●
●●

●●

●

●
●

●

●

●

●●●●●
●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●●
●●●

●●
●●●

●●
●●●●●

●●●●●

●●

●●

●●

●●
●
●

●●
●●

●●
●●

●●
●●●●●

●
●●
●

●

●●

●●

●●
●
●

●
●

●
●

●
●

●
●

●

●●
●

●●
●
●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●
●●

●●●●●●●●●●
●●
●●●

●●●
●●

●●●
●●

●●●●
●

●●●●
●

●●●
●●●●

●●
●●●
●

●●●

●

●●
●●●●

●●

●●
●●

●
●●
●●●●

●

●●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●●
●●

●●●●
●

●
●●●
●

●

●
●
●

●

●

●

●
●
●

●●

●

●
●●

●

●

●●
●●

●
●

●

●

●

●
●●●

●

●
●

●
●

●
●●●

●●

●

●

●●
●

●

●
●

●●●
●●●

●●
●●●

●●
●●

●
●

●●●●●●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●

●
●

●●
●●●

●
●

●●

●
●

●

●
●

●

●●
●●

●

●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●

●●●●
●●●●

●●●●
●●●

●●●●
●

●●●●
●

●●●●

●

●●●
●●●

●●

●

●

●

●●

●●

●

●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●

●●●●

●●
●●

●●●●

●●●●●●●●●●●●●●
●●

●
●

●

●
●●●

●●
●

●●●

●●●●

●●●
●

●

●

●

● ●●

●

●

●

●

●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●
●●●●●●

●●
●●●●●●●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●
●
●●●●

●●
●●●

●●
●●●

●●
●●●

●●
●●●●●

●●●
●●
●●●

●●
●●
●

●●

●●

●

●●

●●●

●●

●●●

●●

●●

●

●●

●●

●

●●

●●

●

●●

●
●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●●●

●●
●

●

●

●

●

●●●

●●●
●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●

●●

●●●

●●

●●●

●●

●●●

●●

●
●●

●

●

●

●

●

●●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●
●●

●

●●
●
●

●●
●●

●●●
●●●

●
●

●
●

●

●●●

●

●

●

●

●
●

●●

●

●●

●●
●

●

●
●●● ●●

●●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●
●

●

●

●
●

●
●

●●●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●●●●●

●●●●●

●

●●●●
●

●●●●
●

●●●●
●

●

●●●●●●●
●

●●●
●

●●
●●

●●●
●●●●●●●●●●●

●●●●●
●●●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●●●

●
●

●

●
● ●●

●
●●

●

●

●●

●
●

●

●●●
●
●●●●●●●●●

●●●●●●

●●●
●

●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●

●●●

●

●

●●●

●●●

●

●●●
●

●●●●

●●●
●

●
●

●●
●●

●●●

●
●●

●●●●●●●●●
●

●●●
●●

●●●●
●

●●●●
●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●
●●●●●●●●●●●

●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●●

●
●

●●

●
●

●
●

●
●

●
●●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●●
●

●●
●●●●

●●
●●
●●

●●
●●

●●●
●●●●

●
●●
●●

●●
●●●●

●●●●
●●

●●
●●

●●
●●

●
●

●●

●
●●●●

●●●
●

●
●

●
●

●
●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●
●●

●●

●●
●●●●●●●●●●●●

●●●●●●
●

●

●
●

●

●● ●●

●

●●

●●
●●●

●●

●●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●●

●●

●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●
●●●

●●

●

●●
●●

●●●●●
●

●

●●●
●

●●
●●

●

●●
●●

●

●●
●●

●

●

●●●●

●●
●●

●
●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●
●

●●●●

●

●●●
●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●
●●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●

●●●●
●

●●●●
●

●●
●●

●
●●●●●●●●●●●

●●
●●●●

●
●●●●

●●●●●

●
●

●
●

●
●●●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●●●
●●●●●●

●●●●●
●

●●●
●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●

●●●●
●●

●●
●●

●●
●

●
●●

●●

●● ●

●

●

●

●●●●

●

●●●

●●

●●

●●

●●

●●

●●

●

●●

●

●●●●

●●

●●
●●

●●●●●●
●●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●
●●

●

●

●
●●

●●
●

●●
●

●●●

●
●●

●
●●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●

●●

●●
●●
●

●●
●●●

●
●

●●
●

●

●●

●●

●

●

●●

●

●●

●

●●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●●
●●

●

●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●●●●

●

●●●●
●

●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●
●

●●
●●
●

●●
●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●
●
●

●
●
●

●
●

●

●●
●

●●
●

●●●●

●

●
●●●

●●●

●●

●

●

●

●
●

●●●

●●
●

●●
●

●

●
●●

●●

●●

●●●●●●●●
● ●

●

●

●●

●
●●

●

●
●

●

● ●●

●

●

●

●●

●●

●

●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●
●●

●●
●●●●●●●●●●●●●

●●

●●●

●●●●

●

●●

●●●

●●
●●

●

●●●
●●●●●●

●

●●●●●●●●●
●

●●●●●

●

●●●●●●●●
●

●●
●●●

●●
●●●●●

●●

●●

●●
●
●
●●

●
●●
●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●●●

●●●●
●●●●

●●●
●

●
●

●
●●●●●●

●●●●
●●

●●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●

●

●●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●●●●
●

●

●

●

●

●●
●

●

●
●●

●

●●

●●

●

●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●
●●●

●●●
●●

●
●

●
●

●

●●

●
●●●

●

●

●

●

●

●

10 20 30 40

0
10

20
30

40

pairs

R
M

S
D

 (
0.

1
nm

)

holo (control)

apo

results were returned after 44h14m (for output see Supplementary Material), EPITOPEMATCH after
16h43m; because of the parallelization the total runtime of EPITOPEMATCH amounted to 267h20m.

All 55534 PDB entries were screened for the epitope by EPITOPEMATCH for matches of 7 to 17
atoms with the query epitope and a maximum RMSD of 3 Å. These conditions for minimum size of
matches and maximum RMSD were in agreement with those reported by ASSAM. EPITOPEMATCH

aborted in six cases of very large structures (2CSE, 1XI5, 1XI4, 1HTQ, 1N03, 1MFR) because of too
large memory requirements. In 47658 PDB entries subgraph matches were located, in 7870 entries no
subgraph matches could be found by EPITOPEMATCH. Of all subgraphs the above conditions were
fulfilled for a small subset: 119 such epitopes were identified by EPITOPEMATCH in 89 PDB structures,
60 epitopes were identified by ASSAM in 26 PDB structures (Figure 9; see also Supplementary Material).
The set of ASSAM matches was a subset of those found by EPITOPEMATCH.

Figure 9 reveals several remarkable differences between the results of the two methods. The set of
full matches of 17 atoms identified by ASSAM is a subset of those found by EPITOPEMATCH, more
precisely, EPITOPEMATCH finds full matches in three times as many proteins as ASSAM. The set of
full or almost full matches includes rather clear cases as the maltose binding proteins 1EZ9, 1LAX, or

Algorithms 2009, 2 512

Figure 9. Comparison of EPITOPEMATCH (black crosses) with ASSAM [9] (red crosses),
with a PDB-wide search for epitopes similar to the maltose binding pocket in 1ANF formed
by 17 atoms. Along the horizontal axis the names of the PDB structures in which MCS have
been identified are given. The vertical axis gives above the zero line the number of matched
atoms, below zero the corresponding RMSD.

1MDP. 1EZ9 is an interesting case since ASSAM finds matches of 8 and 9 atoms overlapping with the
full binding motif, whereas EPITOPEMATCH finds a match of 10 atoms and a near-complete match of 16
atoms. This exemplifies a general tendency of EPITOPEMATCH that can be seen from Figure 9, namely
that the size of graphs matched by EPITOPEMATCH is usually greater or equal to those found by ASSAM,
the only exception being 1DMB. For most PDB structures where both methods identify matches, there
is no clear winner in terms of RMSD values amongst the two methods.

Another notable difference is the occurrence of many smaller matches of 7 or 8 atoms with higher
RMSD values of between 2 and 3 Å in the output of EPITOPEMATCH (Figure 9) whereas ASSAM

identifies nothing in these PDB structures, although at least some of these are validated sugar binding
proteins, such as 1JW4, 1JW5, or 2H25. 2V93 is a special case in which the two algorithms behave
differently for trivial reasons: ASSAM ignores files without side-chain atoms; EPITOPEMATCH matches
what can be matched even if atoms are missing.

We can conclude that due to the operation of ASSAM on preprocessed data, ASSAM probably beats
EPITOPEMATCH in terms of CPU time for the actual search, whereas EPITOPEMATCH returns more and
larger matches.

2.5. Discussion of practical performance

EPITOPEMATCH has been implemented in Java 1.6. Java is certainly not the preferred language for
large scale computing tasks. Nevertheless, the performance in terms of computing time is satisfactory
in all considered cases. As shown in the benchmark application, the algorithm can be easily parallelized

Algorithms 2009, 2 513

with practically linear scaling at various levels. EPITOPEMATCH can be outperformed by specialized
codes such as DALI if explicit use of higher level organization is made, such as secondary structure. On
the other hand, such specialized codes typically cannot identify discontinuous epitopes, which is more
the application intended for EPITOPEMATCH.

EPITOPEMATCH has still many options for improvements towards more efficient use of time and
memory. E.g. we have observed that relatively bad matches in the first iterations of the algorithm
usually do not lead to good matches in later iterations. Therefore, in database searches, the efficiency
can be increased further by the introduction of an early break of iterations if no cliques are found at
low distance tolerances. In the current implementation of EPITOPEMATCH memory usage is critical for
searches of large epitopes in large proteins of several thousand amino-acids, and we have experienced in
such cases occasional memory overflows on machines with 4 GB RAM.

In terms of effectivity, the algorithm performs well, identifying good matches in different application
scenarios from whole molecule matching to the matching of epitopes with a considerable flexibility,
e.g. due to induced fit. Effectivity can be influenced strongly by considering more than one center
per residue. Our implementation allows this, as demonstrated in Figures 5 and 6. All these atoms are
matched in parallel, and the CPU-time increases roughly linear with number of atoms per residue taken
into account.

We have already introduced some of the optimization measures to further increase effectivity and time
efficiency, so that the code currently available from the authors does not only identify more matches but
also is about three times faster than that used in the above benchmark.

3. Supplementary material

Detailed outputs of ASSAM and EPITOPEMATCH in the benchmark application are provided as Sup-
plementary Material. The compressed file contains a description (description.pdf) of the supplementary
files, and output files of both programs. The full output of EPITOPEMATCH (several 100 MB) in the
benchmark application and the EPITOPEMATCH code under the GNU General Public License are avail-
able from the authors.

References and Notes

1. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.;
Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242.

2. Gronwald, W.; Hohm, T.; Hoffmann, D. Evolutionary Pareto-optimization of stably folding pep-
tides. BMC Bioinformatics 2008, 9, doi:10.1186/1471–2105–9–109.

3. Lemmen, C.; Lengauer, T. Computational Methods for the Structural Alignment of Molecules. J.
Comput. Aided. Mol. Des. 2000, 14, 215–232.

4. Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of Docking: An Overview of Search
Algorithms and a Guide to Scoring Functions. Proteins 2002, 47, 409–443.

5. Holm, L.; Sander, C. Protein Structure Comparison by Alignment of Distance Matrices. J. Mol.
Biol. 1993, 233, 123–138.

6. Taylor, W. R.; Orengo, C. R. Protein Structure Alignment. J. Mol. Biol. 1989, 208, 1–22.

Algorithms 2009, 2 514

7. Norel, R.; Fischer, D.; Wolfson, H. J.; Nussinov, R. Molecular Surface Recognition by a Computer
vision-based Technique. Protein Eng. 1994, 7, 39–46.

8. Raymond, J. W.; Willett, P. Maximum Common Subgraph Isomorphism Algorithms for the Match-
ing of Chemical Structures. J. Comput.-Aided Mol. Des. 2002, 16, 521–533.

9. Artymiuk, P. J.; Poirrette, A. R.; Grindley, H. M.; Rice, D. W.; Willett, P. A Graph-theoretic
Approach to the Identification of Three-dimensional Patterns of Amino Acid Side-chains in Protein
Structures. J. Mol. Biol. 1994, 243, 327–344.

10. Varkony, T.; Shiloach, Y.; Smith, D. Computer-Assisted Examination of Chemical Compounds for
Structural Similarities. J. Chem. Inf. Comput. Sci. 1979, 19, 104–111.

11. Bron, C.; Kerbosch, J. Algorithm 457: Finding All Cliques of an Undirected Graph. Comm. of the
ACM 1973, 16, 575–577.

12. Kabsch, W. A Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Cryst. 1976,
A32, 922–923.

13. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W: Improving the Sensitivity of Progres-
sive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties
and Weight Matrix Choice. Nucl. Acids Res. 1994, 22, 4673–4680.

14. Zhao, K.; Chai, X.; Marmorstein, R. Structure of the Yeast Hst2 Protein Deacetylase in Ternary
Complex with 2’-O-Acetyl ADP Ribose and Histone Peptide. Structure 2003, 11, 1403–1411.

15. Ullmann, J. R. An Algorithm for Subgraph Isomorphism. J. Assoc. Comput. Machinery 1976,
16, 31-42.

16. Gunasekaran, K.; Nussinov, R. How Different are Structurally Flexible and Rigid Binding Sites?
Sequence and Structural Features Discriminating Proteins that Do and Do not Undergo Conforma-
tional Change upon Ligand Binding. J. Mol. Biol. 2007, 365, 257–273.

c© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).

Algorithms 2009, 2 515

Appendix

Algorithm 1 The central part of the EpitopeMatch algorithm. Several parameters are supplied
by the user, including the minimum, maximum, and increment values of the distance tolerance δ1

(δ1min, δ1max, δ1incr), the quotient δquot = δ2/δ1, the minimum degree ν of vertices in stars and cliques,
and the structure A of the query epitope (m atoms) and B of the target protein (n atoms).

1: procedure STRUCTUREALIGNMENT(δ1min, δ1max, δ1incr, δquot, ν, A,B)
2: m← |A|, n← |B|
3: δ1 ← δ1min

4: Hmn ← m · |B|+ n+ 1 . Hash key matrix encodes all vertex pairs.
5: sizeMCS ← 0

6: stars . Declaration of hash table for stars.
7: repeat
8: δ2 ← δ1 · δquot
9: DETERMINEMCS(δ1, δ2)

10: δ1 ← δ1 + δ1incr

11: until δ1 > δ1max ∨ sizeMCS == m . See Step 3 in text.
12: end procedure

13: procedure DETERMINEMCS(δ1, δ2) . Determines Maximum Common Subgraphs.
14: DETERMINESTARS(δ1) . See Algorithm 2.
15: for i← 1, |enlargedStars| do . Corresponding to Step 2 in text.
16: star ← enlargedStarsi

17: DETERMINECLIQUE(star, δ2) . See Algorithm 3.
18: end for
19: sizeMCS ← COMBINECLIQUES(cliques)
20: end procedure

Algorithms 2009, 2 516

Algorithm 2 Pseudocode of Step 1 of EPITOPEMATCH algorithm covering the determination of stars,
i.e. the seed matches. If several condition are fulfilled, including Inequality 2 in line 9, the star graph
around atoms i of A and k of B is extended by an edge to atoms j of A and l of B, and vice versa. Line
10 indicates that the star around i and k is addressed by hash key Hik. The corresponding hash table
entry in stars is then also updated.

1: procedure DETERMINESTARS(δ1)
2: starsold ← stars

3: for i← 1,m do . Dimension m of square matrix DA.
4: for j ← i+ 1,m do
5: for k ← 1, n do . Dimension n of square matrix DB.
6: for l← k + 1, n do
7: if si == tk ∧ sj == tl then . Atom property comparison.
8: if DB,kl ≤ DA,max then . Check distance range.
9: if |DA,ij −DB,kl| ≤ δ1 then . Inequality 2.

10: extend starHik
((j, l)), stars (starHik

)

11: extend starHjl
((i, k)), stars

(
starHjl

)
12: end if
13: end if
14: end if
15: end for
16: end for
17: end for
18: end for
19: enlargedStars← stars : deg(stars) ≥ max (ν, deg (starsold)) . Collect all enlarged stars

and new stars with central node degree of ν or higher.
20: end procedure

Algorithms 2009, 2 517

Algorithm 3 Determination of cliques. The non-central nodes of a previously determined star are central
nodes of new stars (reducedStars) that have to be tested for fulfilment of the second distance condition
(line 7). REDUCETOCLIQUE then recursively reduces the set of these stars to a clique.

1: procedure DETERMINECLIQUE(star, δ2)
2: reducedStars . Declaration of hash table for reduced stars.
3: for m← 1, |star| do
4: for n← m+ 1, |star| do
5: i, k ← starm

6: j, l← starn

7: if |DA,ij −DB,kl| ≤ δ2 then . Second distance condition.
8: extend reducedStarHik

(Hjl) , reducedStars (reducedStarHik
)

9: extend reducedStarHjl
(Hik) , reducedStars

(
reducedStarHjl

)
10: end if
11: end for
12: end for
13: if |reducedStars| > 0 then
14: REDUCETOCLIQUE(reducedStars)
15: end if
16: end procedure
17: procedure REDUCETOCLIQUE(reducedStars)
18: for i← 1, |reducedStars| do
19: di ← deg (reducedStarsi) . Degree of the central node.
20: for j ← 1, |reducedStars| do
21: if j 6= i then
22: di ← di + deg (reducedStarsij)

23: end if
24: end for
25: end for
26: if ∀i, j : di == dj then
27: extend cliques(reducedStars) . reducedStars is a new clique.
28: else
29: remove reducedStarsi:min(di)

30: REDUCETOCLIQUE(reducedStars)
31: end if
32: end procedure

	Introduction
	Results and Discussion
	Description of problem and assessment of problem size
	Algorithm
	Rationale
	Step 1: Finding seed matches with small distance tolerance
	Step 2: Consolidation of matching stars to cliques
	Step 3: Test for full match and loop back to Step 1 with increased distance tolerance
	Step 4: Superposition
	Step 5: Selection of Pareto-optimal matches

	Applications
	Matching two protein structures
	Recognition of a binding site in a homolog
	Identification of a ligand binding site in a database

	Comparative test
	Discussion of practical performance

	Supplementary material

